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Abstract. Collaborative filtering systems predict a user’s interest in new items based on the recommendations
of other people with similar interests. Instead of performing content indexing or content analysis, collaborative
filtering systems rely entirely on interest ratings from members of a participating community. Since predictions
are based on human ratings, collaborative filtering systems have the potential to provide filtering based on complex
attributes, such as quality, taste, or aesthetics. Many implementations of collaborative filtering apply some variation
of the neighborhood-based prediction algorithm. Many variations of similarity metrics, weighting approaches,
combination measures, and rating normalization have appeared in each implementation. For these parameters and
others, there is no consensus as to which choice of technique is most appropriate for what situations, nor how
significant an effect on accuracy each parameter has. Consequently, every person implementing a collaborative
filtering system must make hard design choices with little guidance. This article provides a set of recommendations
to guide design of neighborhood-based prediction systems, based on the results of an empirical study. We apply
an analysis framework that divides the neighborhood-based prediction approach into three components and then
examines variants of the key parameters in each component. The three components identified are similarity
computation, neighbor selection, and rating combination.
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1. Introduction

Automated collaborative filtering is quickly becoming a popular technique for reducing
information overload, often as a technique to complement content-based information fil-
tering systems. Automated collaborative filtering has seen considerable success on the
Internet, being used at sites like Amazon.com—the largest book store on the Internet and
CDNow.com—the largest CD store on the Web.

Content-based and collaborative filtering use different types of data to arrive at a filtering
decision. Content-filtering tools select the right information for the right people by com-
paring representations of content contained in the documents to representations of content
that the user is interested in. Content-based information filtering has proven to be effective
in locating textual documents relevant to a topic using techniques such as vector-space
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queries, “intelligent” agents, and information visualization. Automated collaborative filter-
ing systems work by collecting human judgments (known as ratings) for items in a given
domain and matching together people who share the same information needs or the same
tastes. Users of a collaborative filtering system share their analytical judgments and opin-
ions regarding each item that they consume so that other users of the system can better
decide which items to consume. In return, the collaborative filtering system provides useful
personalized recommendations for interesting items.

Collaborative filtering provides three key additional advantages to information filtering
that are not provided by content-based filtering: (i) support for filtering items whose content
is not easily analyzed by automated processes; (ii) the ability to filter items based on quality
and taste; and (iii) the ability to provide serendipitous recommendations.

First, in collaborative filtering, humans determine the relevance, quality, and interest of
an item in the information stream. Consequently, filtering can be performed on items that
are hard to analyze with computers, such as movies, ideas, feelings, people, and politicians.

Second, collaborative filtering systems can enhance information-filtering systems by
measuring, in dimensions beyond that of simple content, how well an item meets a user’s
need or interests. Humans are capable of analyzing on dimensions such as quality or taste,
which are very hard for computer processes. A content-based search of the Associated Press
could retrieve all articles related to Minnesota Governor Jesse Ventura, but by combining
content filtering with collaborative filtering, a search could return only those relevant articles
that are well written!

Finally, a collaborative filtering system will sometimes make serendipitous
recommendations—recommending items that are valuable to the user, but do not contain
content that the user was expecting. We have found that serendipitous recommendations
occur frequently in the movie domain, with the collaborative filtering system accurately
recommending movies that a user would never have considered otherwise.

The potential for collaborative filtering to enhance information-filtering tools is great.
However, to reach the full potential, it must be combined with existing content-based infor-
mation filtering technology. Collaborative filtering by itself performs well predicting items
that meet a user’s interests or tastes, but is not well suited to locating information for a
focused content need.

In this article, we present an algorithmic framework for performing collaborative filtering
and examine empirically how existing algorithm variants perform under this framework. We
present new, effective enhancements to existing prediction algorithms and finally conclude
with a set of recommendations for selection of prediction algorithm variants.

This article is a further exploration of the concepts presented in a previous SIGIR confer-
ence paper (Herlocker et al. 1999). This article examines additional parameters and provides
deeper discussion beyond that of the original conference paper. The datasets are also slightly
different—details on the difference can be found in Section 4.1.

2. Problem space

The problem of automated collaborative filtering is to predict how well a user will like an
item that he has not rated given that users ratings for other items and a set of historical
ratings for a community of users.
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Table 1. Collaborative filtering can be represented as the problem of predicting missing values in a user-item
matrix.

Star wars Hoop dreams Contact Titanic

Joe 5 2 5 4

John 2 5 3

Al 2 2 4 2

Nathan 5 1 5 ?

This is an example of a user-item rating matrix where each filled cell represents
a user’s rating for an item. The prediction engine is attempting to provide
Nathan a prediction for the movie ‘Titanic.’

A prediction engine collects ratings and uses collaborative filtering technology to provide
predictions. An active user provides the prediction engine with a list of items, and the
prediction engine returns a list of predicted ratings for those items. Most prediction engines
also provide a recommendation mode, where the prediction engine returns the top predicted
items for the active user from the database.

The problem space can be formulated as a matrix of users versus items, with each
cell representing a user’s rating on a specific item. Under this formulation, the prob-
lem is to predict the values for specific empty cells (i.e. predict a user’s rating for an
item). In collaborative filtering, this matrix is generally very sparse, since each user will
only have rated a small percentage of the total number of items. Table 1 shows a sim-
plified example of a user-rating matrix where predictions are being computed for
movies.

The most prevalent algorithms used in collaborative filtering are what we call the
neighborhood-based methods. In neighborhood-based methods, a subset of appropriate
users are chosen based on their similarity to the active user, and a weighted aggregate of
their ratings is used to generate predictions for the active user. Other algorithmic methods
that have been used are Bayesian networks (Breese et al. 1998), singular value decom-
position with neural net classification (Billsus and Pazzani 1998), inductive rule learning
(Basu et al. 1998), a graph-theoretic approach (Aggarwal et al. 1999), a Bayesian mixed-
effect model (Condliff et al. 1999), a combination of neighborhood-based algorithms with
weighted majority weighting (Delgado and Ishii 1999), clustering in reduced dimensions
using principal component analysis (Goldberg et al. 2001) and latent class models (Hofmann
and Puzicha 1999).

As an example of a neighborhood based method, consider Table 1 again. We wish to
predict how Nathan will like the movie “Titanic.” Joe is Nathan’s best neighbor, since the
two of them have agreed closely on all movies that they have both seen. Therefore, Joe’s
opinion of the movie Titanic will influence Nathan’s prediction the most. John and Al are
not as good neighbors because both of them have disagreed with Nathan on certain movies;
thus, they will influence Nathan’s predictions less than Joe will.

In this article, we will explore the space of neighborhood-based collaborative filtering
methods and describe some new better performing algorithms that we have developed.
Neighborhood-based methods can be separated into three steps.
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1. Weight all users with respect to similarity with the active user.
2. Select a subset of users to use as a set of predictors (possibly for a specific item)
3. Normalize ratings and compute a prediction from a weighted combination of selected

neighbors’ ratings.

Within specific systems, these steps may overlap or the order may be slightly different.
We will begin by discussing the most relevant prior work on collaborative filtering algori-

thms, examining which techniques were used to implement the three steps of neighborhood-
based methods.

3. Related work

The GroupLens system first introduced an automated collaborative filtering system using
a neighborhood-based algorithm (Resnick et al. 1994). GroupLens provided personalized
predictions for Usenet news articles. The original GroupLens system used Pearson corre-
lations to weight user similarity, used all available correlated neighbors, and computed a
final prediction by performing a weighted average of deviations from the neighbor’s mean
(Eq. (1)). Pa,i represents the prediction for the active user for item i . n is the number of
neighbors, ru,i is user u’s rating of item i , r̄a is the active user’s average rating, and wa,u is
the similarity weight between the active user and neighbor u—as defined by the Pearson
correlation coefficient, which is shown in Eq. (2).

Pa,i = r̄a +
∑n

u=1[(ru,i − r̄u) ∗ wa,u]∑n
u=1 wa,u

(1)

wa,u =
∑m

i=1[(ra,i − r̄a)(ru,i − r̄u)]√∑m
i=1(ra,i − r̄a)2

∑m
i=1(ru,i − r̄u)2

(2)

The Ringo music recommender (Shardanand and Maes 1995) and the Bellcore Video
Recommender (Hill et al. 1995) expanded upon the original GroupLens algorithm. Ringo
claimed better performance by computing similarity weights using a constrained Pearson
correlation coefficient, shown in Eq. (3). The value 4 was chosen because it was the midpoint
of Ringo’s seven-point rating scale. Ringo limited membership in a neighborhood by only
selecting those neighbors whose correlation was greater than a fixed threshold, with higher
thresholds resulting in greater accuracy, but reducing the number of items for which Ringo
was able to generate predictions for. To generate predictions, Ringo computed a weighted
average of ratings from all users in the neighborhood.

wa,u =
∑m

i=1[(ra,i − 4)(ru,i − 4)]√∑m
i=1(ra,i − 4)2

∑m
i=1(ru,i − 4)2

(3)

The Bellcore Video Recommender used Pearson correlation to weight a random sample
of neighbors, selected the best neighbors, and performed a full multiple regression on them
to create a prediction.
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Breese et al. (1998) performed an empirical analysis of several variants of neighborhood-
based collaborative filtering algorithms. For similarity weighting, Pearson correlation and
cosine vector similarity were compared, with correlation being found to perform better,
although work done after this study suggests that they may be equivalent (Pennock et al.
2000b).

A promising nearest-neighbor-like approach called “Personality Diagnosis” has been
proposed by Pennock et al. (2000b). Personality diagnosis combines the approaches of
Bayesian modeling and neighborhood-based methods. Personality diagnosis has the nice
property that it produces a rating likelihood distribution instead of a real valued prediction.
This distribution could be used to identify the confidence of a prediction. Additionally
Pennock et al. claim that personality diagnosis is more accurate than correlation-based
nearest neighbor on movie data very similar to the data we used in our experiment (Pennock
et al. 2000b). Personality diagnosis results are not presented here, because we became aware
of the algorithm after performing our experiments described.

This article compares different variants of neighborhood-based prediction algorithms.
Other work has compared neighborhood-based prediction algorithms to different predic-
tion frameworks such as Bayesian networks techniques (Breese et al. 1998) and classical
data-mining algorithms (Sarwar et al. 2000a). In both cases, the neighborhood-based pre-
diction algorithm was shown to be more accurate for multi-valued (non-binary) rating
data.

4. Experimental design

4.1. Data

In order to compare the results of different neighborhood based prediction algorithms we
ran a prediction engine using historical ratings data collected for purposes of anonymous
review from the MovieLens movie recommendation site. The historical data consisted of
100,000 ratings from 943 users, with every user having at least 20 ratings. The data set
covers ratings entered into MovieLens during a three-month period of time, after removing
all users with less than 20 ratings. Over the entire MovieLens database (currently more than
7 million ratings), the average number of rated movies per user is 71. The ratings were on
a five-point scale with 1 and 2 representing negative ratings, 4 and 5 representing positive
ratings, and 3 indicating ambivalence.1 Unlike many alternative algorithms, e.g. Breese
et al. (1998) and Sarwar et al. (2000b) the neighborhood-based prediction algorithms can
operate on sparse user-item rating matrices, and do not require the use of default voting
(such as is described in Breese et al. (1998)).

The dataset used in this article is a subset of the one used in the original SIGIR conference
paper, consisting of 100,000 ratings instead of 122,000 ratings (covering a slightly shorter
timespan) (Herlocker et al. 1999). The holdout sets in this analysis are different from the
ones in the SIGIR paper; originally 10% of each user’s ratings were withheld, while in
this analysis, we withhold exactly 10 ratings from each user. In spite of the difference in
the holdout set, the findings were consistent. Thus, we view the results presented here as a
superset of the results presented in the conference paper.
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4.2. Experimental method

From each user in the test set, ratings for 10 items were withheld, and predictions were
computed for those 10 items using each variant of the tested neighborhood based predic-
tion algorithms. Since users are more likely to rate good items than bad items, the re-
sults may reflect predictive accuracy for generally good items more than for generally bad
items.2

For each item predicted, the highest-ranking neighbors that have rated the item in ques-
tion are used to compute a prediction (they form the user’s neighborhood for that item).
Note that this means that a user may have a different neighborhood for each item. All
users in the database are examined as potential neighbors for a user—no sampling is
performed.

The quality of a given prediction algorithm can be measured by comparing the predicted
values for the withheld ratings to the actual ratings.

4.3. Metrics

For a full discussion of metrics in collaborative filtering, please refer to Herlocker (2000).
For this experiment, we consider the following metrics.

4.3.1. Coverage. Coverage is a measure of the percentage of items for which a recommen-
dation system can provide predictions. Common system features that can reduce coverage
are small neighborhood sizes and sampling of users to find neighbors. We compute cov-
erage as the percentage of prediction requests for which the algorithm was able to return
a prediction. Unless otherwise noted, all experimental results demonstrated in this article
had maximal coverage. Maximal coverage may be slightly less than perfect (99.8 in our
experiments) because there may be no ratings in the data for certain items, or because very
few people rated an item, and those that did had zero correlations or no overlap with the
active user. In certain applications it may be possible to trade off coverage for accuracy (for
example, by only presenting confident predictions to the user), however our assumption in
this research has been that close to maximal coverage is important.

4.3.2. Accuracy. To measure the accuracy of predictions, we chose mean-absolute error
as a prediction error evaluation metric. There have been many different predictive accuracy
metrics applied to collaborative filtering results, including mean-absolute error (Breese et al.
1998, Herlocker et al. 1999, Pennock et al. 2000b, Resnick et al. 1994, Shardanand and Maes
1995), correlation (Hill et al. 1995, Sarwar et al. 1998), ROC sensitivity (Good et al. 1999,
Herlocker et al. 1999), mean-squared error (Shardanand and Maes 1995), precision/recall
(Sarwar et al. 2000a), and a rank-utility metric (Breese et al. 1998). We have done empirical
experiments that have shown that mean absolute error correlates strongly with many other
proposed metrics for collaborative filtering (Herlocker 2000), yet is easier to measure and
has well understood significance measures. Furthermore, mean absolute error is still the
most frequently used metric among collaborative filtering researchers.
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Table 2. A list of prediction algorithm components tested and the variants of each component that were tested.

Component Variants tested

Similarity weight Pearson correlation

Spearman correlation

Entropy

Mean-squared-difference

Significance weighting No significance weighting

n/50 weighting

Variance weighting None

(Variance – Variancemin)/(Variancemax – Variancemin)

Selecting neighborhoods Weight threshold—Full range

Max neighborhood size—Full range

Rating normalization No normalization

Deviation from mean

Z-score

Weighting neighbor contributions Using weighting

Without weighting

4.4. Parameters evaluated

The components that were evaluated are listed in Table 2 along with the variations of
each component that were tested. For each component, the performance using each of the
variations was measured. All components except the one being measured were held constant
to ensure that the results reflected the differences in the component being tested.

5. Weighting possible neighbors

The first step in neighborhood-based prediction algorithms is to weight all users with respect
to similarity with the active user. When you are given recommendations for movies or books,
you are more likely to trust those that come from people who have historically proven them-
selves as providers of accurate recommendations. Likewise, when automatically generating
a prediction, we want to weight neighbors based on how likely they are to provide an accurate
prediction. Thus, we compute similarity weights to measure closeness between users. How-
ever, we have only incomplete data specifying the history of agreement between users; in
certain cases, we have only a small sample of ratings on common items for pairs of users. We
have to be wary of false indicators of predictive relationships between users. To address these
issues we adjust the similarity weight with significance weighting and variance weighting.

5.1. Similarity weighting

Several different similarity weighting measures have been used. The most common
weighting measure used is the Pearson correlation coefficient. Pearson correlation
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(Eq. (2)) measures the degree to which a linear relationship exists between two
variables.

The Spearman rank correlation coefficient is similar to Pearson, but computes a measure
of correlation between ranks instead of rating values. To compute Spearman’s correlation,
we first covert the user’s list of ratings to a list of ranks, where the user’s highest rating
gets rank 1. Tied ratings get the average of the ranks for their spot. Then the computation
is the same as the Pearson correlation, but with ranks substituted for ratings (Eq. (4)). ka,i

represents the rank of the active user’s rating of item i . ku,i represents the rank of neighbor
u’s rating for item i .

wa,u =
∑m

i=1[(ka,i − k̄a)(ku,i − k̄u)]√∑m
i=1(ka,i − k̄a)2

∑m
i=1(ku,i − k̄u)2

(4)

Mean-squared difference (Eq. (5)) is another alternative that was used in the Ringo music
recommender (Shardanand and Maes 1995). Mean-squared difference gives more emphasis
to large differences between user ratings than small differences.

d =
∑m

i=1(ra,i − ru,i )2

m
(5)

In our experiments, we have found that Spearman correlation performs similarly to
Pearson correlation. As an example, figure 1 shows results for both Spearman and Pearson
correlation across a variety of different values of max nbors,3 with all other parameters held
constant. Note that the results are very close between Spearman and Pearson. The same data
is shown in Table 3, along with indications of statistical significance. With the exception of
one data point in Table 4, there was no statistical difference between the algorithm using
Pearson and the algorithm using Spearman. Occasionally, such as with the max-nbors = 60
data point, Pearson correlation will perform significantly better than Spearman.

The performance of the mean-squared difference as a similarity metric is also shown in
figure 1. The graph shows that mean-squared difference results in lower prediction accuracy
than either Spearman or Pearson correlation. Table 4 shows the same data on a point-by-point
comparison with algorithms using Pearson correlation.

Given the data we have observed, Spearman correlation does not appear to be valuable.
Algorithms using Spearman correlation perform worse or the same as comparable algo-
rithms using Pearson correlation. Furthermore, computation of Spearman correlation is
much more compute-intensive, due to the additional pass through the ratings necessary to
compute the ranks.

The lack of improvement using Spearman correlation was surprising. We had thought
that the inherent ranking characteristics in the rating process would cause the rank-based
correlation to perform better. We believe that the large number of tied rankings (there are
only five distinct ratings—five distinct ranks—for each user) results in a degradation of the
accuracy of Spearman correlations. Increasing the size of the ranking scale could increase
the difference in accuracy between Spearman and Pearson, however, with larger ratings
scales, there is the issue of rate-rerate reliability.4
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Figure 1. This graph compares the performance of algorithms using three different correlation measures as
similarity metrics. Spearman is a rank-based metric, Pearson is the standard product-moment correlation, and
mn sq diff is the mean squared difference of the ratings. The performance of the two correlation algorithms is
effectively the same. The data used for this chart is weighted average deviation from mean, negative correla-
tions = 0, devalue = 50, and no threshold.

Other similarity measures include the vector similarity “cosine” measure, the entropy-
based uncertainty measure, and the mean-squared difference algorithm. The vector similar-
ity measure has been shown to be successful in information retrieval, however Breese has
found that vector similarity does not perform as well as Pearson correlation in collaborative
filtering (Breese et al. 1998). The measure of association based on entropy uses conditional
probability techniques to measure the reduction in entropy of the active user’s ratings that
results from knowing another user’s ratings (Press et al. 1986). In our tests, entropy has not
performed as well as Pearson correlation.

5.2. Significance weighting

One issue that has not been addressed in previously published studies is the amount of trust
to be placed in a correlation with a neighbor. In our experience with collaborative filtering
systems, we have found that it was common for the active user to have highly correlated
neighbors that were based on a very small number of co-rated items. These neighbors that
were based on tiny samples (often three to five co-rated items) frequently proved to be
terrible predictors for the active user. The more data points that we have to compare the
opinions of two users, the more we can trust that the computed correlation is representative of
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Table 3. This table shows the mean absolute error for algorithms using Pearson and Spearman correlation.

Max-nbors Pearson MAE Spearman MAE Significance P-value

5 0.7829 0.7855 No >0.05

10 0.7618 0.7636 No >0.05

20 0.7545 0.7558 No >0.05

60 0.7518 0.7529 Yes 0.05

80 0.7523 0.7531 No >0.05

100 0.7528 0.7533 No >0.05

This is the same data as shown in figure 1. The P-value indicates the strength of signifi-
cance as measured by a large-sample paired hypothesis test. The items to hold out have
been randomly selected.

Table 4. This table shows the mean absolute error for algorithms using Pearson correlation and mean squared
difference as similarity measures. This is the same data as shown in figure 1.

Max-nbors Pearson MAE mn sq diff MAE Significance P-value

5 0.7829 0.7898 Yes 0.05

10 0.7618 0.7718 Yes 0.001

20 0.7545 0.7634 Yes <0.001

60 0.7518 0.7602 Yes <0.001

80 0.7523 0.7605 Yes <0.001

100 0.7528 0.7610 Yes <0.001

the true correlation between the two users. We hypothesized that the accuracy of prediction
algorithms would be improved if we were to add a correlation significance-weighting factor
that would devalue similarity weights that were based on a small number of co-rated items.
For our experiments, we applied a linear drop-off to correlations that were based on less than
a certain threshold of number of items. For example, if our significance threshold was 50,
and if two users had fewer than 50 commonly rated items, we multiplied their correlation by
a significance weight of n/50, where n is the number of co-rated items. If there were more
than 50 co-rated items, then no adjustment was applied. In this manner, correlations with
small numbers of co-rated items are devalued, but correlations with 50 or more commonly
co-rated items are not dependent on the number of co-rated items.

Figure 2 compares the accuracy with and without the devaluing term, at different sig-
nificance cutoff levels. The line with a significance cutoff of 1 represents the use of non-
weighted raw correlations. Increasing the cutoff to 10 actually causes an increase in error,
which was quite surprising. Our interpretation of this result is that 10 is not a high enough
significance threshold to catch the worst offending false correlations, and therefore simply
enters noise into the system. However, significance thresholds of 25 or more do improve
the accuracy of the system. Such high thresholds effectively remove the non-performing
neighbors from your neighborhood. Significance thresholds larger than 50 don’t seem to
have much significant additional effect on the accuracy of the system.
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Figure 2. Shows the effects of significance weighting on prediction accuracy. Devalue indicates the number
of shared ratings a correlation must be based on to not get devalued by a significance weighting. All correla-
tions less than the specified constant were devalued linearly. There are 48 data points represented in this chart,
with Pearson similarity measure, weighted neighbor contributions, and deviation from mean combination nor-
malization. No devaluing (DEVALUE = 1) is significantly worse than devaluing with a threshold 25 or greater
(DEVALUE ≥ 25). Significance is computed through a large sample paired hypothesis test.

Note that applying devaluing based on significance thresholds has several other advan-
tages. As you increase the significance threshold, users need to have rated more items in
common with you in order to enter your neighborhood. The fact that those users have seen
more of the same movies as you is an indication in of itself of potential commonality of
tastes, independent of the ratings. In addition, if you are choosing neighborhoods indepen-
dent of the items for which ratings are being predicted, high significance thresholds will
make it more likely that the neighbors selected have rated a large number of items, thus
making them more useful in the generation of predictions.

An additional interesting observation is that devaluing correlations has a noticeably
weaker effect on prediction accuracy if a non-weighted average of neighbor ratings is
used to generate a prediction. Figure 3 shows the effects of devaluing on such algorithms.
Compare this to figure 2, which contains data from algorithms where weighted averages of
ratings were used.

5.3. Variance weighting

All the similarity measures described above treat each item evenly in a user-to-user corre-
lation. However, knowing a user’s rating on certain items is more valuable than others in



298 HERLOCKER, KONSTAN AND RIEDL

max_nbors

100.0080.0060.0040.0030.0020.0010.005.00

M
ea

n 
m

ea
n 

ab
s 

er
r

.82

.81

.80

.79

.78

.77

.76

.75

DEVALUE

     1.00

    10.00

    25.00

    50.00

    75.00

   100.00

Figure 3. This graph is similar to figure 2, except the 48 points shown here do not weight neighbor contribution
to the prediction. Since the similarity measure is only once (to find the neighborhoods), and not twice (it is not
used for weighting contributions), the effect of devaluing the similarity measure is smaller.

discerning a user’s interest. For example, we have found that the majority of MovieLens
users have rated the movie “Titanic” highly. Therefore knowing that two users rated Titanic
high tells us very little about the shared interests of those two users. Opinions on other
movies have been known to distinguish users’ tastes. The movie “Sleepless in Seattle” has
shown itself to separate those users who like action movies from those who like romance
movies. Knowing that two people agree on “Sleepless in Seattle” tells us a lot more about
their shared interests than Titanic would have. We hypothesized that giving the distinguish-
ing movies more influence in determining a correlation would improve the accuracy of the
prediction algorithm. To achieve this, we modified the mean-squared difference algorithm
to incorporate an item-variance weight factor. We added a variance weight for each item,
then adding a normalizing factor in the denominator. This is shown in Eq. (6). By incorpo-
rating a variance weight term, we will increase the influence of items with high variance in
ratings and decrease the influence of items with low variance.

d =
∑m

i=1vi (ra,i − ru,i )2

∑m
i=1vi

(6)

We computed an item variance weight as vi = vari − varmin/varmax where vari =∑n
u=1(ru,i − r̄i )2/n − 1 , and varmin and varmax respectively are the minimum and maximum

variances over all items. Contrary to our initial hypothesis, applying variance-weighting
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Figure 4. This graph shows the lack of difference in prediction accuracy once variance weighting was applied
to the mn sq difference algorithm. These data points are no threshold, and weighted average deviation from mean
combination.

terms had no significant effect on the accuracy of the prediction algorithm. These results
are shown in figure 4. One explanation is that our variance-weighting scheme does not take
into account the fact that a user who disagrees with the popular feeling provides a lot of
information.

6. Selecting neighborhoods

Having assigned similarity weights to users in the database, the next step is to determine
which other users’ data will be used in the computation of a prediction for the active
user—that is who will be selected to be in the active user’s neighborhood. In theory, we
could include every user in the database as a neighbor, and weight the contribution of
the neighbors accordingly, with distant neighbors contributing less than close neighbors.
However, commercial collaborative filtering systems are beginning to handle millions of
users, making consideration of every user as a neighbor infeasible when trying to maintain
real-time performance. The system must select a subset of the community to use as neighbors
at prediction computation time in order to guarantee acceptable response time. Furthermore,
many of the members of the community do not have similar tastes to the active user, so
using them as predictors will only increase the error of the prediction.
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Another consideration in selecting neighborhoods suggested by Breese is that high cor-
relates (such as those with correlations greater than 0.5) can be exceptionally more valuable
as predictors than those with lower correlations can.

Two techniques, correlation-thresholding and best-n-neighbors, have been used to de-
termine how many neighbors to select. The first technique, used by Shardanand and Maes
[shardanand], is to set an absolute correlation threshold, where all neighbors with absolute
correlations greater than a given threshold are selected. The second technique, used in the
GroupLens system, Resnick et al. (1994) is to pick the best n correlates for a given n.

6.1. Correlation weight threshold

Correlation thresholding sets a minimum correlation weight that a neighbor must have in
order to be accepted into a user’s neighborhood. This ensures that neighbors have a minimum
proven predicting value. The downside of correlation thresholding is that it can significantly
reduce the coverage of the prediction algorithm. If you set the correlation threshold too high,
then very few people make it into a user’s neighborhood. Then the ACF engine can only
predict for items that those few neighbors have rated.

We tested the effect of correlation weight thresholding in combination with all the other
factors. The effect of weight thresholding was consistent across all data runs. Examples of
the effects of correlation weight threshold can be seen in Tables 5 and 6. In both figures,
the inverse relationship between weight threshold and coverage is immediately apparent.
In our data set, weight thresholds above 0.2 provide significant drops in coverage.

A somewhat surprising result was that applying a correlation weight threshold never
actually improved the accuracy of the predictions. Figure 5 shows the mean absolute error

Table 5. The interaction between correlation weight threshold, coverage and mean-absolute error.

Mean absolute error
Weight threshold Coverage (%) Mean absolute error weight threshold = 0

0.00 100 0.7528 0.7528

0.01 100 0.7530 0.7528

0.05 99.7 0.7533 0.7522

0.10 96 0.7590 0.7445 (p = 0)

0.20 72 0.7521 0.7260 (p = 0)

0.30 55 0.7559 0.7191 (p = 0)

0.40 36 0.7613 0.6925 (p = 0)

0.50 15 0.7837 0.6864 (p = 0)

As the weight threshold is increased above 0.01, coverage is lost. Column 4 of this table
shows the performance of the algorithm with weight-threshold = 0, but only on the items
that the weight-thresholded algorithm for the corresponding row covered. It is obvious that
weight thresholding in this case has reduced the accuracy of the predictions. These data
points are weighted-average-deviation-from-mean, negative correlations = 0, max-nbor =
100, devalue = 50. Mean absolute errors with p values listed indicated values that have a
statistically significant difference compared with the error at threshold = 0.
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Table 6. The interaction between correlation weight threshold and coverage. This table is similar to figure 5.

Mean absolute error
Weight threshold Coverage (%) Mean absolute error weight-threshold = 0

0.00 100 0.7467 0.7467

0.01 100 0.7468 0.7467

0.05 100 0.7473 0.7461 (p = 0.05)

0.10 96 0.7526 0.7384 (p = 0)

0.20 72 0.7432 0.7184 (p = 0)

0.30 55 0.7452 0.7108 (p = 0)

0.40 36 0.7475 0.6847 (p = 0)

0.50 15 0.7745 0.6753 (p = 0)

Note the “false” gain in prediction accuracy at threshold = 0.2. The mean absolute error
appears to decrease compared to no threshold. However, if you consider the accuracy of the
algorithm with no threshold calculated only on items that are covered by the 0.2 threshold
algorithm, we find that the 0.2 threshold algorithm is still performing worse. These data points
are weighted-average-zscore, negative correlations = 0, max-nbor = 60, devalue = 50.
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Figure 5. This graph depicts the relationship between correlation weight threshold and mean absolute error of
the prediction for one class of algorithms. Points with less than 70% coverage are not shown. Notice that the 0.1
threshold increases the error. 0.2 threshold decreases the error slightly, but with a loss of 30% of coverage. The
points shown in this graph are weighted-average-zscore, devalue = 50.
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of a given set of algorithms for different correlation weight thresholds. It appears from
figure 5 that a correlation weight threshold of 0.2 decreases the mean absolute error. We
see in this in Table 5 with a decreased mean absolute error for 0.2, and we see the same for
weight thresholds of 0.2 and 0.3 in Table 6. However, this turns out to be a “false” increase
in mean absolute error. If we compare the mean absolute error only on points that both
algorithms covered, we see that the weight threshold = 0 algorithm always outperforms
other higher weight thresholds.

For the data set examined, correlation weight thresholding appears to have no redeeming
value. In all examined cases, weight thresholding only made matters worse, decreasing
both the coverage and the accuracy of the algorithm. Should the number of users in a
system increase (the tested data set had 943 users), the value of using correlation weight
thresholding could increase, since there is more likelihood of encountering high-correlating
users. However, as the number of users increases significantly beyond 943, it become less
and less practical to examine all users—forcing the system to rely on sampling. Unless new
intelligent sampling techniques are developed, the sample set will be very similar to working
with a smaller set of users. Furthermore, this movie rating set is relatively dense—there
are a relatively large number of users who have seen the same movies as you. With more
sparse data sets, such as web sites, it will extremely hard to find high correlates that happen
to have seen the same web pages as you.

The improvements in prediction accuracy for the non-thresholding algorithm on only the
items that were covered by the thresholding algorithms (see column 4 of Tables 5 and 6)
suggest that when high correlates participate in a prediction, the quality of that prediction
is likely to rise. However, the low correlates still provide a good amount of value, since dis-
carding them resulted in lower accuracies (compare column 3 to column 4 in Tables 5 and 6).

6.2. Maximum number of neighbors used

The data shows that the “maximum number of neighbors to use” (max nbors) parameter
affects the error of the algorithm in a reasonably consistent manner. This is demonstrated
in figure 6, and can also be seen in figures 1–3 on previous pages. When the size of
neighborhoods is restricted by using a small max nbors (less than 20), the accuracy of the
system suffers, with increased mean absolute error (figure 6).

The loss of accuracy when using small neighborhoods was an expected result. The prob-
lem lies in the fact that, with the MovieLens data set, even the top neighbors are imperfect
predictors of the active user’s taste. Each user’s different experiences produce many differ-
ent subtleties of taste, which makes it very unlikely that there is an excellent predictor for a
given user within a database of 943 users. Even if there was one user with a perfect match
in tastes, the other members of the neighborhood might cloud the recommendations.

As the size of the neighborhood is allowed to increase, more users contribute to the
prediction. Therefore, variance introduced by individual users is averaged out over the larger
numbers. Some serendipity may be lost, since consensus is required for a high prediction,
but overall accuracy increases.

We have found that even in the full MovieLens database, which contains approximately
80,000 users, there aren’t many exceptionally high correlations between users once there



EMPIRICAL ANALYSIS OF DESIGN CHOICES 303

max_nbors

100.00

80.00

60.00

40.00

30.00

20.00

10.00

5.00

M
ea

n 
m

ea
n 

ab
s 

er
r

.86

.84

.82

.80

.78

.76

.74

combination

average_deviation_fr

om_mean

average_rating

weighted_average_dev

iation_from_mean

weighted_average_zsc

ore

Figure 6. Graph showing the performance of algorithms when the “maximum number of neighbors to use”
parameter is varied. Small neighborhood sizes cause considerable increased error. The error stabilizes around 20
neighbors. Eventually, as neighborhood sizes are increased beyond 20, the error starts to trend upwards. 32 data
points are plotted, with algorithms using a significance weighting of n/25, and not using negative correlations.
The different combination types are discussed in Section 7.

are more than 20 shared items. So, there doesn’t seem to be potential for using small
neighborhood sizes. In most real-world situations, a neighborhood of 20 to 50 neighbors
seems reasonable, providing enough neighbors to average out extremes.

Another observation is the error increases slowly as the max nbors parameter is in-
creased beyond 20. As the number of neighbors consulted during a prediction increases,
the probability of having to include low-correlating neighbors increases. However, this
effect is much less pronounced than the small neighbor size. Consider Table 7, which
shows the results of applying a paired-sample t-test to each pair of data points on the
weighted average deviation from mean line of figure 6. Max nbor values of 5 and 10 are
clearly worse than max nbor of 20, but larger values of max nbor do not provide statistically
significant differences in mean absolute error. Small values of max nbor always resulted in
an increase in error that was statistically significant.

7. Producing a prediction

Once the neighborhood has been selected, the ratings from those neighbors are combined to
compute a prediction. The basic way to combine all the neighbors’ ratings into a prediction is
to compute an average of the ratings. The averaging technique has been used in all published
work using neighborhood-based ACF algorithms. Additionally, it has been suggested by
Pennock and associates that performing a weighted average of neighbor ratings is provably
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Table 7. Significance of differences in MAE due to the parameter max nbors.

Max nbors MAE t-value

5 0.7836 −10.18 (p = 0)

10 0.7605 −4.74 (p = 0)

20 0.7524 0.00

30 0.7520 0.41

40 0.7511 1.11

60 0.7508 1.14

80 0.7518 0.37

100 0.7527 −0.17

Each row shows the MAE of the algorithm and the paired-sample
t-value computed when comparing the algorithm to the max nbors =
20 algorithm. This data is the same as the weighted average devaiation
from mean curve shown in figure 6. Significant differences are in bold.

the best way to combine ratings, given certain well-accepted axioms of social choice theory
(Pennock et al. 2000a).

We discuss two modifications to the ratings combination algorithm: rating normalization
and weighting neighbor contributions. Both have been proposed as improvements to the
ratings combination algorithm (Resnick et al. 1994).

7.1. Rating normalization

The basic weighted average assumes that all users rate on approximately the same distri-
bution. From observation of collected data, we know that users do not all rate on the same
distribution. Therefore, it makes sense to perform some sort of transformation so that user’s
ratings are in the same space.

The approach taken by GroupLens was to compute the average deviation of a neighbor’s
rating from that neighbor’s mean rating, where the mean rating is taken over all items that
the neighbor has rated. The deviation-from-mean approach is demonstrated in Eq. (1). The
justification for this approach is that users may have rating distributions centered around
different points. One user may tend to rate items higher, with good items getting 5s and
poor items getting 3s, while other users may give primarily 1s, 2s, and 3s. Intuitively, if
a user infrequently gives ratings of 5, then that user should not receive many predictions
of 5 unless they are extremely significant. The average deviation from the mean computed
across all neighbors is converted into the active user’s rating distribution by adding it to the
active user’s mean rating.

An extension to the GroupLens algorithm is to account for the differences in spread
between users’ rating distributions by converting ratings to z-scores, and computing a
weighted average of the z-scores (Eq. (7)).

pa,i = r̄a + σa

∑n
u=1

[( ru,i −r̄u

σu

)
wa,u

]
∑n

u=1 wa,u
(7)
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Figure 7. A scatterplot demonstrating the effect of rating normalization on prediction accuracy. Each point
represents the accuracy of one algorithm. There are 404 algorithms shown here, all using Pearson correlation,
but with varying significance weighting, varying values of max nbors, and both with and without using negative
correlations.

We compared the three different modes of rating normalization: no normalization,
deviation-from-mean, and z-score. The results from 404 different algorithms are shown
in figure 7. Note that the three different modes of normalization form three clearly identifi-
able bands in the chart. Performing rating normalization produces an obvious benefit. The
deviation from mean normalization performs significantly better than the no normalization,
while the z-score normalization only performs slightly better than the deviation from mean
normalization.

The increase in accuracy due to normalization comes about because of the differences
in rating distributions among users. These differences exist because of both different per-
ceptions of the world, and different perceptions of the ratings scale. The most significant
difference between user rating distributions is a lateral shift in the distribution. For exam-
ple, some users tend to give primarily positive ratings, saving the less than average ratings
for the worst movies. Other users may rate most movies less than average, and give the
above-average ratings to the few excellent movies. Therefore, their ratings distributions
are shifted when compared with each other. The rate-high user will have a high mean and
median rating, while the rate-low user will have a low mean and median rating. A movie
that the rate-high user rates 4 will probably only be a 3 for the rate-low user. By performing
the deviation-from-mean normalization, we account for shifts in rating distributions.

The z-score normalization accounts for differences in widths of the rating distributions in
addition to shifts. By widths, we mean the variance of the rating distribution. The intuition
here is that some users are willing to give plentiful ratings on the extreme of their scale
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Figure 8. Demonstrates the effect of weighting neighbor’s contributions to a prediction. The diamonds represent
algorithms where weighting was used. The crosses represent where weighting was not used. This graph shows
204 algorithms, all using deviation-from-mean normalization.

(such as 1s and 5s), while other users may rarely give extreme ratings. Thus, their rating
distributions will have different variances. By performing z-score normalization, we appro-
priately adjust each prediction into ratings distribution of the user receiving the prediction.
As can be seen from figure 7, z-score normalization provides a small increase in accuracy
over deviation-from-mean normalization. However, performing z-score normalization is
relatively cheap computationally and requires only one additional storage element per user
to record the user’s variance of ratings.

7.2. Weighting neighbor contributions

Having computed a similarity measure to locate the closest neighbors, it makes sense to use
that similarity measure to weight the contribution of each neighbor based on how close they
are to the active user. The original GroupLens algorithm (see Eq. (1)), did perform this rat-
ing, while the Ringo algorithm (Shardanand and Maes 1995), did not. The Ringo algorithm
simply averaged the ratings of users in the selected neighborhood. Figure 8 demonstrates the
effect of weighting neighbor contributions on the accuracy of predictions. The crosses rep-
resent the accuracy of algorithms that weighted neighbor contributions, while the diamonds
represent algorithms that did not weight neighbor contributions. Clearly, weighting neighbor
contributions lowers the mean absolute error. There is some overlap between the two modes
shown in the graph. This can be explained by variations in other parameters. What you are
seeing is that the best performing algorithms without neighborhood weighting are about



EMPIRICAL ANALYSIS OF DESIGN CHOICES 307

max_nbors

120100806040200

m
ea

n 
ab

s 
er

r
.79

.78

.77

.76

.75

WEIGHT

    1.00

     .00

Figure 9. Indicates the clear separation between data points that weight neighbor contributions and those that
don’t. This was created from the data points shown in figure 8 by controlling the significance weighting factor
(using n/50).

as good as the worst performing algorithms with neighborhood weighting. Figure 9 shows
what the graph would look like when the significance weighting parameter is controlled.

8. Summary

Collaborative filtering is an exciting new approach to filtering information that can select
and reject items from an information stream based on qualities beyond content, such as
quality and taste. It has the potential to enhance existing information filtering and retrieval
techniques.

In this article, we have presented an algorithmic framework that breaks the collaborative
prediction process into components, and we provide empirical results regarding variants of
each component, as well as present new algorithms that enhance the accuracy of predictions.

The empirical conclusions in this article are drawn from an analysis of historical data
collected from an operational movie prediction site. The data is representative of a large set of
rating-based systems, where the domain of predictions is high volume targeted entertainment
with a generally high level of quality control. Domains of this criteria include movies, videos,
books, and music. There is reason to believe that these results are generalizable to other
prediction domains, but we do not yet have empirical results to prove it. Our algorithmic
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recommendations are certainly a good place to start when exploring a new and different
prediction domain.

We have made new contributions in each of the three steps of the neighborhood-based
prediction algorithm. We have shown that Spearman correlation is not an appropriate re-
placement for the Pearson correlation coefficient, taking longer to compute and producing
less accuracy. We demonstrated that incorporating significance weighting by devaluing cor-
relations that are based on small numbers of co-rated items provided a significant gain in
prediction accuracy. While we hypothesized that decreasing the contributions of items which
had a low rating variance across all users would increase predictions accuracy, it proved
false, with variance weights decreasing the prediction accuracy. Best-n neighbors proved
to be the best approach to selecting neighbors to form a neighborhood, while correlation-
weight thresholding did not provide any clear value. When it comes to combining ratings
to form a prediction, deviation-from-mean averaging was shown to increase prediction ac-
curacy significantly over a normal weighted average, while z-score averaging provided no
significant improvements over deviation-from-mean. Furthermore, weighting the contribu-
tions of neighbors by their correlation with the user did increase the accuracy of the end
predictions.

For those who are considering using a neighborhood-based prediction algorithm to per-
form automated collaborative filtering, we have the following recommendations: Use Pear-
son correlation as a similarity measure—it remains the most accurate technique for comput-
ing similarity. If your rating scale is binary or unary, you may have to consider a different
approach—see Breese et al. (1998) for more information. It is important to use a signifi-
cance weight to devalue correlates with small numbers of co-rated items as it will often give
you a larger gain in accuracy than your choice of similarity algorithm. Finally, users will
rate on slightly different scales, so use the deviation-from-mean approach to normalization.
These recommendations are summarized in Table 8.

In the progress of examining personalized algorithms, we also discovered a much more
accurate non-personalized average algorithm. Automated collaborative filtering systems
use non-personalized average algorithms to provide predictions when not enough is known

Table 8. A tabulation of recommendations based on the results presented in this chapter.

Recommended Not recommended

Similarity weighting Pearson correlation Spearman, entropy, vector similarity,
(Section 5.1) mean-squared difference

Significance weighting Yes
(Section 5.2)

Selecting neighbors Set max number of neighbors Weight thresholding
(Section 6) (potentially in the range of

20–60 nbors)

Rating normalization Deviation-from-mean No normalization
(Section 7.1) or z-score

Weighting neighbor Yes
contributions (Section 7.2)
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Table 9. Two more accurate overall-average prediction algorithms. Both the average-zscore and average-
deviation-from mean algorithms are significantly more accurate than the base average-rating algorithm.

t-value (compared to
Average algorithm MAE average rating)

Average rating 0.8354 –

Average z-score 0.7900 9.77 (p = 0)

Average deviation 0.7835 12.2 (p = 0)
from mean

about the user to provide a personalized prediction. The normal approach is to compute the
average rating of the item being predicted over all users (Eq. (8)).

pa,i =
∑n

u=1 ru,i

n
(8)

However, we have found that computing a deviation-from-mean average over all users
(Eq. (9)) results in a much more accurate non-personalized prediction as is demonstrated
in Table 9.

pa,i = ra +
∑n

u=1(ru,i − r̄u)

n
(9)

Notes

1. The data are publicly available—http://www.grouplens.org/data.
2. The MovieLens user interface centers on providing “top-n” recommendation lists. Users then have an oppor-

tunity to rate the movies that are recommended. As a result, there are many more ratings for generally good
items than ratings for generally bad items.

3. The max nbors parameter stands for “maximum number of neighbors used” and is discussed in detail in Section
6.2.

4. “Rate-rerate reliability” describes the likelihood that a user, having given a rating on an item, will give the same
rating when asked again at a later date. Larger scales lead to lower reliability. For example, imagine we had
users rate movies on a 100 point scale, and a user rated “Star Wars” 83. If we asked that same user a month
later what he rated the item, it is unlikely that he would say exactly 83 again. However, if the scale is only five
points, there is a good chance that he will give the same rating both times.
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