Skip to main content
Log in

A crystal-chemical approach to lubrication by solid oxides

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper introduces a new approach to the selection, classification, and mechanistic understanding of lubricious oxides that are used to combat friction and wear at elevated temperatures. Specifically, it describes a crystal-chemical model that enables one to predict the shear rheology or lubricity of an oxide or oxide mixture at elevated temperatures. This model can be used to formulate new alloy compositions or composite oxide structures that can provide low friction at high temperatures. In the case of composite oxides, the model allows one to estimate the solubility limits, chemical reactivity, compound forming tendencies, as well as the lowering of the melting point of one oxide when a second oxide is present. From a tribological standpoint, a prior knowledge of these details is important because they are strongly related to the extent of adhesive interactions, shear rheology, and hence to lubricity of oxides. In light of certain crystal-chemical considerations, general guidelines are provided for the selection of those oxides that can provide low friction at high temperatures. The major goal of this paper is to establish model relationships between relevant crystal-chemical and tribological properties of oxides that can be used as lubricants at high temperatures. Such a model may help eliminate guesswork in high-temperature lubrication and provide a new means to address the difficult lubrication problems experienced at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Studt, Tribol. Int. 22 (1989) 111.

    Article  CAS  Google Scholar 

  2. P. Pool, Science 246 (1989) 444.

    Google Scholar 

  3. E.E. Klaus, J.L Duda and S.K. Naidu, National Institute of Standards and Technology Special Publication 744, US Government Printing Office, Washington, DC 20402 (1988).

    Google Scholar 

  4. J. Lauer and S. Dwyer, STLE Trans. 33 (1990) 529.

    CAS  Google Scholar 

  5. T.A. Blanchet, J.L. Lauer, Y.F. Liew, S.J. Rhee and W.G. Sawyer, Surf. Coat. Technol. 68/69 (1994) 446.

    Article  Google Scholar 

  6. M. Kohzaki, S. Noda, H. Doi and O. Kamigaito, Wear 131 (1989) 341.

    Article  CAS  Google Scholar 

  7. W. Wei, J. Lankford and R. Kossowsky, Mater. Sci. Eng. 90 (1987) 307.

    Article  CAS  Google Scholar 

  8. A. Erdemir, G.R. Fenske, R.A. Erck and C.C. Cheng, Lubr. Eng. 46 (1990) 23.

    CAS  Google Scholar 

  9. A. Erdemir, R.A. Erck, G.R. Fenske and H. Hong, Wear 203/204 (1997) 588.

    Article  Google Scholar 

  10. H.E. Sliney, Tribol. Int. 15 (1982) 303.

    Article  CAS  Google Scholar 

  11. A. Erdemir, G.R. Fenske and J.H. Munson, in: Proc. 29th Int. Symp. on Automotive Technology and Automation, 3-6 June 1996, Florence, Italy, p. 766.

  12. A. Erdemir, D.E. Busch, R.A. Erck, G.R. Fenske and R. Lee, Lubr. Eng. 47 (1991) 863.

    CAS  Google Scholar 

  13. A. Erdemir, in: Friction and Wear of Ceramics, ed. S. Jahanmir (Dekker, New York, 1993) pp. 119–162.

    Google Scholar 

  14. M.B. Peterson, S.F. Murray and J.J. Florek, Trans. ASLE 2 (1960) 225.

    CAS  Google Scholar 

  15. J.K. Lancaster, Solid Lubricants, Handbook of Lubrication, Vol. II, Theory and Design, ed. E.R. Booser (CRC Press, Boca Raton, 1984) p. 267.

    Google Scholar 

  16. M. Kanakia, M.E. Owens and F.F. Ling, in: Proc. Workshop on Fundamentals of High Temperature Friction and Wear with Emphasis on Solid Lubrication for Heat Engines, Industrial Tribology Institute, Troy, NY, ed. F.F. Ling (1984) pp. 19–38.

    Google Scholar 

  17. J.K. Lancaster, J. Tribol. 107 (1985) 437.

    Article  CAS  Google Scholar 

  18. M.B. Peterson and R.L. Johnson, Lubr. Eng. 11 (1955) 325.

    CAS  Google Scholar 

  19. W.O. Winer, Wear 10 (1967) 422.

    Article  CAS  Google Scholar 

  20. H.E. Sliney, Solid Lubricants, Metals Handbook, Vol. 18 (ASMInternational, 1990) pp. 114–122.

    Google Scholar 

  21. H.E. Sliney, Trans. ASLE 29 (1986) 370.

    CAS  Google Scholar 

  22. H.E. Sliney, T.N. Storm and G.P. Allen, Trans. ASLE 8 (1965) 4.

    Google Scholar 

  23. H.E. Sliney, Rare Earth Oxides and Fluorides as Solid Lubricants to 1000 °C, NASA TN D 5301 (1979).

  24. C. DellaCorte and H.E. Sliney, STLE Trans. 30 (1987) 30.

    Google Scholar 

  25. C. DellaCorte and H.E. Sliney, Lubr. Eng. 47 (1991) 298.

    CAS  Google Scholar 

  26. A. Erdemir and R.A. Erck, Tribol. Lett. 2 (1996) 23.

    Article  CAS  Google Scholar 

  27. M.D. Kanakia and M.B. Peterson, Literature Review of Solid Lubrication Mechanisms, DTIC, AD A185010 (1986).

  28. M.B. Peterson, S.Z. Li, X.X. Jiang and S.J. Calabrese, in: Frictional Properties of Lubricating Oxide Coatings, Proc. 16th Leeds-Lyon Symp. (1989).

  29. M.B. Peterson, S.J. Calabrese, S.Z. Li and X.X. Jiang, J. Mater. Technol. 10 (1994) 313.

    CAS  Google Scholar 

  30. Advanced Gas Turbine Technology Project, Final report, Allison Gas Turbine Division, General Motors Co., Prepared for NASA Lewis Research Center for US Department of Energy, DOE/NASA 0168-10, NASA CR-179484, 1 September 1986.

  31. M.B. Peterson, S.Z. Li and S.F. Murray, Wear Resisting Oxide Films for 900 °C, Final report, US Department of Energy, ANL/OTM/CR-5 (1994).

  32. S.F. Murray and S.J. Calabrese, Lubr. Eng. 49 (1993) 955.

    CAS  Google Scholar 

  33. M.B. Peterson, S.B. Calabrese and B. Stup, Lubrication with Naturally Occurring Double Oxide Films (Office of Naval Research), Final report, contract Bo: N00014-82-C-0247 (1982) p. 10.

  34. J.P. King and N.H. Foster, ASEE Joint Propulsion Conf., Orlando, FL, 16-18 July 1993, AIAA Paper # 90-2-44.

  35. J.S. Zabinski, A.E. Day, M.S. Donley, C. DellaCorte and N.T. McDevitt, J. Mater. Sci. (1994) 5875.

  36. K.J. Wahl, L.E. Seitzman, R.N. Bolster, I.L. Singer and M.B. Peterson, Surf. Coat. Technol. 89 (1997) 245.

    Article  CAS  Google Scholar 

  37. D.J. Taylor, P.F Fleig, S.T. Schwab and R.A. Page, Surf. Coat. Technol. 120/121 (1999) 465.

    Article  Google Scholar 

  38. M.N. Gardos, Tribol. Trans. 31 (1988) 427.

    CAS  Google Scholar 

  39. M.N. Gardos, H.-S. Hong and W.O. Winer, Tribol. Trans. 32 (1990) 209.

    Google Scholar 

  40. M.N. Gardos, in: New Materials Approaches to Tribology: Theory and Applications, Mat. Res. Soc. Symp. Proc., Vol. 140, eds. L.E. Pope, L.L. Fehrenbacher and W.O. Winer (1989) pp. 325–338.

  41. M. Woydt, A. Skopp, I. Dorfel and K. Witke, Tribol. Trans. 42 (999) 21–31.

  42. T.F.J. Quinn, Tribol. Int. 16 (1983) 305.

    Article  CAS  Google Scholar 

  43. W.E. Houth, Bull. Am. Ceram. Soc., January/Juny (1951) 1.

  44. R.C. Evans, An Introduction to Crystal Chemistry (Cambridge Univ. Press, London, 1939) p. 171.

    Google Scholar 

  45. H.W. Jaffe, Principles of Crystal Chemistry and Refractivity (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  46. A. Dietzel, Z. Electrochem. 48 (1942) 9.

    CAS  Google Scholar 

  47. K.L. Vorres, J. Am. Ceram. Soc. 48 (1965) 113.

    Article  CAS  Google Scholar 

  48. W.M. Armstrong, A.C.D. Chaklader and M.L.A. DeClene, J. Am. Ceram. Soc. 45 (1961) 407.

    Article  Google Scholar 

  49. W.J. Knapp, J. Am. Ceram. Soc. 36 (1953) 43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdemir, A. A crystal-chemical approach to lubrication by solid oxides. Tribology Letters 8, 97–102 (2000). https://doi.org/10.1023/A:1019183101329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019183101329

Navigation