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Abstract. Our research combines mean motion resonances and dissipative forces in the averaged
elliptic spatial restricted three-body problem. The models presented can be applied in many contexts
mixing resonances and dissipations, e.g., asteroid belt, transneptunian region, exoplanets, systems
of planetary rings, etc. We propose a semi-numerical model that simulates the behaviour of test
particles under the effect of generic forces, functions of powers of the position and/or of the velocity.
This model is valid for any orbital eccentricities or inclinations, even at high values. Captures around
symmetric and asymmetric equilibria are reproduced and the apparitions of a plateau of inclination
for long periods of time are dectected.

1. Introduction

The Kuiper belt is a great laboratory to test theories about captures in resonance;
indeed, the main mean motion external resonances with Neptune are characterized
by concentrations of planetesimals. The long time stability of such regions seems
quite strong and can be analyzed in different models.

If we use a very simple one degree of freedom model of resonance, with
inclinations equal to zero, it has been shown how a dissipation (Stokes, Poynting-
Robertson drags) could slowly push a small body into a resonance, and stabilize its
motion “for ever” around a constant eccentricity, referred as “universal” in Beaugé
and Ferraz-Mello (1993–1994).

Our purpose is to test how robust this behavior could be if we take the inclina-
tions into account, and if we generalize this approach to any dissipation (presented
as a generic function of powers of the position and velocity). It is quite clear that,
with the introduction of a second degree of freedom, and for several types of forces,
the capture will not be definitive anymore. However it could still be present for very
long periods of time, during which the eccentricity and/or the inclination stay quasi
constant, on a kind of plateau, to eventually leave the resonance and be trapped in
the next one.

We propose a semi-numerical model to analyze this process of resonance trap-
ping due to general dissipation forces in the frame of the spatial restricted three
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body problem and in the case of external mean motion resonances. We compute
our simulations by using the 3-dimensional Extended Schubart Averaging (ESA)
integrator developed by Moons (1994) for all mean motion resonances. We com-
plete it by adding to the righthandside of the differential equations, the averaged
contributions of general dissipative forces functions of powers of the position
or/and velocity of the particle, following the same idea as Murray (1994) on the
dynamical effects of any drag on the Lagrangian equilibria positions. We give our
results for the 1:2 and 2:3 resonances with Neptune.

Details about the method and part of the results can be found in Jancart,
Lemaitre and Letocart (2003).

2. The Resonant Integrator: ESA and Its Extension to the Dissipative Cases

ESA computes the averaged Hamiltonian H of the resonant spatial elliptic restric-
ted three-body problem and its partial derivatives in closed form, for any value of
the eccentricity and inclination of the perturbing body; it gives the averaged motion
of a particle close to a mean motion resonance (p+q

p
) with a perturbing planet. The

resonant variables chosen in ESA (J , σ , Jz, σz, N and ν) are given by:

J = L − G q σ = (p + q )λ′ − pλ − q �

Jz = G − H q σz = (p + q)λ′ − pλ − q �

N = H − L − q

p
L q ν = (p + q)λ′ − pλ

where L = √
µa, G = L

√
1 − e2 , H = G cos I are the Delaunay’s momenta, ex-

pressed with respect to the semimajor axis a, the eccentricity e and the inclination
I of the small body; µ = GM1, with G the gravitation constant and M1 the mass of
the primary; λ and λ′ represent the mean longitudes of the small body and of the
secondary, � is the longitude of the pericenter and � the longitude of the node of
the small body. For an external mean motion resonance, the value of q is negative.

We calculate the closed forms of the generic drag terms written in powers of
position and velocity variables (see formula (1)), with the same philosophy as ESA,
which means without any series expansion in the eccentricity or the inclination, and
add these averaged components to the averaged equations of motion given by ESA.
The problem was to rewrite the forces in the averaged canonical variables suitable
for the ESA integrator.

The final differential equations can be written as:

dJ
dt

= − ∂H
∂σ

+ FJ
dσ
dt

= ∂H
∂J

+ Fσ

dJz

dt
= − ∂H

∂σz
+ FJz

dσz

dt
= ∂H

∂Jz
+ Fσz

dN
dt

= − ∂H
∂ν

+ FN
dν
dt

= ∂H
∂N

+ Fν
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The calligraphic notations Fxi
or Fyi

indicate that the components of the force have
been averaged over the mean anomaly M.

To obtain the dissipative contributions in ESA resonant variables, we use the
transformation:

Fσ = F ν − Fω − F� , FJ = FL − FG ,

Fσz
= F ν − F� , FJz

= FG − FH ,

Fν = −p

q
(FM + Fω + F�) , FN = q+p

p
FL − FH .

3. The Averaged Dissipative Forces

Following Murray (1994), we selected two kinds of generic forces :

�R = −k2rj ṙ i �v (1)
�S = −k2rj vi �v

where r and v are the norms of the position �r and of the velocity �v of the third
body, expressed in an inertial frame (not rotating) and k is a small coefficient. �R
and �S have to be averaged over the mean anomaly M of the small body.

3.1. FORCES OF THE FIRST TYPE: �R = −k2rj ṙ i �v
The components of the force �R in Delaunay’s canonical variables M, ω, �, L, G

and H , after averaging, are given by:

RM = Bij

e
β I2 , RL = Cij (I3 + e I4) ,

Rω = −Bij e I1 − β RM , RG = Cij β I5,

R� = 0 , RH = RG cos I .

(2)

In the above expressions (2), β = √
1 − e2, the coefficients B and C are given

by

Bij = 2 Cij

1

L
and Cij = Aij ei with Aij = −k2a(i+j+2)n(i+1)

where n is the mean motion of the particle and k2 = 10−6.
The In are integrals from 0 to 2 π of power of the eccentricity with respect to

the eccentric anomaly. These integrals are due to the averaged process (see Jancart
et al. (2003)).
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3.2. FORCES OF THE SECOND TYPE: �S = −k2rjvi �v
The components of the force �S in Delaunay’s variables, after averaging, are given
by:

SM = 0 , SL = Aij J1 ,

Sω = 0 , SG = Aij β J2 ,

S� = 0 , SH = SG cos I .

(3)

The Jn are integrals from 0 to 2 π of power of the eccentricity with respect to
the eccentric anomaly. These integrals are due to the averaged process (see Jancart
et al. (2003)). Aij and β are the same as in Equations (2).

Interested in the role of the inclination in captures, we are looking, as a first step,
for the presence of a plateau in inclination (period of time relatively long while the
inclination is stabilized) and, in a second step, for values of initial inclinations to
allow a capture. The two problems are treated separately.

4. The Inclinations after Capture: Case of the Resonance 1:2

Starting with an inclination of a few degrees, we find two main behaviors:
− for the first behavior, the particles are first trapped in the mean motion reson-

ance (the angle σ is captured in one of the asymmetric equilibria
 and librates
with a decreasing amplitude); the eccentricity is pumped up, quite quickly,
up to a constant value, the value of which depends on the force considered.
Once the eccentricity is stabilized, we can notice that the equilibrium is not
yet reached: the inclination is decreasing very slowly to zero, with the second
angle σz always circulating. The only “equilibrium inclination” in that case is
0 and is reached asymptotically, after several millions of years (see Figures 1
and 2).

− for the second behavior, we have the capture of σ in asymmetric equilibrium,
with a decreasing amplitude, together with the increasing of the eccentricity,
up to its plateau value. The inclination is oscillating with small (slightly
increasing) amplitude about its initial value of a few degrees, with a quasi
constant mean value while the angle σz is circulating. Once the eccentricity
has reached its maximal value and is stabilized (universal eccentricity due
to the combination of the resonance and the drag effects), the second stage
starts up, with a rapid increase of the inclination, connected to a capture in
resonance of the second angle σz. This case coincides with a secular resonance
case called “Kozai resonance”. The behavior of this second degree of freedom
(I and σz) is very similar to the first one (e and σ ) but is less stable in the sense


 These equilibria corresponding to values of σ �= 0 or 180 degrees may appear in captures in the
1:2 resonance (Beaugé, 1994)
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Figure 1. S-force, with i = 2, j = 2 and k2 = 10−6: representation of e and I over 1,000,000 years.
The inclination falls down to 0.

that the increase of the inclination is very sharp, up to values of I of 30◦, and
very often, after a few hundreds of thousands of years of this regime, the small
body is ejected out of the resonance. This escape is due to the presence of the
drag which is still acting on the particle. This capture around high values of
I is quite short and as soon as the angle σz starts to circulate once again, the
inclination goes down to 0.

A typical case of this generic behavior is given in Figures 3 and 4, for a S
force, characterized by i = 0 and j = −2, and k2 = 10−6.
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Figure 2. S-force, with i = 2, j = 2 and k2 = 10−6 : representation of σ over 1,000,000 years. The
angle σz always circulates.

The two behaviors are already mentioned by Gomes (1997), where he presented
results connected to a universal inclination considering restricted hypothesis with
respect to the dissipative forces or the type of resonances.

To explain the different behaviors and the stability of the equilibrium we de-
velop a toy model of dissipation in the case 1 : 2, using an Hamiltonian (three
dimensional and truncated). The results obtained are presented in Jancart et al.
(2003).

The specific results for the S forces and the R forces are specified in Jancart et
al. (2003) for many values of i and j and for the 1 : 2 and the 2 : 3 mean motion
resonances for a body like Jupiter.

Below, we concentrate on results in the 2 : 3 mean motion resonance with a
body like Neptune (orbital elements and mass).

5. The Initial Inclinations: Case of the Resonance 2 : 3

Since the capture is dependent on the initial conditions, we tested a series of forces
R and S for (i, j) equal (0, 0) or (0,−2) or (2, 2), always with the same initial
conditions in semi major axis and eccentricity (a = 1.35, e = 0.05) but with
increasing values of the initial inclination from 0 to 50 degrees (we consider I =
0, 4, 10, 20, 30, 40, 50◦ ).

In any case of dissipation except for the R-force, (2, 2), for inclinations under
20◦, the capture is always present; on the other hand, if the initial inclination is
higher than 50◦ there is no capture.



TRIDIMENSIONAL DISSIPATIVE SEMI-NUMERICAL MODEL 69

Figure 3. S-force, with i = 0, j = −2 and k2 = 10−6 : representation of e and I over 3,500,000
years, limit of the capture.

Between 20 and 50 degrees, the capture depends on the force. For some forces,
the succession of captures and escapes in successive different resonances of the
eccentricity is very irregular and the motions show a chaotic behavior. In some
cases either the semi major axis stays around its inital value or falls down to values
smaller than 1 and we have no capture at all.
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Figure 4. S-force, with i = 0, j = −2 and k2 = 10−6 : representation of σz (dots) and σ (continuous
line) over 3,500,000 years, limit of the capture.

6. Conclusion

We present here the results for generic classes of drag forces where the “universal
eccentricity” appears systematically, in each case, as an equilibrium in the planar
case. The idea of testing several dissipations was already discussed by Gomes
(1995–1997) but in the planar case or for a specific set of forces.

We do not find a universal inclination, as Gomes (1997) did, for the forces
that we have analyzed; the explanation is that in our generic forces, the term Scos i

obtained by Gomes, does not vanish. However we detect the apparition of a very
long plateau of quasi constant inclination, very slowly decreasing to 0 for long
periods of time.

We show that for a generic class of dissipations, acting on a resonant three
dimensional averaged model, two different behaviors can be detected; a case where
the planar case is always the attractive one, for long periods of time the inclination
tends to 0, and a second case of double capture, corresponding to higher values of
I but starting from any value of the initial inclination below 50◦.
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