
NEWS AND VIEWS 

MObius and problems of inversion 
Who says that the theory of numbers is strictly academic? An old theorem due to Mobius has unexpectedly proved to 
be a way of solving physical problems of inversion that may have important applications. 

THE belief that pure mathematics is only 
fortuitously useful is widely shared, even 
by mathematicians. So why is the practice 
of science increasingly mathematical? 
There are two explanations. First, good 
luck; mathematicians do so many things 
that some of them must be useful. Second, 
psychology; the purest mathematicians 
have an unconscious sense of the urgent 
problems of the real world, and shape 
their interests accordingly. 

There is also, of course, the Hilbert 
phenomenon. David Hilbert (1863-1943), 
whose first claim on public attention was 
his demonstration that Euclid's axioms 
are not the self-consistent structure they 
had seemed for two millennia, afterwards 
bent his talent to the solution of physicists' 
problems, founding a tradition now car
ried on by people such as Atiyah (Oxford) 
and L. D. Fadeev (Moscow). 

But there may also be something in the 
view that all mathematics is potentially 
useful, that mathematicians have littered 
the literature with gems of technique 
whose usefulness is waiting to be dis
covered. For did not the nineteenth cen
tury's preoccupation with continued 
fractions prove useful, if briefly, in field 
theory? Did not Hamilton's quaternions, 
devised as a means of completing the 
algebra of vector quantities by the defini
tion of a quotient, turn out to have interes
ting connections with the spinor algebra of 
relativistic quantum mechanics? 

That is the spirit in which one should 
celebrate the use now discovered for a 
recondite contribution to the theory of 
numbers by Mobius (1790-1846), best 
known for the topological conundrum 
called the Mobius strip. Among other 
things, Mobius noted a simple inverse 
relationship between functions in number 
theory, which takes the following form. 

First, take some function f(n) of the 
integer variable n and another function 
F(n) defined as J:f(d), where the sum
mation runs only over the divisors of n, 1 
and n included. Then, according to 
Mobius, it is possible to invert the func
tional relationship into the simple f(n) = 
J: Jl(d) F(n/d) where the sum again runs 
over all divisors of n, and where the 
coefficients Jl(d), all either zero or ±1, 
reflect the prime composition of d. 

Briefly, Jl(1) = 1, and Jl(d) = 0 except 
when d is either a prime number or a 
composite number which is the product 
of, say, r distinct primes, when it has the 
value ( -1 )'. One can while away hours on 
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aircraft journeys verifying that the in
version works. To show that J: Jl(d) 
differs from zero (with the same restric
tions on the summation) only when n=1 
requires more ingenuity; one has to 
express n as a formal product of prime 
numbers and then show that the sum is 
(1 - 1)". 

What use is this? Inversion is the key 
word. Physical problems are most often 
inversion problems - inferring the velo
city profile in the Earth's crust from 
seismic signals, for example, or the linear 
distribution of interplanetary electron 
density from the measured Farady rota
tion of the plane of polarization of a radio 
signal from a satellite of some kind. And 
now Nan-xian Chen, from the Technical 
University at Beijing, has turned Mobius's 
inversion theorem to practical use by the 
exercise of more than a little ingenuity 
(Phys. Rev. Lett. 64, 1193; 1990). The 
work was done when Chen was at the 
International Institute of Theoretical 
Physics at Trieste. 

The trick is to show that the integers in 
Mobius's inversion formula can be re
placed by continuous variables, which 
hangs on a proof that the infinite series 
arising do indeed converge. The essence 
of Chen's paper is the proof that if A(w) 
= J: B(wln), where the summation 
extends from n = 1 to infinity, the inverse 
is given by B(w) = J: Jl(n)A(wln), with 
the same summation rule. 

Chen proves his point by demonstra
tion, with a string of examples only other
wise solved with difficulty. One ofthem, a 
new result, is neat enough at least to illus
trate the potential power of the method. 
Suppose that the vertices of an infinite 
one-dimensional lattice are all occupied 
with interacting atoms, so that any one of 
them experiences a potential V(x) = 
J: v(nx), where the summation in n is 
from 1 to infinity and v(x) is the elemen
tary pair-wise interaction. How, one 
might ask, can that be related explicitly to 
V(x), which might be measurable? What 
the inversion gives is simply J: Jl(n)V(nx) 
or, more explictly, V(x)- V(2x) - V(3x) 
- V(Sx)+ V(6x) . ... 

A more interesting example is that of 
how it may be possible accurately to infer 
the frequency distribution of the vibra
tional states of a solid lattice, say g(v), 
from measurements of specific heat at 
constant volume. Apart from numerical 
factors involving Planck's constant and 
Boltzmann's constant, the latter is simply 

the integral from zero to infinity of 
v'g( v) weighted by an appropriate 
Planck-Boltzmann factor allowing for the 
increased excitation of higher frequencies 
with increasing temperature. At low 
temperatures, it is usually feasible to 
represent the measured specific heat as a 
power series in the temperature T, begin
ning with a cubic term. 

As if pulling a rabbit out of a hat, Chen 
relates g( v) directly to the measured 
coefficients in the power series represent
ing the specific heat. As a reminder that 
the theory of numbers lies at the basis of 
all this sleight of hand, values of 
Riemann's zeta function for integral 
multiples of 2 appear throughout, which 
means that they can be written as 
Bernoulli numbers. Chen's other example 
is that of inferring the temperature distri
bution of a composite black body from 
measurements of its power output, which 
he says is a problem of current interest in 
remote sensing. 

Where will all this lead? The ideal, for 
Chen, would be that somebody should put 
a previously unsolved problem through 
the new Mobius mill. It will be interesting 
to see which problems first suggest them
selves as candidates. A more demanding 
question is whether it will be feasible to 
extend the trick to problems that are not 
simply one-dimensional. On the face of 
things, that might seem a mere formality, 
but it takes only a little scribbling to run 
into problems essentially tied up with the 
multiple connectedness of all but one
dimensional spaces. But that should not 
be a discouragement; rather, a challenge. 
It is fair to guess that, with Chen's proof 
that even Mobius has something to tell the 
modern world, a small army will now be 
scouring the literature of the theory of 
numbers in the hope of finding other 
useful tools in what may have been un
justly regarded as a backwater. 

There is no shortage of material. Chen 
himself quotes the fifth edition of the 
classic Theory of Numbers by G. H. Hardy 
and E. M. Wright (Clarendon, Oxford; 
1979), which does indeed tell all about the 
Mobius inversion without hinting that it 
may have physical application. Alongside 
that is a neat proof that Ramanujan's sum, 
defined as J:e<'•ihmln) with the sum in h 
running only over values less than n and 
prime to it, is also J:Jl(nld)d, where d 
is both a divisor of m and n. Surely, one 
is bound to ask, there must be some value 
in that? John Maddox 
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