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Introduction: Special Issue on Theoretical Advances
in Data Clustering

This special issue is devoted to papers that advance the state of the art in the theory of
clustering. Three of the papers in this issue describe algorithms for classical clustering
objectives. The remaining five papers explore issues such as the design of new clustering
objectives, clustering large datasets, generalizing the objects to be clustered, and clustering
to improve learning. In the rest of this introduction, we describe these research trends in the
context of the papers that appear in this special issue.

Theoretical underpinnings of classical clustering objectives

Among the most widely studied clustering objectives is the squared error distortion or
k-Median-squared objective which is: Given a set of n points in a metric space and given
k, find a set of k centers (that are themselves points in the metric space) such that the
sum of squared distances from points to nearest centers is minimized. As it is unlikely that
the optimum solution to the squared error distortion objective can be found in polynomial
time (the problem is NP-hard), interest has shifted towards approximation algorithms. Such
algorithms guarantee that the ratio of the algorithm’s distortion to the optimum distortion
is boundably small.

For the squared error distortion objective, P. Drineas, A. Frieze, R. Kannan, S. Vempala,
and V. Vinay describe an algorithm that finds a solution whose distortion is at most twice
the distortion of the optimum solution in the case that the points to be clustered fall in a
Euclidean space. The authors obtain an approximation guarantee by applying the Singular
Value Decomposition (SVD) to the matrix of points.

Related to the k-Median-squared objective is the k-Median objective where the goal is to
find a collection of k centers such that the sum of distances from points to nearest centers is
minimized. In many cases, approximation algorithms for k-Median also apply to k-Median-
squared, and thus the k-Median objective, being even simpler to describe, has been studied
more widely in the theoretical community. R. Mettu and G. Plaxton give an algorithm
that, with high probability, finds a constant-factor approximation to the optimum solution
in O(nk) time. Also, an accompanying lower bound demonstrates that any randomized
algorithm requires �(nk) time in order to find a constant factor approximation with even a
small probability. A. Meyerson, L. O’Callaghan, and S. Plotkin improve the running time
under the assumption that no cluster is very small in the optimum solution. Specifically,
their algorithm finds a constant-factor approximation to the optimum solution in time that
depends polynomially on k and 1/δ, assuming that each cluster has �(nδ/k) points and δ

is a given confidence parameter.
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Design of new clustering objectives

Beyond k-Median, new clustering objectives have also recently been introduced. These
objectives tend to capture some of the constraints that arise more typically in practice.
Among the more natural and conceptually clean formulations is the objective given by
A. Blum, N. Bansal, and S. Chawla. In this problem one is given information about each
pair of objects to be clustered in the form of “+” if the two objects should belong to the
same cluster and “−” if they should belong to different clusters. The goal of correlation
clustering is to partition the points so as to minimize the number of disagreements with
the “+”/“−” labels. The authors give a constant-factor approximation to the problem of
minimizing disagreements, in addition to other results.

N. Mishra, D. Ron, and R. Swaminathan address the problem of finding conjunctive
cluster descriptions. For example, a cluster of web documents may be described by the
conjunction of words that is common to that cluster. A new formulation of the clustering
problem is given that differs from previous approaches in that clusters may overlap, not
all points are clustered, and a point may be assigned to a cluster even if it only satisfies
most of the attributes in the conjunction. Algorithms are given to identify a collection of
well-separated, descriptive conjunctive cluster descriptions.

Clustering large datasets

Many of the papers in this special issue acknowledge that modern datasets, like the web, are
very large, and thus efficient algorithms are essential. The paper by P. Drineas, A. Frieze,
R. Kannan, and S. Vempala demonstrates that the SVD of an appropriately chosen random
submatrix provides an approximation of the SVD of the entire matrix. The consequence
is a fast randomized algorithm that can be applied to very large datasets. As previously
mentioned, the paper by R. Mettu and G. Plaxton gives a linear time algorithm for obtaining
a constant factor approximation to the k-Median problem. In addition, the paper by A.
Meyerson, L. O’Callaghan, and S. Plotkin finds an approximate k-Median clustering in
sub-linear time, under the assumption that there are no small clusters. Finally, the paper by
N. Mishra, D. Ron, and R. Swaminathan identifies a collection of conjunctive descriptions
in time that depends on the number of attributes (and other parameters), but does not depend
on the number of points to be clustered.

A. Borodin, R. Ostrovsky, and Y. Rabani consider graph clustering problems where the
vertices correspond to the points to be clustered, and edges exist between two vertices if they
are at least some specified distance apart from each other. The goal is to output the connected
components (interpreted as clusters) of the graph. The authors describe algorithms that in
subquadratic time produce approximate solutions to this (and other) problems.

Generalizing the objects to be clustered

A new research trend is to consider clustering objects that possess a richer structure than
points in Euclidean space. One such generalization is the problem of clustering graphs
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studied by B. Jain and F. Wysotzki. By way of example, consider the optical character
recognition problem where one is given a collection of samples of the numbers 0–9, and
the goal is to discover the clusters corresponding to each digit. Each sample character
may be represented as a graph where the vertices correspond to pixel values that exceed a
certain gray-level threshold and the weights on the edges correspond to the relative distance
between the pixels. It can be shown that clusters of graphs allow for rotation, translation,
and scale invariance. The algorithms given in this paper exploit the richer structure of a
graph representation so as to derive more meaningful clusters.

Clustering to improve learning

In the semi-supervised setting there is typically a wealth of unlabeled data and a small
amount of labeled data and the goal is to design a classifier that is a good predictor of the
label of future data. Under the assumption that the data lies in a submanifold, M. Belkin and
P. Niyogi use unlabeled data to discover a low-dimensional manifold on which the data lies
and then subsequently develop classifiers on that manifold. Theoretical justification of the
algorithms are provided and experiments are also given in various applications including
handwritten digit recognition.
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