
Machine Learning, 56, 9–33, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Clustering Large Graphs via the Singular Value
Decomposition∗

P. DRINEAS† drinep@cs.rpi.edu
Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180

A. FRIEZE‡ alan@random.math.cmu.edu
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

R. KANNAN§ kannan@cs.yale.edu
Computer Science Department, Yale University, New Haven, CT 06520

S. VEMPALA¶ vempala@math.mit.edu
Department of Mathematics, M.I.T., Cambridge, MA 02139

V. VINAY vinay@csa.iisc.ernet.in
Indian Institute of Science, Bangalore, India

Editors: Nina Mishra and Rajeev Motwani

Abstract. We consider the problem of partitioning a set of m points in the n-dimensional Euclidean space into
k clusters (usually m and n are variable, while k is fixed), so as to minimize the sum of squared distances between
each point and its cluster center. This formulation is usually the objective of the k-means clustering algorithm
(Kanungo et al. (2000)). We prove that this problem in NP-hard even for k = 2, and we consider a continuous
relaxation of this discrete problem: find the k-dimensional subspace V that minimizes the sum of squared distances
to V of the m points. This relaxation can be solved by computing the Singular Value Decomposition (SVD) of the
m × n matrix A that represents the m points; this solution can be used to get a 2-approximation algorithm for the
original problem. We then argue that in fact the relaxation provides a generalized clustering which is useful in its
own right.

Finally, we show that the SVD of a random submatrix—chosen according to a suitable probability distribution—
of a given matrix provides an approximation to the SVD of the whole matrix, thus yielding a very fast randomized
algorithm. We expect this algorithm to be the main contribution of this paper, since it can be applied to problems
of very large size which typically arise in modern applications.

Keywords: Singular Value Decomposition, randomized algorithms, k-means clustering

∗A preliminary version of this work appeared in the 1999 ACM-SIAM Symposium on Discrete Algorithms.
†This work was done while the author was a graduate student at Yale University and was supported by NSF Grant
CCR-9820850.
‡Supported in part by NSF Grant CCR-9530974.
§Supported in part by NSF Grant CCR-9820850.
¶Supported in part by NSF Grant CCR-6895000 and a Sloan Foundation Fellowship.

10 P. DRINEAS ET AL.

1. Introduction

In this paper we address the problem of clustering the rows of a given m ×n matrix A—i.e.,
the problem of dividing up the set of rows into k clusters where each cluster has “similar”
rows. Our notion of similarity of two rows (to be discussed in detail below) will be a function
of the length of the vector difference of the two rows. So, equivalently, we may view the
problem geometrically—i.e., we are given m points in the n-dimensional Euclidean space
and we wish to divide them up into k clusters, where each cluster contains points which are
“close to each other”. This problem includes as a special case the problem of clustering the
vertices of a (directed or undirected) graph, where the matrix is just the adjacency matrix of
the graph. Here the dissimilarity of two vertices depends on the number of neighbors that
are not in common.

There are many notions of similarity and many notions of what a “good” clustering is
in the literature. In general, clustering problems turn out to be NP-hard; in some cases,
there are polynomial-time approximation algorithms. Our aim here is to deal with very
large matrices (with more than 105 rows and columns and more than 106 non-zero entries),
where a polynomial time bound on the algorithm is not useful in practice. Formally, we deal
with the case where m and n vary and k (the number of clusters) is fixed; we seek linear
time algorithms (with small constants) to cluster such data sets.

We will argue that the basic Singular Value Decomposition (SVD) of matrices provides
us with an excellent tool. We will first show that SVD helps us approximately solve the
clustering problem described in the abstract (Section 3); unfortunately, the running time
of this algorithm is a polynomial of high degree. However, we then argue that the SVD
itself directly solves the relaxation of the clustering problem, as described in the abstract,
and that it gives us what we call a “generalized clustering”, where each point will be-
long to a cluster with a certain “intensity” and clusters are not necessarily disjoint. Using
basic Linear Algebra, we show some natural properties of such generalized clusterings
(Section 4).

Finally, we develop a linear time randomized algorithm for approximate SVD, and thus
for approximate “generalized clusterings”, which makes the procedure feasible for the very
large matrices (Section 5). Our algorithm is inspired by the work of Frieze, Kannan, and
Vempala (1998) and essentially approximates the top few left1 singular vectors (as well as
the corresponding singular values) of a matrix A. We expect this algorithm to be useful
in a variety of settings (e.g. data clustering and information retrieval (Berry & Linoff,
1997; Jambu & Lebeaux, 1983), property testing of graphs (Goldreich, Goldwasser, &
Ron, 1998), image processing (Andrews & Patterson, 1976a, 1976b; Huang & Narendra,
1974), etc.).

1.1. The discrete clustering problem

Consider the following clustering problem, whose formulation is usually the objective of
the k-means clustering algorithm: we are given m points A = {A(1), A(2), . . . A(m)} in an
n-dimensional Euclidean space and a positive integer k, where k will be considered to be
fixed as m and n vary. The problem is to find k points B = {B(1), B(2), . . . , B(k)}, also in

CLUSTERING LARGE GRAPHS 11

n-dimensional space, such that

fA(B) =
m∑

i=1

(
dist2(A(i),B

))

is minimized. Here dist(A(i),B) is the (Euclidean) distance of A(i) to its nearest point in
B. Thus, in this problem we wish to minimize the sum of squared distances to the nearest
“cluster center”. This measure of clustering quality is also called the squared error distortion
(Jain & Dubes, 1988; Gersho & Gray, 1991) and comes under the category of variance-based
clustering (we will highlight the connection presently). We call this the “Discrete Clustering
Problem” (DCP), to contrast it from an analogous continuous problem. The DCP is NP-hard
even for k = 2 (via a reduction from minimum bisection, see Section 3.1).

Note that a solution to the DCP defines k clusters Sj , j = 1, . . . k. The cluster center
B(j) will be the centroid of the points in Sj . To prove this notice that for any set of points
S = {X (1), X (2), . . . , X (r)} and any point B we have

r∑
i=1

∥∥X (i) − B
∥∥2 =

r∑
i=1

∥∥X (i) − X̄
∥∥2 + r‖B − X̄‖2, (1)

where ‖X (i) − B‖ denotes the Euclidean distance between points X (i) and B (which, of
course, is equal to the 2-norm of the vector X (i) − B), and X̄ is the centroid

X̄ = 1

r

(
X (1) + X (2) + · · · + X (r)

)
of S. Notice that (1) may be restated as

r∑
i=1

n∑
j=1

(
X (i)

j − B j
)2 =

r∑
i=1

n∑
j=1

(
X (i)

j − r−1
r∑

k=1

X (k)
j

)2

+ r
n∑

j=1

(
B j − r−1

r∑
k=1

X (k)
j

)2

,

where B j denotes the j th element of the vector B (and similarly for the X (i)). The proof of the
above formula amounts to straightforward but somewhat tedious algebraic manipulations.
Thus, the DCP is the problem of partitioning a set of points into clusters so that the sum of
the variances of the clusters is minimized.

We define a relaxation which we call the “Continuous Clustering Problem” (CCP): find
the subspace V of Rn , of dimension at most k, which minimizes

gA(V) =
m∑

i=1

dist2(A(i), V
)
.

12 P. DRINEAS ET AL.

It can be shown that the optimal value of DCP is an upper bound for the optimal value of
the CCP. Indeed for any set B of k points,

fA(B) ≥ gA(VB) (2)

where VB is the subspace generated by the points in B.
It will follow from standard Linear Algebra that the continuous clustering problem can

be exactly solved in polynomial time, since the optimal subspace can be read off from the
Singular Value Decomposition (SVD) of the matrix A containing A(1), A(2), . . . , A(m) as its
rows. One can now attempt to solve DCP as follows: first solve CCP to find a k-dimensional
subspace V ; then project the problem to V and solve the discrete clustering problem in the
k-dimensional space (we emphasize that k is now fixed). In Section 3.2 we will show that
the k-dimensional problem can be solved exactly in polynomial time (actually, the running
time is exponential in k, but k is a fixed constant) and this will give us a 2-approximation
algorithm for DCP.

1.2. Generalized clustering

In Section 4, we will argue that the optimal subspace that is returned from the “Continuous
Clustering Problem” (CCP) yields a “generalized clustering” of the matrix A. A “generalized
clustering” differs in two respects from a normal clustering: first, each cluster instead of
being a subset of the rows of A (or equivalently an m-vector whose entries are all 0 or
1), is an m-vector of reals where the i th component gives the “intensity” with which the
i th point belongs to the cluster. Second, the requirement that the clusters be disjoint in
the discrete clustering is replaced by a requirement that the vectors corresponding to the
different clusters be orthogonal. We will argue that this notion of clustering is quite natural
and that it has certain desirable features not allowed by discrete clustering; for example, it
allows having overlapping clusters.

1.3. A fast Monte Carlo algorithm for singular value decomposition

Given an m ×n matrix A, we develop a linear time randomized algorithm that approximates
a few of the top singular vectors and singular values of A (see Section 2 for background).
This algorithm renders the computation of singular values and singular vectors feasible for
the very large matrices in modern applications.

Recall that for any m × n matrix X ,

‖X‖2
F =

∑
i, j

A2
i j and ‖X‖2 = max

x∈Rn :‖x‖=1
‖X x‖.

Our goal is to find an approximation P to A, such that the rank of P is at most k, satisfying
(with high probability)

‖A − P‖2
F ≤ ‖A − Ak‖2

F + ε‖A‖2
F (3)

‖A − P‖2
2 ≤ ‖A − Ak‖2

2 + ε‖A‖2
F (4)

CLUSTERING LARGE GRAPHS 13

where Ak is the “optimal” rank k approximation to A and ε > 0 a given error parameter.
More specifically, Ak is a matrix of rank k such that for all matrices D of rank at most k
(see Section 2),

‖A − Ak‖F ≤ ‖A − D‖F and ‖A − Ak‖2 ≤ ‖A − D‖2.

Thus, the matrix P is almost the best rank k approximation to A in the sense described
above. The matrix P returned by our algorithm is equal to the product HHT A, where H
is an m × k matrix containing approximations to the top k left singular vectors of A. We
remind the reader that Ak can be written as Ak = UkU T

k A, where Uk is an m × k matrix
containing the exact top k left singular vectors of A. Thus, our algorithm approximates Ak

by approximating the matrix Uk by H , or, equivalently, by approximating the top k left
singular vectors of A.

There are many algorithms that either exactly compute the SVD of a matrix in O(mn2 +
m2n) time (an excellent reference is Golub & Van Loan, 1989) or iteratively approximate a
few of the top singular vectors and the corresponding singular values (e.g. Lanczos methods).
We should note here that Lanczos methods are iterative techniques which—given enough
running time—converge to the exact solution (except for some special cases); however, the
speed of convergence depends on various factors. We will not elaborate on this topic here;
instead we refer the reader to Parlett (1997) and the references therein.

In this paper, we propose a simple, randomized SVD algorithm: instead of computing the
SVD of the entire matrix, pick a subset of its rows or columns, scale them appropriately and
compute the SVD of this smaller matrix. We will prove that this process returns efficient
approximations to the singular values and singular vectors of the original matrix; more
specifically, by picking rows, we approximate right singular vectors, while, by picking
columns, we approximate left singular vectors.

Our algorithm will make two passes through the entire matrix, sample columns (or rows)
with probabilities proportional to the square of their lengths and then run in time

O

(
k2

ε4
m + k3

ε6

)
,

to satisfy both (3) and (4). If we are only interested in satisfying (4), the running time of the
algorithm is significantly smaller:

O

(
1

ε4
m + 1

ε6

)
.

Thus, there is no dependency on k. Also, if the matrix is sparse, we can replace m in the
running times by m ′, where m ′ is the maximum number of non-zero entries in a column of
A. Alternatively, our result might be viewed as showing that instead of computing the SVD
of the entire matrix A, it is sufficient to compute the SVD of a matrix consisting of O(k/ε2)
randomly picked columns of A, after appropriate scaling. The columns must be picked

14 P. DRINEAS ET AL.

with probability proportional to their length squared. We should note again that O(k/ε2)
columns suffice in order to satisfy both (3) and (4); if we are only interested in satisfying
(4), O(1/ε2) columns are enough.

Our algorithm is directly motivated by the work of Frieze, Kannan, and Vempala (1998)
which also presents an algorithm that achieves (3), with running time O(k12/ε9) and returns
a “description” to the left2 singular vectors, namely, it describes the left singular vectors as
a matrix-vector product. Thus, while it is theoretically very interesting that the algorithm
of Frieze, Kannan, and Vempala (1998) has a running time which does not grow with m or
n, the dependence on k and ε might be too large in practice. Also, explicitly computing the
left singular vectors would make the running time linear in m.

Clearly an approximation of the form (3) or (4) is only useful if A has a good approxima-
tion of “small” rank k and further m and n are large (so exact algorithms are not feasible.)
There are many examples of situations where these conditions prevail (i.e., information
retrieval applications). As an example, our algorithm could be used to perform Latent Se-
mantic Indexing (LSI) (Berry & Linoff, 1997; Papadimitriou et al., 2000; Azar et al., 2001);
this is a general technique for analyzing a collection of documents which are assumed to
be related (for example, they are all documents dealing with a particular subject). Suppose
there are m documents and n terms which occur in the documents. The model hypothesizes
that, because of relationships among the documents, there is a small number—say k—of
main (unknown) topics which describe the documents. The first aim of the technique is to
find a set of k topics which best describe the documents; a topic is modelled as an n-vector
of non-negative reals. The interpretation is that the j th component of a topic vector denotes
the frequency with which the j th term occurs in a discussion of the topic. With this model
at hand, it can be argued that the k best topics are the top k singular vectors of the so-called
“document-term” matrix, which is an m × n matrix A with Ai j being the frequency of the
j th term in the i th document.

2. Linear algebra background

Any m × n matrix A can be expressed as

A =
r∑

t=1

σt (A)u(t)v(t)T
,

where r is the rank of A, σ1(A) ≥ σ2(A) ≥ · · · ≥ σr (A) > 0 are its singular values and
u(t) ∈ Rm, v(t) ∈ Rn, t = 1, . . . , r are its left and right singular vectors respectively. The
u(t)’s and the v(t)’s are orthonormal sets of vectors; namely, u(i)T

u(j) is one if i = j and zero
otherwise. We also remind the reader that

‖A‖2
F =

∑
i, j

A2
i j =

r∑
i=1

σ 2
i (A)

‖A‖2 = max
x∈Rn :‖x‖=1

‖Ax‖ = max
x∈Rm :‖x‖=1

‖xT A‖ = σ1(A)

CLUSTERING LARGE GRAPHS 15

In matrix notation, SVD is defined as A = U�V T where U and V are orthogonal (thus
U T U = I and V T V = I) matrices of dimensions m × r and n × r respectively, containing
the left and right singular vectors of A. � = diag(σ1(A), . . . , σr (A)) is an r × r diagonal
matrix containing the singular values of A.

If we define Ak = ∑k
t=1 σt u(t)v(t)T

, then Ak is the best rank k approximation to A with
respect to the 2-norm and the Frobenius norm. Thus, for any matrix D of rank at most k,
‖A − Ak‖2 ≤ ‖A − D‖2 and ‖A − Ak‖F ≤ ‖A − D‖F . A matrix A has a “good” rank k
approximation if A − Ak is small with respect to the 2-norm and the Frobenius norm. It is
well known that

‖A − Ak‖2
F =

r∑
t=k+1

σ 2
t (A) and ‖A − Ak‖2 = σk+1(A).

From basic Linear Algebra, Ak = Uk�k V T
k = AVk V T

k = UkU T
k A, where Uk and Vk

are sub-matrices of U and V , containing only the top k left or right singular vectors of A
respectively; for a detailed treatment of Singular Value Decomposition see Golub and Van
Loan, 1989. Also, Tr(A) denotes the sum of the diagonal elements of A; it is well-known
that ‖A‖2

F = Tr(AAT) for any m × n matrix A.
In the following, A(i) denotes the i th row of A as a row vector and A(i) denotes the i th

column of A as a column vector. The length of a column (or row) vector will be denoted
by ‖A(i)‖ or (‖A(i)‖) and is equal to the square root of the sum of the squares of its
elements.

3. Discrete clustering

3.1. Complexity

Theorem 1. DCP is NP-hard for k ≥ 2.

Proof: We will prove the NP-hardness for k = 2 via a reduction from minimum bisection,
the problem of partitioning a graph into two equal-sized parts so as to minimize the number
of edges going between the two parts. The proof for k > 2 is similar, via a reduction from
the minimum k-section problem.

Let G = (V, E) be the given graph with n vertices 1, . . . , n, with n even. Let d(i) be the
degree of the i’th vertex. We will map each vertex of the graph to a point with |E | + |V |
coordinates. There will be one coordinate for each edge and one coordinate for each vertex.
The vector Xi for a vertex i is defined as Xi (e) = 1 if e is adjacent to i and 0 if e is not
adjacent to i ; in addition Xi (i) = M and Xi (j) = 0 for all j �= i . The parameter M will be
set to be n3.

Consider a partition into two parts P, Q with p and q vertices respectively. Let Bp and
Bq be the cluster centers. Consider the DCP value for the partition P, Q on just the last
n coordinates, we have Bp(i) = M/p and Bq (i) = M/q and so the DCP value on these

16 P. DRINEAS ET AL.

coordinates is

pM2

(
1 − 1

p

)2

+ q M2

(
1 − 1

q

)2

= nM2 + M2

(
1

p
+ 1

q

)
− 4M2.

If p = q = n/2, then this is (n − 4 + 4/n)M2. On the other hand, if p �= q, then it is at
least (

n − 4 + 4n

n2 − 4

)
M2

and so the increase in the DCP value on the last n coordinates is at least 16M2/n(n2 − 4).
The first |E | coordinates contribute at most 4n2 to the DCP. So if we have M ≥ n3 (say),
then the optimal solution will always choose p = q, since any gain by not having p = q is
subsumed by the loss in the DCP value over the last n coordinates.

Now, the sum of pairwise squared distances within a cluster can be rewritten as follows:

∑
i, j∈P

|Xi − X j |2 = 2p
∑
i∈P

|Xi |2 − 2

(∑
i∈P

Xi

)2

= 2p
∑
i∈P

|Xi − Bp|2

Therefore,

p
∑
i∈P

|Xi − Bp|2 + q
∑
i∈Q

|Xi − Bq |2 =
∑

i< j∈P

|Xi − X j |2 +
∑

i< j∈Q

|Xi − X j |2

If p = q , then this exactly n/2 times the value of the DCP. The RHS, namely the sum of
pairwise distances within clusters, can be evaluated separately for the coordinates corre-
sponding to edges and those corresponding to vertices. For the former, for a pair i, j in the
same cluster it is d(i) + d(j) if (i, j) is not an edge and d(i) + d(j) − 2 if (i, j) is an edge.
Therefore the total is∑

(i, j)∈E,i< j∈P

d(i) + d(j) − 2 +
∑

(i, j)�∈E,i< j∈P

d(i) + d(j) +
∑

i< j∈P

2M2

+
∑

(i, j)∈E,i< j∈Q

d(i) + d(j) − 2 +
∑

(i, j)�∈E,i< j∈Q

d(i) + d(j) +
∑

i< j∈Q

2M2

= (p − 1)
∑
i∈P

d(i) + (q − 1)
∑
i∈Q

d(i) − 2|E | + 2|E(P, Q)|

+ M2(p(p − 1) + q(q − 1))

Note that if p = q then this only depends on |E(P, Q)|, i.e., the size of the minimum
bisection. But then the minimum DCP solution is also a minimum bisection for the original
graph.

CLUSTERING LARGE GRAPHS 17

3.2. A 2-approximation algorithm for DCP

We first show how to solve DCP in O(mk2d/2) time when the input A is a subset of Rd ;
here k and d are considered to be fixed. Each set B of “cluster centers” defines a Voronoi
diagram where cell Ci = {X ∈ Rd : ‖X − B(i)‖ ≤ ‖X − B(j)‖ for j �= i} consists of those
points whose closest point in B is B(i). Each cell is a polyhedron and the total number of
faces in C1, . . . , Ck is no more than (k

2) (since each face is the set of points equidistant
from two points of B). It is not too difficult to see that, without loss of generality, we can
move the boundary hyperplanes of the optimal Voronoi diagram, without any face passing
through a point of A, so that each face contains at least d points of A.

Assume that the points of A are in general position and 0 /∈ A (a simple perturbation
argument deals with the general case); this means that each face now contains d affinely
independent points ofA. We have lost the information about which side of each face to place
these points and so we must try all possibilities for each face. This leads to the following
enumerative procedure for solving DCP:

Algorithm for DCP in d dimensions

Input: positive integers k, d and a set of m points A ⊆ Rd .
Output: a set B with k points from Rd such that fA(B) is minimized.

1. Enumerate all
∑(k

2
)

t=k ((m
d

)
t

) = O(mdk2/2) sets of k ≤ t ≤ (k
2) hyperplanes, each of

which contains d affinely independent points of A.
2. Check that the arrangement defined by these hyperplanes has exactly k cells.
3. Make one of 2td choices as to which cell to assign each point of A which is lying

on a hyperplane.
4. This defines a unique partition of A. Find the centroid of each set in the partition

and compute fA.

We now examine how CCP can be solved by Linear Algebra in polynomial time, for any
values of m, n and k. Indeed, let V be a k-dimensional subspace of Rn and Ā(1), . . . , Ā(m)

be the orthogonal projections of A(1), . . . , A(m) onto V . Let Ā be the m × n matrix with
rows Ā(1), . . . , Ā(m). Thus Ā has rank at most k and

‖A − Ā‖2
F =

m∑
i=1

∥∥A(i) − Ā(i)

∥∥2 =
m∑

i=1

dist2(A(i), V
)
.

Thus to solve CCP, all we have to do is compute the top k right singular vectors of A, since
it is known that these minimize ‖A − Ā‖2

F over all rank k matrices; let VSVD denote the
subspace spanned by the top k right singular vectors of A.

We now show that combining the above two ideas gives a 2-approximation algorithm for
DCP. Let Ā = { Ā(1), . . . , Ā(m)} be the projection of A onto the subspace VSVD above. Let

18 P. DRINEAS ET AL.

B̄ = {B̄(1), . . . , B̄(k)} be the optimal solution to DCP with input Ā. We emphasize that DCP
will run on a k-dimensional subspace, where k is fixed.

Algorithm for general DCP

1. Compute VSVD.
2. Solve DCP on the set of m points Ā ⊆ Rk (thus d = k), in order to obtain B̄, a set

of k centroids in Rk .
3. Output B̄.

Notice that the running time of the second step is O(mk3/2).

Lemma 1. The above algorithm returns a 2-approximation for DCP.

Proof: It follows from (2) that the optimal value ZDCP
A of the DCP satisfies

ZDCP
A ≥

m∑
i=1

∥∥A(i) − Ā(i)

∥∥2
. (5)

Observe that if B̂ = {B̂(1), . . . , B̂(k)} is an optimal solution to the DCP and B̄ consists of
the projection of the points in B̂ onto V

ZDCP
A =

m∑
i=1

dist2(A(i), B̂
) ≥

m∑
i=1

dist2(Ā(i), B̄
)
.

Combining this with (5) we get

2ZDCP
A ≥

m∑
i=1

(∥∥A(i) − Ā(i)

∥∥2 + dist2(Ā(i), B̄
))

=
m∑

i=1

dist2(A(i), B̄
)

= fA(B̄),

proving that we do indeed get a 2-approximation.

4. Generalized clusters and SVD

In this section, we will argue that there is a natural way of generalizing clusters which
leads to singular vectors. To do this, we introduce a typical motivation: suppose we wish to
analyze the structure of a large portion of the web. Consider the underlying directed graph
with one vertex per URL and an edge from vertex i to vertex j if there is a hypertext link
from i to j . It turns out to be quite useful to cluster the vertices of this graph. Obviously,

CLUSTERING LARGE GRAPHS 19

very large graphs can arise in this application and traditional heuristics (even polynomial
time ones) are not good enough.

Given this directed graph G(V, E), we wish to divide the vertex set into “clusters” of
“similar” vertices. Since all our information is in the graph, we define two vertices to
be “similar” if they share a lot of common neighbors. In general, we assume that all the
relevant information is captured by the adjacency matrix A of the graph G; we do not dwell
on the “modelling” part, indeed we assume that the translation of the real problem into the
graph/matrix has already been done for us.

We now examine how “similarity” may be precisely defined. For this purpose, it is useful
to think of the web example, where an edge from i to j means that i thinks of j as important.
So, intuitively, similar vertices “reinforce” each others opinions of which web pages are
important.

Quite often by “clustering”, one means the partition of the node set into subsets of
similar nodes. A partition though is too strict, since it is quite common to have overlapping
clusters. Also, in traditional clustering, a cluster is a subset of the node set; essentially,
the characteristic vector of a cluster is a 0-1 vector. Again, this is too strict, since different
nodes may belong to a cluster with different “intensities”. For example, if N (v) (the set of
neighbors of v) is large and there are many nodes u such that N (u) is a subset of N (v),
then a good cluster—intuitively—would include v and many of the u ’s (for reinforcement),
but—again intuitively—v is more important in the cluster than the u’s.

Given an m × n matrix A, we define a cluster x as an m-vector of reals. So, x(u) is the
“intensity” with which u belongs to x . We are also interested in assigning a “weight” (or
importance) to the cluster x : a crucial quantity in this regard is the vector xT A because
(xT A)i is the “frequency” of occurrence of node i in the neighborhood of the cluster x . So,
high values of |(xT A)i | mean high reinforcement. Thus,

n∑
i=1

(xT A)2
i = ‖xT A‖2

2

is a measure of the importance of the cluster represented by vector x . We also note that if x
is scaled by some constant λ, so is every component of xT A. We now make the following
definition:

Definition 1. A cluster of the matrix A is an m-vector x with ‖x‖ = 1. The weight of the
cluster x (denoted by W (x)) is ‖xT A‖ (the Euclidean length of the vector).

We now argue the reasoning behind using Euclidean lengths in the above definition.
While we cannot exhaustively discuss all other possible measures, we look at two other
obvious norms: l∞ (the maximal element of the vector in absolute value) and l1 (the sum
of the absolute values of the elements in the vector). The following examples illustrate the
advantage of Euclidean norm over these two and carry over for many other norms.

In the definition, we used the Euclidean norm for both x and xT A. First suppose we used
instead the l1 norm for x . Then, if there are k nodes of G in the same neighborhood, putting
xi = 1 for one of them and zero for the others or putting xi = 1/k for each of them, returns
the same value for xT A and so the same weight. However, we prefer larger clusters (thus

20 P. DRINEAS ET AL.

larger values of ‖xT A‖) since they guarantee greater reinforcement. It can be shown that if
we restrict to ‖x‖ = 1, then we would choose the larger cluster. Similarly if the l∞ is used
for x , then we shall always have xi = 1 for all i being the maximum weight cluster, which
obviously is not always a good choice. It can also be shown that if the l∞ norm is used for
‖xT A‖, then x will be based only on the highest in-degree node which is not always desirable
either. A similar example can be provided for the case when the l1 norm is used for xT A.

Having defined the weight of a cluster, we next want to describe a decomposition pro-
cess that successively removes the maximum weight cluster from the graph. Let u be the
maximum weight cluster and v be any other cluster. We can express v as v = λu +w where
λ is a scalar and w is orthogonal to u; then, it is known from Linear Algebra that wT A is
also orthogonal to uT A, thus

‖vT A‖2 = λ2‖uT A‖2 + ‖wT A‖2.

It is obvious that as λ grows the weight of v grows as well. Thus, to get a “good” clustering,
we can not merely require v to be different from u, since it may be arbitrarily close to u. This
observation leads us to the correct requirement; namely that v is required to be orthogonal
to u. In our generalized clustering, the orthogonality requirement replaces the traditional
disjointness requirement. We now make a second definition.

Definition 2. An optimal clustering of A is a set of orthonormal vectors x (1), x (2), . . . so
that x (i) is a maximum weight cluster of A subject to being orthogonal to x (1), . . . x (i−1).

It can now be shown (directly from Linear Algebra) that corresponding to “removing”
the first k clusters is the operation of subtracting the m × n matrix

k∑
t=1

x (t)x (t)T
A

from A. So if

R(k) = A −
k∑

t=1

x (t)x (t)T
A,

R(k) defines a “residual” graph after removing the first k clusters; more specifically, it
represents a weighted graph with edge weights. The intuition is that if the first few clusters
are of large weight, then the residual matrix will have small norm. We can quantify this
using basic Linear Algebra and noting that

∑k
t=1 x (t)x (t)T

A is a matrix of rank k:

Lemma 2. R(k) has the least Frobenius norm and the least 2-norm among all matrices of
the form A − D, where the rank of D is at most k.

So, the optimal clustering makes the “error” matrix R(k) as small as possible in two
natural ways; the optimal clusters x (1), . . . , x (k) are essentially the left singular vectors of A
and they may be computed through the Singular Value Decomposition. We note here that

CLUSTERING LARGE GRAPHS 21

we defined the weights of clusters by looking at the out-degrees of the nodes of the graph;
symmetrically, we may look at the in-degrees. Linear Algebra and elementary properties
of the Singular Value Decomposition tell us that an optimal clustering with respect to
in-degrees yields also an optimal clustering with respect to out-degrees and vice versa.

We should note here that these aspects of clustering in the context of the web graph, as well
as the introduction of the SVD technique to cluster such graphs was pioneered in Kleinberg
(1998) (see also Gibson, Kleinberg, & Raghavan, 1998). Kleinberg (1998) argues—and
we do not reproduce the exact argument here—that given the adjacency matrix of a large
subgraph of the web graph, where nodes in the graph correspond to web pages that were
returned from a search engine as results of a specific query, it is desirable to find the top
few singular vectors of that matrix. Roughly, the reason that we are interested in the top
few singular vectors is that they correspond to different meanings of the query. Since A is
large (in the examples of Kleinberg (1998), in the hundreds of thousands), Kleinberg (1998)
judiciously chooses a small submatrix of A and computes only the singular vectors of this
submatrix. In the next section, we prove that choosing a submatrix according to a simple
probability distribution, returns good approximations to the top few singular vectors and
the corresponding singular values.

5. The randomized SVD algorithm

Given an m × n matrix A we seek to approximate its top k left singular values/vectors.
Intuitively, our algorithm picks c columns of A, scales them appropriately, forms an m × c
matrix C and computes its left singular vectors. If A is an objects-features matrix (the (i, j)th
entry of A denotes the importance of feature j for object i), our algorithm may be seen
as picking a few features (coordinates) with respect to a certain probability distribution,
dropping the remaining features, and then doing Principal Component Analysis on the
selected features.

Suppose pi , i = 1, . . . , n are nonnegative reals summing to 1 and satisfying

pi = ∥∥A(i)
∥∥2/‖A‖2

F . (6)

Fast SVD Algorithm

Input: m × n matrix A, integers c ≤ n, k ≤ c, {pi }n
i=1.

Output: m × k matrix H , λ1, . . . , λk ∈ R+.

1. for t = 1 to c

– Pick an integer from {1 . . . n}, where Pr(pick i) = pi .
– Include A(i)/

√
cpi as a column of C .

2. Compute the top k left singular vectors of C (denoted by h(1), h(2), . . . , h(k)).
3. Return H , a matrix whose columns are the h(t), and λ1 = σ1(C), . . . , λk = σk(C)

(our approximations to the top k singular values of A).

22 P. DRINEAS ET AL.

We should note here that our results also hold—with some small loss in accuracy—if the
pi are nonnegative reals, summing to 1 and satisfying

pi ≥ β
∥∥A(i)

∥∥2/‖A‖2
F , (7)

where β ≤ 1 is a positive constant, allowing us some flexibility on sampling the columns
of A. For simplicity of presentation, we shall focus on the former case, since the analysis
of the latter case is essentially the same. We also note that a sampler which samples the
columns with probabilities proportional to their lengths squared is simple to construct after
one pass through the matrix A (see Section 5.1).

In the above, σt (C) are the singular values of C . From elementary Linear Algebra we know
that σ 2

t (C) are the singular values of CCT or CT C . We should note here that computing
the top k left singular vectors of C (step 2) may be easily done in time O(mc2). For the
sake of completeness, we briefly outline this process: compute CT C (O(mc2) time) and its
singular value decomposition (O(c3) time). Say that

CT C =
c∑

t=1

σ 2
t (C)w(t)w(t)T

.

Here w(t), t = 1, . . . , c are the right (and left) singular vectors of CT C . Then, from el-
ementary Linear Algebra, the w(t) are the right singular vectors of C ; thus, the h(t) =
Cw(t)/σt (C), t = 1 . . . k are the left singular vectors of C and they can be computed in
O(mck) time.

The algorithm is simple and intuitive; the only part that requires further attention is
the sampling process. We emphasize here that the probability distribution described in
(6) is not chosen arbitrarily. More specifically, if pi = ‖A(i)‖2/‖A‖2

F , we will prove (see
Lemma 6) that, among all possible probability distributions, this particular one minimizes
the expectation of ‖AAT −CCT ‖F , a quantity that will be crucial in proving the error bounds
of the above algorithm. Intuitively, the left singular vectors of CCT are close approximations
to the left singular vectors of AAT ; thus, as ‖AAT −CCT ‖F decreases, the accuracy of our
approximations increases. As we shall see,‖AAT −CCT ‖F decreases inversely proportional
to the number of columns in our sample.

5.1. Implementation details and running time

An important property of our algorithm is that it can be easily implemented. Its “heart” is
an SVD computation of a c × c matrix (CT C). Any fast algorithm computing the top k
right singular vectors of such a matrix could be used to speed up our algorithm. One should
be cautious though; since c is usually of O(k), we might end up seeking approximations
to almost all singular vectors of CT C . It is well-known that in this case full SVD of CT C
is much more efficient than iterative approximation techniques; for a detailed treatment of
such issues see Parlett, 1997.

Let’s assume that the matrix is presented in a particular general form—which we call
the sparse unordered representation, in which (only) the non-zero entries are presented

CLUSTERING LARGE GRAPHS 23

as triples (i, j, Ai j) in any order. This is suited to applications where multiple agents may
write in parts of the matrix to a central database, and we cannot make assumptions about
the rules for write-conflict resolution. One example of this may be the “load” matrix, where
each of many routers writes into a central database a log of the messages it routed during
a day in the form of triples (source, destination, number of bytes). We shall prove that we
can decide which columns to include in our sample in one pass through the matrix, using
O(c) RAM space. The following two lemmas show how this may be done.

Lemma 3. Suppose a1, a2, . . . , an are n non-negative reals which are read once in this or-
der. Then with O(c) additional storage, we can pick i.i.d. samples i1, i2, . . . ic ∈ {1, 2, . . . n}
such that

Pr(it = i) = ai∑n
j=1 a j

.

Proof: We argue that we can pick i1. The others can be done by running c independent
copies of this process. To pick i1, suppose we have read a1, a2, . . . , a� so far and have a
sample i1 such that, for some fixed value 1 ≤ i ≤ �,

Pr(i1 = i) = ai∑�
j=1 a j

.

We also keep the running sum
∑�

j=1 a j . On reading a�+1, we just replace the current i1 with
� + 1 with probability

a�+1∑�+1
j=1 a j

.

It can be shown by induction that this works.

Lemma 4. In one pass, we can pick i.i.d. samples i1, i2, . . . , ic drawn according to prob-
abilities pi satisfying pi = ‖A(i)‖2/‖A‖2

F .

Proof: To pick i1, just pick (using Lemma 3) an entry (i, j) with probability proportional
to its square and take i1 = j . The other it are also picked by running c independent
experiments simultaneously. Obviously, the overall probability of picking column j in one
trial is

m∑
i=1

A2
i j

‖A‖2
F

=
∥∥A(j)

∥∥2

‖A‖2
F

In the second pass, we pick out the entries of the columns of matrix C that we decided
to keep; note that we know the scaling factors since we know the probabilities with which

24 P. DRINEAS ET AL.

we pick each column. We now analyze the running time requirements of the algorithm. We
remind the reader that the algorithm works on matrices in sparse representation, where the
matrix is presented as a set of triples (i, j, Ai j) with at most one triple for each (i, j). So,
the zero entries need not be given; some zero entries may be presented.

Theorem 2. After the preprocessing step, the running time of the algorithm is O(c2m + c3).

Proof: The scaling of the columns prior to including them in C needs cm operations.
Computing CT C takes O(c2m) time and computing its SVD O(c3) time. Finally, we need
to compute H , which can be done in O(mck) operations. Thus, the overall running time
(excluding the preprocessing step) is O(c2m + c3 + cmk), and since k ≤ c the result
follows.

5.2. Theoretical analysis

Our analysis will guarantee that ‖A − P‖F is at most ‖A − Ak‖F plus some additional
error, which is inversely proportional to the number of columns that we included in our
sample. (Similarly, our analysis will guarantee that ‖A − P‖2 is at most ‖A − Ak‖2 plus
some additional error, which is inversely proportional to the number of columns that we
included in our sample.) As the “quality” of H improves, H and Uk span almost the same
space and P is almost the optimal rank k approximation to A. We remind the reader that
we use Ak to denote the “optimal” rank k approximation to A, and Uk to denote the m × k
matrix whose columns are the top k left singular vectors of A.

Theorem 3. If P = HHT A is a rank (at most) k approximation to A, constructed using
the algorithm of Section 5, then, for any c ≤ n and δ > 0,

‖A − P‖2
F ≤ ‖A − Ak‖2

F + 2
(
1 +

√
8 ln(2/δ)

)√k

c
‖A‖2

F

‖A − P‖2
2 ≤ ‖A − Ak‖2

2 + 2
(
1 +

√
8 ln(2/δ)

)√1

c
‖A‖2

F

hold with probability at least 1 − δ. We assume that pi = ‖A(i)‖2/‖A‖2
F and sampling is

done with replacement.

Let us note here that using the probabilities of Eq. (7), would result to the following error
bounds:

‖A − P‖2
F ≤ ‖A − Ak‖2

F + 2(1 +
√

8β−1 ln(2/δ))

√
k

βc
‖A‖2

F

‖A − P‖2
2 ≤ ‖A − Ak‖2

2 + 2(1 +
√

8β−1 ln(2/δ))

√
1

βc
‖A‖2

F .

CLUSTERING LARGE GRAPHS 25

Proof: Denote by h(t), t = 1, . . . , k the top k left singular vectors of C and by σt (C) the
corresponding singular values. Let H denote an m × k matrix whose columns are the h(t);
since the h(t) are orthonormal, H T H = I and

‖A − HHT A‖2
F = Tr((AT − AT HHT)(A − HHT A))

= Tr(AT A) − Tr(AT HHT A)

= ‖A‖2
F − ‖H T A‖2

F

= ‖A‖2
F −

k∑
t=1

∥∥AT h(t)
∥∥2

. (8)

Writing AAT and CCT both in a coordinate system with h(1), . . . , h(k) as the top k
coordinate vectors, we see that h(t)T

(AAT − CCT)h(t) is the (t, t) entry of AAT − CCT . So
we have

k∑
t=1

(
h(t)T

(AAT − CCT)h(t)
)2 ≤ ‖AAT − CCT ‖2

F

or, equivalently (since CT h(t) = σt (C)h(t))

k∑
t=1

(∥∥AT h(t)
∥∥2 − σ 2

t (C)
)2 ≤ ‖AAT − CCT ‖2

F

and, by an application of the Cauchy-Schwartz inequality,

k∑
t=1

(∥∥AT h(t)
∥∥2 − σ 2

t (C)
) ≥ −

√
k‖AAT − CCT ‖F . (9)

We now state the well-known Hoffman-Wielandt inequality (see e.g. Golub & Van Loan,
1989). Given symmetric matrices X and Y (of the same dimensions),

k∑
t=1

(σt (X) − σt (Y))2 ≤ ‖X − Y‖2
F ,

where σt (X) and σt (Y) denote the t th singular values of X and Y respectively. The lemma
holds for any k ≤ min{rank(X), rank(Y)}. Applying this inequality to the symmetric ma-
trices AAT and CCT , we see that

k∑
t=1

(σt (CCT) − σt (AAT))2 =
k∑

t=1

(
σ 2

t (C) − σ 2
t (A)

)2

≤ ‖AAT − CCT ‖2
F

26 P. DRINEAS ET AL.

and, by an application of the Cauchy-Schwartz inequality,

k∑
t=1

(
σ 2

t (C) − σ 2
t (A)

) ≥ −
√

k‖AAT − CCT ‖F . (10)

Adding (9) and (10), we get

k∑
t=1

(∥∥AT h(t)
∥∥2 − σ 2

t (A)
) ≥ −2

√
k‖AAT − CCT ‖F . (11)

We now state the following lemmas, whose proofs may be found in the appendix.

Lemma 5. If C is created using the algorithm of Section 5, then, with probability at least
1 − δ (for all δ > 0),

‖AAT − CCT ‖F ≤ 1 + √
8 ln(2/δ)√

c
‖A‖2

F .

Lemma 6. Setting the pi ’s as in Eq. (6) minimizes the expectation of ‖AAT − CCT ‖2
F .

Thus, using (11) and Lemma 5, with probability at least 1 − δ, for all δ > 0,

k∑
t=1

∥∥AT h(t)
∥∥2 ≥

k∑
t=1

σ 2
t (A) − 2(1 +

√
8 ln(2/δ))

√
k

c
‖A‖2

F

and the Frobenius norm result of the first statement of the theorem follows by substituting
this bound to Eq. (8), since

‖A − Ak‖2
F = ‖A‖2

F −
k∑

t=1

σ 2
t (A).

In order to prove the statement of the theorem for the 2-norm of the error, let Hk =
range(H) = span(h(1), h(2), . . . , h(k)). Let Hm−k be the orthogonal complement of Hk in
Rm . Then,

‖A − HHT A‖2 = max
x∈Rm ,‖x‖=1

‖xT (A − HHT A)‖.

But, x can be expressed as a1 · y + a2 · z, such that y ∈ Hk , z ∈ Hm−k , a1, a2 ∈ R and
a2

1 + a2
2 = 1. Thus,

max
x∈Rm :‖x‖=1

‖xT (A − HHT A)‖ ≤ max
y∈Hk :‖y‖=1

‖a1 yT (A − HHT A)‖

+ max
z∈Hm−k :‖z‖=1

‖a2zT (A − HHT A)‖

CLUSTERING LARGE GRAPHS 27

≤ max
y∈Hk :‖y‖=1

‖yT (A − HHT A)‖

+ max
z∈Hm−k :‖z‖=1

‖zT (A − HHT A)‖.

But, for any y ∈ Hk , yT HHT is equal to y. Thus, ‖yT (A − HHT A)‖ = ‖yT A − yT A‖ = 0
for all y. Similarly, for any z ∈ Hm−k , zT HHT is equal to 0. Thus, we are only seeking a
bound for maxz∈Hm−k :‖z‖=1 ‖zT A‖. To that effect,

‖zT A‖2 = zT AAT z = zT (AAT − CCT)z + zT CCT z

≤ zT (AAT − CCT)z + ‖zT C‖
≤ ‖AAT − CCT ‖F + σ 2

k+1(C).

The maximum ‖zT C‖ over all unit length z ∈ Hm−k appears when z is equal to the (k + 1)
st left singular vector of C . Thus,

‖A − HHT A‖2
2 ≤ σ 2

k+1(C) + ‖AAT − CCT ‖F .

Now, AAT and CCT are symmetric matrices and a result of perturbation theory (see e.g.
Golub & Van Loan, 1989) states that

|σk+1(AAT) − σk+1(CCT)| ≤ ‖AAT − CCT ‖2.

But, using Lemma 5 and the fact that ‖X‖2 ≤ ‖X‖F for any matrix X ,

‖AAT − CCT ‖2 ≤ 1 + √
8 ln(2/δ)√

c
‖A‖2

F (12)

holds with probability at least 1 − δ. Thus,

|σk+1(AAT) − σk+1(CCT)| = ∣∣σ 2
k+1(A) − σ 2

k+1(C)
∣∣ ≤ 1 + √

8 ln(2/δ)√
c

‖A‖2
F

and the statement of the theorem for the 2-norm of the error follows.

We conclude with a few words on Theorem 3: the bounds are useful when ‖A −
Ak‖F � ‖A‖F , which is typically the case when spectral techniques are most useful. Also,
notice that the error of our approximation is inversely proportional to the number of columns
that we include in our sample.

28 P. DRINEAS ET AL.

5.3. Doing better than worst-case

Note that even though we prove that picking c = O(k/ε2) columns of A does the job, it is
possible that in an actual problem, the situation may be far from worst-case. In practice, it
suffices to pick c rows, where c is at first much smaller than the worst-case bound. Then, we
may check whether the resulting approximation HHT A to A is sufficiently close to A. We
can do this in a randomized fashion, namely, sample the entries of A − HHT A to estimate
the sum of squares of this matrix. If this error is not satisfactory, then we may increase c.
The details of variance estimates on this procedure are routine.

5.4. Approximating the right singular vectors

We could modify the algorithm to pick rows of A instead of columns and compute approxi-
mations to the right singular vectors. The bounds in Theorem 3 remain essentially the same
(columns become rows and n becomes m). P is now equal to AH ′ H ′T , where H ′ is an
n × k matrix containing our approximations to the top k right singular vectors. The running
time of the algorithm is O(r2n + r3), where r is the number of rows that we include in our
sample.

6. Recent related work and conclusions

In Ostrovsky and Rabani (2002), the authors presented a polynomial time approximation
scheme for the Discrete Clustering Problem, with an exponential dependence on k and
the error parameter. We should also note that a closely related problem to DCP is the k-
median problem, where again we seek to partition the given points into k clusters; we also
seek for each cluster a cluster center or median. The optimal solution minimizes the sum
of distances of each point to the median of its cluster. For the k-median problem, good
approximation algorithms have been hard to come by; most notably (Charikar et al., 2002)
gave a constant factor approximation algorithm based on a rounding procedure for a natural
linear programming relaxation. The constant has been improved in Jain and Vazirani (1999)
and further in Charikar and Guha (1999) using the primal-dual method.

In Achlioptas and McSherry (2001, 2003), Achlioptas and McSherry describe an alter-
native randomized algorithm for Singular Value Decomposition: given an m × n matrix A,
sample elements of A; create an m × n matrix Ã by only keeping the elements of A that
are included in the sample, after dividing them by the probability of being sampled. The
remaining elements of Ã are zeroed out; essentially, Ã is a sparse “sketch” of A. Extending
an elegant result of Furedi and Komlos (1981), they prove that A − Ã is small with respect
to the 2-norm. Thus, they argue that the singular vectors and singular values of Ã closely
approximate the corresponding singular vectors and singular values of A. We note that Ã is
an m × n matrix, thus in order to compute its SVD efficiently one has to employ the Lanc-
zos/Arnoldi techniques. Their error bound with respect to the 2-norm is better than ours
(their asymptotic dependency on 1/ε is smaller); in Achlioptas and McSherry (2003) they
prove that the Frobenius norm bounds are the same for the two algorithms. For a detailed
analysis and comparison, we refer the reader to Achlioptas and McSherry (2003).

CLUSTERING LARGE GRAPHS 29

More recently, Bar-Yossef (2002, 2003) addressed the question of the optimality of our
algorithms. In Bar-Yossef (2003), he proves that our algorithm is optimal, with respect to
the Frobenius norm bound, up to polynomial factors of 1/ε. More interestingly, he also
proves that if columns of the original matrix are picked uniformly at random (and not with
our judiciously chosen sampling probabilities), the error bound of our algorithms cannot
be achieved.

Perhaps the most interesting open question would be to improve the error bounds of
our algorithms by allowing extra passes through the input matrices. For example, after
computing some initial approximations to the left singular vectors using only a small sample
of the columns of A, it would be interesting to design an algorithm that iteratively improves
this approximation by accessing A (or parts of A) again. This situation is not covered by
the lower bounds in Bar-Yossef (2003).

Appendix

Proof of Lemma 5: The matrix C is defined as in Section 5: C contains columns of A
after scaling. Thus, CCT is the sum of c independent random variables and

CCT =
c∑

t=1

A(it)(AT)(it)

cpit

.

We assume that i1, . . . , ic are picked by independent identical trials; in each trial an ele-
ment from {1, 2, . . . n} is picked according to the probabilities pk = ‖A(k)‖2/‖A‖2

F , k =
1, . . . , n. Consider the function

F(i1, i2, . . . , ic) = ‖AAT − CCT ‖F ,

where i1, . . . ic are independent random variables. We will compute the expectation of F ,
show that F satisfies a Lipschitz condition and then apply a Martingale inequality to the
Doob Martingale associated with F .

Following the lines of Frieze, Kannan, and Vempala (1998) and Drineas and Kannan
(2001), we seek to bound

E

(
m,m∑

i, j=1

((AAT)i j − (CCT)i j)
2

)
.

Fix attention on one particular i, j . For t = 1 . . . c define the random variable

wt =
(

A(it)(AT)(it)

cpit

)
i j

= Aiit AT
it j

cpit

.

30 P. DRINEAS ET AL.

So, the wt ’s are independent random variables. Also, (CCT)i j = ∑c
t=1 wt . Thus, its expec-

tation is equal to the sum of the expectations of the wt ’s. But,

E(wt) =
n∑

k=1

Aik AT
k j

cpk
pk = 1

c
(AAT)i j .

So, E((CCT)i j) = ∑c
t=1 E(wt) = (AAT)i j . Since (CCT)i j is the sum of c independent

random variables, the variance of (CCT)i j is the sum of the variances of these variables.
But, using Var(wt) = E(w2

t) − E(wt)2, we see that

Var(wt) =
n∑

k=1

A2
ik(AT)2

k j

c2 pk
− 1

c2
(AAT)2

i j ≤
n∑

k=1

A2
ik(AT)2

k j

c2 pk
.

Thus,

Var(CCT)i j ≤ c
n∑

k=1

A2
ik(AT)2

k j

c2 pk
.

Using E((AAT − CCT)i j) = 0 and substituting the values for pk ,

E
(‖AAT − CCT ‖2

F

) =
m,m∑

i=1, j=1

E
(
(AAT − CCT)2

i j

)

=
m,m∑

i=1, j=1

Var((CCT)i j)

≤ 1

c

n∑
k=1

1

pk

(∑
i

A2
ik

) (∑
j

(AT)2
k j

)

= 1

c

n∑
k=1

1

pk

∥∥A(k)
∥∥2∥∥A(k)

∥∥2

≤ ‖A‖2
F

c

n∑
k=1

∥∥A(k)
∥∥)2

= 1

c
‖A‖4

F .

Using the fact that for any random variable X , E(|X |) ≤
√

E(X2), we get that

E(‖AAT − CCT ‖F) ≤ 1√
c
‖A‖2

F . (13)

CLUSTERING LARGE GRAPHS 31

We now present a Lipschitz constraint for F . Consider changing only one of the it to i ′
t

(keeping the other c − 1 it ’s the same). Let C ′ be the new matrix so obtained. Then,

‖CCT − C ′C ′T ‖F ≤ 1

c

(∥∥A(it)
∥∥∥∥(AT)(it)

∥∥
pit

+
∥∥A(i ′

t)
∥∥∥∥(AT)(i ′

t)

∥∥
pi ′

t

)
≤ 2

c
‖A‖2

F .

Using the triangle inequality,

‖CCT − AAT ‖F ≤ ‖C ′C ′T − AAT ‖F + ‖CCT − C ′C ′T ‖F

≤ ‖C ′C ′T − AAT ‖F + 2

c
‖A‖2

F .

Similarly, we get

‖C ′C ′T − AAT ‖F ≤ ‖CCT − AAT ‖F + 2

c
‖A‖2

F .

Thus, changing one of the it does not change F by more than (2/c)‖A‖2
F . Now, using

Azuma’s inequality (see e.g. McDiarmid, 1989)

Pr
[
|F(i1 . . . ic) − E(F(i1 . . . ic))| ≤ λ

√
c

2

βc
‖A‖2

F

]

= Pr
[
|‖AAT − CCT ‖F − E(‖AAT − CCT ‖F)| ≤ λ

√
c

2

βc
‖A‖2

F

]
≥ 1 − 2e−λ2/2.

Thus, using Eq. (13), for all δ > 0, with probability at least 1 − δ,

‖AAT − CCT ‖F ≤ 1 + √
8 ln(2/δ)√

c
‖A‖2

F .

Proof of Lemma 6: In proving the above lemma we showed that

E
(‖AAT − CCT ‖2

F

) = 1

c

n∑
k=1

1

pk

∥∥A(k)
∥∥4 − 1

c
‖AAT ‖2

F .

To prove that our choice of the pk’s minimizes the above expectation among all possible
choices of the pk’s, we define the function (observe that (1/c)‖AAT ‖2

F is independent of
the pk’s)

f (p1, . . . pn) = 1

c

n∑
k=1

1

pk

∥∥A(k)
∥∥4

.

32 P. DRINEAS ET AL.

We want to minimize f given that
∑n

k=1 pk = 1. Using simple calculus (that is substi-
tuting pn = 1 − ∑n−1

k=1 pk and solving the system of equations ∂ f
∂pk

= 0, k = 1, . . . , n − 1),

we get that pk = ‖A(k)‖2/‖A‖2
F .

Acknowledgments

We wish to thank Nina Mishra and 3 anonymous reviewers for the careful reading of our
paper and for many comments that significantly improved the presentation of our work.

Notes

1. A simple modification of our algorithm may be used to approximate right singular vectors as well.
2. Again, the algorithm can be modified to approximate right singular vectors.

References

Achlioptas, D., & McSherry, F. (2001). Fast computation of low rank approximations. In Proceedings of the 33rd
Annual Symposium on Theory of Computing (pp. 337–346).

Achlioptas, D., & McSherry, F. (2003). Fast computation of low rank matrix approximations. Manuscript.
Andrews, H. C., & Patterson, C. L. (1976a). Singular value decomposition image coding. IEEE Trans. on Com-

munications, 4, 425–432.
Andrews, H. C., & Patterson, C. L. (1976b). Singular value decompositions and digital image processing. IEEE

Trans. ASSP, 26–53.
Azar, Y., Fiat, A., Karlin, A., McSherry, F., & Saia, J. (2001). Spectral analysis of data. In Proc. of the 33rd ACM

Symposium on Theory of Computing (pp. 619–626).
Berry, M. J., & Linoff, G. (1997). Data mining techniques. John-Wiley.
Bar-Yossef, Z. (2002). The complexity of massive dataset computations. Ph.D. thesis, University of California,

Berkeley.
Bar-Yossef, Z. (2003). Sampling lower bounds via information theory. In Proceedings of the 35th Annual Sympo-

sium on Theory of Computing (pp. 335–344).
Charikar, M., & Guha, S. (1999). Improved combinatorial algorithms for the facility location and k-median

problems. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (pp. 378–388).
Charikar, M., Guha, S., Shmoys, D., & Tardos, E. (2002). A constant factor approximation algorithm for the

k-median problem. Journal of Computer and System Sciences, 65:1, 129–149.
Drineas, P., & Kannan, R. (2001). Fast Monte-Carlo algorithms for approximate matrix multiplication. In Pro-

ceedings of the 42nd Annual Symposium on Foundations of Computer Science (pp. 452–459).
Frieze, A., Kannan, R., & Vempala, S. (1998). Fast Monte-Carlo algorithms for finding low rank approximations.

In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (pp. 370–378).
Furedi, Z., & Komlos, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica, 1, 233–241.
Gersho, A., & Gray, R. M. (1991). Vector quantization and signal compression. Kluwer Academic.
Gibson, D., Kleinberg, J., & Raghavan, P. (1998). Clustering categorical data: An approach based on dynamical

systems. Very Large Data Bases (VLDB), 311–322.
Goldreich, O., Goldwasser, S., & Ron, D. (1998). Property testing and its connection to learning and approximation.

Journal of the ACM, 5:4, 653–750.
Golub, G., & Van Loan, C. (1989). Matrix computations. Johns Hopkins University Press.
Huang, T., & Narendra, P. (1974). Image restoration by singular value decomposition. Applied Optics, 14:9,

2213–2216.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice Hall.

CLUSTERING LARGE GRAPHS 33

Jain, K., & Vazirani, V. (1999). Primal-dual approximation algorithms for metric facility location and k-median
problems. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (pp. 2–13).

Jambu, M., & Lebeaux, M.-O. (1983). Cluster analysis and data analysis. North Holland.
Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2000). The analysis of

a simple k-means clustering algorithm. In Symposium on Computational Geometry (pp. 100–109).
Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. In Proceedings of 9th Annual ACM-SIAM

Symposium on Discrete Algorithms (pp. 668–677).
McDiarmid, C. J. H. (1989). On the method of bounded differences. In Surveys in Combinatorics: Invited Papers

at the 12th British Combinatorial Conference (pp. 148–188).
Ostrovsky, R., & Rabani, Y. (2002). Polynomial time approximation schemes for geometric k-clustering. Journal

of the ACM, 49:2, 139–156.
Papadimitriou, C. H., Raghavan, P., Tamaki, H., & Vempala, S. (2000). Latent semantic indexing: A probabilistic

analysis. Journal of Computer and System Sciences, 61:2, 217–235.
Parlett, B. (1997). The symmetric eigenvalue problem. Classics in Applied Mathematics, SIAM.

Received December 27, 2002
Revised February 10, 2004
Accepted February 11, 2004
Final manuscript March 4, 2004

