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Abstract. This work is concerned with online learning from expert advice. Extensive work on this problem
generated numerous “expert advice algorithms” whose total loss is provably bounded above in terms of the loss
incurred by the best expert in hindsight. Such algorithms were devised for various problem variants corresponding
to various loss functions. For some loss functions, such as the square, Hellinger and entropy losses, optimal
algorithms are known. However, for two of the most widely used loss functions, namely the 0/1 and absolute loss,
there are still gaps between the known lower and upper bounds.

In this paper we present two new expert advice algorithms and prove for them the best known 0/1 and absolute
loss bounds. Given an expert advice algorithm ALG, the goal is to form an upper bound on the regret LALG − L∗ of
ALG, where LALG is the loss of ALG and L∗ is the loss of the best expert in hindsight. Typically, regret bounds of a
“canonical form” C · √

L∗ ln N are sought where N is the number of experts and C is a constant. So far, the best
known constant for the absolute loss function is C = 2.83, which is achieved by the recent IAWM algorithm of
Auer et al. (2002). For the 0/1 loss function no bounds of this canonical form are known and the best known regret
bound is LALG − L∗ ≤ L∗ + C1 ln N + C2

√
L∗ ln N + e

4 ln2 N , where C1 = e − 2 and C2 = 2
√

e. This bound is
achieved by a “P-norm” algorithm of Gentile and Littlestone (1999). Our first algorithm is a randomized extension
of the “guess and double” algorithm of Cesa-Bianchi et al. (1997). While the guess and double algorithm achieves
a canonical regret bound with C = 3.32, the expected regret of our randomized algorithm is canonically bounded
with C = 2.49 for the absolute loss function. The algorithm utilizes one random choice at the start of the game.
Like the deterministic guess and double algorithm, a deficiency of our algorithm is that it occasionally restarts
itself and therefore “forgets” what it learned. Our second algorithm does not forget and enjoys the best known
asymptotic performance guarantees for both the absolute and 0/1 loss functions. Specifically, in the case of the
absolute loss, our algorithm is canonically bounded with C approaching

√
2 and in the case of the 0/1 loss, with

C approaching 3/
√

2 ≈ 2.12. In the 0/1 loss case the algorithm is randomized and the bound is on the expected
regret.

Keywords: online learning, online prediction, learning from expert advice

1. Introduction

In the online prediction using expert advice problem (DeSantis, Markowsky, & Wegman,
1988; Vovk, 1990; Littlestone & Warmuth, 1994; Blum, 1996), a learning algorithm is
required, at the start of each trial, to predict an unknown outcome, which may be discrete or
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real. The algorithm’s input for generating this prediction is the advice of each of N experts
where an expert advice is a (discrete or real) prediction of the outcome. By the end of the
trial, after making a prediction, the algorithm incurs some loss which measures, via some
loss function, the discrepancy between its prediction and the true outcome. Then a new trial
starts, etc. The general goal is to devise an expert advice algorithm that predicts as best as
possible by utilizing experts’ opinions.

Without any (statistical) assumptions on expert predictions and in particular, within an
adversarial context, it is impossible to ensure overall quality of an expert advice algorithm.
However, it is possible to ensure performance quality relative to some offline “comparison
class” of prediction algorithms that also utilize the expert advice. This methodology of worst
case analysis of online algorithms has been used in various disciplines such as statistics
(Chernoff, 1954; Milnor, 1954), where it is called regret analysis, computer science (Sleator
& Tarjan, 1985; Borodin & El-Yaniv, 1998), where it is called competitive analysis, game
theory (Blackwell, 1956) and information theory (Cover, 1991; Feder, Merhav, & Gutman,
1992). We use this approach here. The problem of online prediction using expert advice falls
within the more general context of online classification and regression, whereby a learning
algorithm needs to predict the label or value assigned to each item in a sequence of feature
vectors that is sequentially revealed.

Much of the work on learning to predict by combining expert advice focused on the
simplest comparison class where we attempt to predict as well as the best expert in hindsight
and measure the quality of the expert advice algorithm via regret, defined to be the difference
between the total loss of the expert advice algorithm and the total loss of the best expert.
This game has been extensively studied with respect to various loss functions. To a large
extent this extensive focus on the expert advice problem can be attributed to the wide
range of applications of expert advice algorithms. Some of these applications are related to
agnostic learning (Cesa-Bianchi et al., 1997), boosting (Freund & Schapire, 1997), pruning
of decision trees (Helmbold & Schapire, 1995), Metrical Task Systems (Blum & Burch,
1997), online paging (Blum, Burch, & Kalai, 1989), adaptive disk spin-down for mobile
computing (Helmbold, Long, & Sherrod, 1996), and repeated game playing (Freund &
Schapire, 1997). Moreover, there is evidence that expert advice algorithms have practical
significance, and as noted by Blum and others, these algorithms have “exceptionally good
performance in the face of irrelevant features, noise, or a target function changing with
time” (Blum, 1997).

Despite the conceptual simplicity of the expert advice problem and much research at-
tention devoted to it, a number of basic questions have remained open. In particular, for
two of the most widely used loss functions, namely the 0/1 and absolute loss, there are still
gaps between the known lower and upper bounds. In this paper we present two new expert
advice algorithms and prove for them the best known 0/1 and absolute loss bounds.

Given an expert advice algorithm ALG, the goal is to form an upper bound on the regret
LALG − L∗ of ALG, where LALG is the loss of ALG and L∗ is the loss of the best expert in
hindsight. Typically, regret bounds of a “canonical form” C · √

L∗ ln N are sought where
N is the number of experts and C is a constant. So far, the best known constant for the
absolute loss function is C = 2.83, which is achieved by the recent IAWM algorithm of
Auer, Cesa-Bianchi, and Gentile (2002). For the 0/1 loss function no bounds with this



HOW TO BETTER USE EXPERT ADVICE 273

canonical form are known and the best known regret bound is LALG − L∗ ≤ L∗ +C1 ln N +
C2

√
L∗ ln N + e

4 ln2 N where C1 = e − 2 and C2 = 2
√

e. This bound is achieved by a
“P-norm” algorithm of Gentile and Littlestone (1999).

Our first algorithm is a simple randomized extension of the “guess and double” algorithm
of Cesa-Bianchi et al. (1997). While the guess and double algorithm achieves a canonical
regret bound with C = 3.32, the expected regret of our randomized algorithm is canon-
ically bounded with C = 2.49 for the absolute loss function. The algorithm utilizes one
random choice at the start of the game. Like the deterministic guess and double algorithm,
a deficiency of our algorithm is that it occasionally restarts itself and therefore “forgets”
what it learned. Our second algorithm us based on a new “weight shift” technique and does
not forget. The algorithm enjoys the best known asymptotic performance guarantees for
both the absolute and 0/1 loss functions. Specifically, in the case of the absolute loss, our
algorithm is canonically bounded with C approaching

√
2 and in the case of the 0/1 loss,

with C approaching 3/
√

2 ≈ 2.12. In the 0/1 loss case the algorithm is randomized and
the bound is on the expected regret. Both our algorithms are presented as new “master”
prediction algorithms which operate known prediction routines that are simple extensions
of the well-known routine of Vovk (1990).

2. Problem definition, related work and our results

Consider the following prediction game between an online algorithm ALG and an adversary.
The game consists of repeated trials. At the start of each trial t , ALG receives the advice of
each of N experts, ξ1,t , . . . , ξN ,t , where ξ j,t ∈ D and D is some domain. The algorithm is
supposed to utilize any kind of expert predictions and assumes no knowledge on how these
expert predictions are formed. Hence, for analysis we assume that these predictions are
controlled by the adversary. Given the vector of expert predictions the algorithm generates
its own prediction ŷt ∈ D. The adversary then generates the true outcome yt ∈ D and ALG

incurs a loss, L(ŷt , yt ), where L : D × D → R
+ is some loss function. For each outcome

sequence y = y1, . . . , y� consisting of � outcomes, the total loss of ALG is

LALG(y) =
�∑

t=1

L(ŷt , yt ). (1)

The total loss of expert j is L j (y) = ∑�
t=1 L(ξ j,t , yt ). The regret of ALG is defined to be

LALG(y) − min j L j (y). The adversary attempts to maximize the regret by choosing the
outcome sequence (including its length �) and expert predictions.

Different problem variants are distinguished by choices of the loss function L(·, ·) and
the type of outcome (and prediction) domain D. These are typically determined by the
application at hand. Commonly used loss functions that have been considered in the literature
are the 0/1-loss (which counts 1 for any error), the absolute loss, (L(x, y) = |x − y|), the
square loss (L(x, y) = (x − y)2), the entropy loss (also called “log-loss”) and Hellinger
loss (which are given in Table 1). The simplest choice for D is D = {0, 1}, which is useful
for binary predictions. For (bounded) regression problems the interval D = [0, 1] (or any
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Table 1. cL coefficients for three “realizable” loss functions.

Loss function L(y, ŷ) cL coefficient

Square (y − ŷ)2 1
2

Hellinger 1
2 ((

√
1 − y − √

1 − ŷ)2 + (
√

y − √
ŷ)2) 1√

2

Relative entropy (logarithmic) (y ln y
ŷ + (1 − y) ln 1−y

1−ŷ ) 1

finite real interval) can be used. In some classification applications D is required to be an
arbitrary set of indices (or “alphabet”). Clearly, the choice of the loss function should be
made in accordance with the choice of D. In this paper we present algorithms that can deal
with any real interval domain while measuring absolute loss, and with any finite alphabet
domain together with the 0/1 loss.

The algorithm ALG can be deterministic or randomized. The performance of randomized
algorithms is measured by their expected regret

E
[

LALG(y) − min
j

L j (y)
]

= E[LALG(y)] − min
j

L j (y),

where the expectation is taken with respect to the random choices made by ALG.1

We note that any deterministic absolute loss algorithm ALG for D = [0, 1] can be trivially
translated to a 0/1 loss randomized algorithm ALG′ for D = {0, 1} by simply using any real
prediction ŷ ∈ [0, 1] as a ŷ-biased coin, thus generating a discrete randomized binary
prediction. It is not hard to see that any (deterministic) regret bound for ALG can be directly
interpreted as an expected regret bound for ALG′. However, currently there is no general
method for translating a deterministic absolute regret bound to an expected 0/1 regret bound
when D is a finite alphabet with cardinality greater than two.

2.1. The Weighted Majority (WM) algorithm

The Weighted Majority (WM) algorithm (Vovk, 1990; Littlestone & Warmuth, 1994) forms
the basis of many expert advice algorithms. WM maintains a weight vector for the set of
experts, and predicts the outcome via a weighted majority vote between the experts. WM
online learns this weight vector by “punishing” erroneous experts. The punishment is done
by multiplying an expert weight by an update factor (or learning rate) 0 < β < 1. Several
variants of WM are presented in Littlestone and Warmuth (1994):

• WM General (WMG): updates expert weights only when its own binary prediction is
incorrect. It can be shown that its total loss is bounded above by B/(ln 2

1+β
), where

B = ln N + L∗ ln 1
β

and L∗ = min j L j (y), A pseudo code for WMG is given in figure 1.
• WM Randomized (WMR): randomly chooses a single expert’s prediction with probabil-

ity proportional to its weight. A pseudo code for WMR is given in figure 2.
• WM Continuous (WMC): generates a real prediction. The pseudo code for WMC is

similar to the one given for the VPREDICT routine presented later in figure 6.
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Figure 1. The Weighted Majority General (WMG) algorithm.

Figure 2. The Weighted Majority Randomized (WMR) algorithm of littlestone and warmuth.

Both WMC and WMR attain a regret bound of B/(1 − β) (where in the case of WMR L∗ is
an expected value). A better (absolute loss) regret bound of B/(2 ln 2

1+β
) for WM can be

achieved by considering particular constrained functions for computing the weight updates
and the prediction (Vovk, 1990).

2.2. Vovk’s (c,η)-realizable loss functions and the “generic algorithm”

Here we briefly mention some of the ideas originally presented in Vovk’s “aggregating
algorithms” paper (Vovk, 1990) and later discussed, simplified and generalized in Haussler,
Kivinen, and Warmuth (1998). The results in these papers show that performance guarantees
of the form L A − L∗ ≤ c1 · √

L∗ · ln N + c2 ln N (where c1 and c2 are constants) are
achievable for certain loss functions. In the sequel we term bounds of this form “canonical”.
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Figure 3. Vovk’s “generic” algorithm.

The discussion here follows the analysis presented in Haussler, Kivinen, and Warmuth
(1998).

Let L(y, ŷ) be a loss function, and define L0(ŷ) = L(0, ŷ) and L1(ŷ) = L(1, ŷ). Given
a loss function which is twice differentiable, the following functions are defined (Haussler,
Kivinen, & Warmuth, 1998, p. 1909):

S(z) = L ′
0(z)L ′′

1(z) − L ′
1(z)L ′′

0(z);

R(z) = L ′
0(z)L ′

1(z)2 − L ′
1(z)L ′

0(z)2

S(z)
.

Set cL = sup0<z<1 R(z). Figure 3 presents Vovk’s “generic” algorithm. Exactly as previously
mentioned WM algorithms, the generic algorithm maintains weights w j , j = 1, . . . , N ,
that reflect expert performance so far. Unlike other algorithms discussed in this paper, the
“generic” algorithm receives as input a loss function, which automatically determines the
prediction function. This property makes the algorithm more generic. Considering the e−η

term appearing in the “punishment” step of the generic algorithm as a learning rate β would
give us the same form of WM-type algorithms as presented earlier. If the algorithm does
not fail (in the prediction step), given a loss function L and the parameters c and η, we
say that the loss function L is “(c,η)-realizable”. Given a loss function L with finite cL ,
the generic algorithm with parameters c = cL , η = 1

cL
achieves a tight regret bound of

L A(y) − L∗ ≤ cL ln N . Table 1 shows the cL coefficient for three common loss functions.
For some loss functions, like the absolute-loss, cL is not defined, and therefore the following
weaker form of a regret bound is sought

L A(y) − L∗ ≤ + a ·
√

L∗ · ln N + b ln N .
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For instance, this regret bound of the generic algorithm applied with the absolute loss

function is optimized by using learning rate η =
√

c(ln N )
L∗ , for any positive c, which results

in a regret bound of LT − L∗ ≤ 2 · √
L∗ · c · ln N + c ln N .2 Thus, there is a trade-off

between choices of a and b, where smaller b values imply larger a values and vice versa.
The “canonical” bound is obtained by taking b = 1, and allows for the comparison of
different algorithms by their a-coefficient.3

2.3. Algorithm P∗ (DWM)

In all the above absolute loss variants of WM (Sections 2.1 and 2.2) the choice of the learning
rate β, which can significantly affect the algorithms’ behavior and performance guarantees,
is left open.4 For the case where the game is of known duration (i.e. � is known to A at the start
of the game), Cesa-Bianchi et al. (1997) show an optimal minimax strategy for the online
player whose regret is bounded above by (1+o(1))

√
(� · ln N )/2. They also show a strategy

for the adversary, which extracts a lower bound of (1 − o(1))
√

(� ln N )/2 on the regret of
any expert advice algorithm. For the case of unknown duration they propose to operate WM
algorithms in phases using a standard “guess and double” technique. In this scheme, the
“master” algorithm, called P∗, operates a WMC-type routine (whose pseudo code is similar
to the one appearing in figure 6) with an “optimal” learning rate that is computed based on
a guess about the total loss of the best expert. In this paper we sometimes call the resulting
algorithm “Doubling Weighted Majority (DWM)”. Once the loss of the best expert exceeds
this guess, the master algorithm multiplies the guess by a fixed factor5 and starts a new
phase by initializing all expert weights. The asymptotic growth rate of the regret, as L∗

grows, is shown to be bounded above by L∗ + (3.32 + o(1))
√

L∗ ln N .6

2.4. Algorithm IAWM

The major deficiency of the doubling algorithm P∗ is the initialization it performs at the
start of each phase where it “forgets” all the information it learned about the experts. Re-
cently, Auer, Cesa-Bianchi, and Gentile (2002) proposed a new “self-confident” algorithm,
called IAWM (stands for Incrementally Adaptive Weighted Majority), which incrementally
updates the learning rate and does not forget expert weights. The (absolute loss) regret of
IAWM is bounded above by (2.83 + o(1))

√
L∗ ln N .7 The algorithm’s pseudo code appears

in figure 4. So far, this bound has been the best known for this setting.

2.5. P-NORM algorithms

Gentile and Littlestone (1999) considered “P-NORM algorithms” in the context of expert
advice.8 They show that for the 0/1-loss, the mistake bound of P-NORM algorithms is
bounded above by 2·L∗ + (e − 2)· ln N + 2

√
e·

√
L∗ ln N + e

4 ln2 N . A regret bound of

L∗ + (e−2) · ln N +2
√

e ·
√

L∗ ln N + e
4 ln2 N can be directly obtained. However, note that

in this regret bound there is an extra L∗ term (in particular this bound is not in the canonical
form).
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Figure 4. The incrementally adaptive weighted majority algorithm (IAWM) of Auer et al.

2.6. Our results

Our first result is a simple randomized extension of the “guess and double” DWM algorithm
of Cesa-Bianchi et al. (1997) (see Section 2.3). The new algorithm called “random doubling
weighted majority” or RDWM for short, chooses one random real number in [0, 1) at the
start of the game and then operates deterministically. This random number controls the
sequence of guesses it later forms, which should upper bound the loss of the best expert.
These randomized guesses allow for a better absolute loss bound than that achieved by the
deterministic DWM and reduces its canonical form constant from 3.32 to 2.49. However,
the established bound is on the expected regret of RDWM. Like the deterministic DWM,
our RDWM algorithm occasionally restarts itself and initializes expert weights. Therefore,
it does not preserve what it learned.

Our main results are based on a new approach for operating the WMC, WMR and WMG

prediction routines. In this approach the structure of the master algorithm is similar to that
of DWM and is conceptually based on “guesses” on the loss of the best expert. However,
when the current “guess” is violated (i.e. the loss of the best expert exceeds the guess),
our new “weight-shift” technique “corrects” expert weights instead of initializing them.
These corrections preserve the relative magnitude of expert weights in accordance with
their cumulative losses. Thus, the master algorithm does not forget what it learned.

This technique is applicable in various settings and in particular in the absolute and 0/1
loss games. In the case of the absolute loss the regret of the proposed algorithm (based on
WMC) is asymptotically (for large L∗) bounded above by ( 2α+√

α+1
2
√

2α
+ o(1)) · √

ln N · L∗,
where α > 1 is any real. The bound is minimized when α → 1 and approaches (

√
2 +

o(1)) ·√ln N · L∗. This bound improves on the best known bound (achieved by IAWM) by a
factor of approximately 2. For the 0/1-loss the regret of our algorithm (now based on WMR)
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Table 2. Summary of the best known bounds so far and our new bounds.

Asymptotic regret
Algorithm Reference Loss function “Canonical” bound

WMVP Our work 0/1 (3/
√

2 + o(1)) · √
ln N · L∗

(WMR-based) bounds the expected regret

P∗ (Cesa-Bianchi et al., 1997) Absolute (3.32 + o(1))
√

ln N · L∗

IAWM (Auer et al., 2002) Absolute (2.83 + o(1))
√

ln N · L∗

RDWM Our work Absolute and 0/1 (2.49 + o(1))
√

ln N · L∗
bounds the expected regret

WMVP Our work Absolute (
√

2 + o(1)) · √
ln N · L∗

WMC-based

is bounded above by ( α+√
α+1√

2α
+ o(1)) · √

ln N · L∗. Here again, the bound is minimized
when α → 1 and in this case approaches (3/

√
2 + o(1)) ·√ln N · L∗. This bound improves

the bound attained by P-NORM algorithms. In particular, the bound we achieve is of the form
LALG − L∗ ≤ C · √ln N · L∗ with C ≈ 2.12. In comparison, the best known bound so far,
achieved by the P-NORM algorithms of Gentile and Littlestone (1999, see Section 2.5 for
more details) is, LALG−L∗ ≤ L∗+C1 ln N +C2

√
L∗ ln N + e

4 ln2 N , where C1 = e−2 and
C2 = 2

√
e. Note that our 0/1-loss result is based on the (randomized) WMR and therefore

our performance guarantee in this case bounds the expected regret. Table 2 summarizes the
best known canonical form bounds so far as well as our new bounds for the 0/1 and absolute
loss functions.

3. The Random Doubling Weighted Majority (RDWM) algorithm

In this section we show how to use a simple “randomized guess and double” technique
to improve the bound of the DWM doubling algorithm of Cesa-Bianchi et al. (1997, see
Section 2.3). We call the resulting algorithm “randomized doubling weighted majority” or
RDWM for short. The RDWM algorithm makes a single random choice at initialization
and thereafter continues its execution deterministically very similarly to DWM.9

The master RDWM algorithm is given in figure 5. The RDWM algorithm uses the
VPREDICT prediction routine given in figure 6. VPREDICT is essentially the P∗ routine
(which, as noted in Cesa-Bianchi et al., 1997, pp. 429–430, is motivated by a related
algorithm proposed in Vovk, 1990).10

Remark. As in algorithm P∗ of Cesa-Bianchi et al. (1997), the VPREDICT routine leaves
open the choices of the prediction function Fβ(rt ) and the update constant determined by
the function Uβ(·). In figure 6 we specify the constraints on the prediction function F . These
constraints are identical to those used by Algorithm P∗ and any choice within the specified
ranges will allow for the performance bounds we establish in this paper.



280 R. YAROSHINSKY, R. EL-YANIV, AND S.S. SEIDEN

Figure 5. The RDWM algorithm.

Figure 6. The VPREDICT routine.
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RDWM receives a parameter α ≥ 1 which will be optimized later. For real numbers
α ≥ 1 and δ ∈ [0, 1) define

Fi =
{

0, if i = 0;

αδ+i−1 ln N , otherwise.
(2)

Before the first trial the algorithm picks δ uniformly at random from [0, 1). The algorithm
operates in a sequence of phases. The i th phase starts by invoking the VPREDICT using an
upper bound guess U = Fi − Fi−1 on the loss of the best expert. Throughout the i th phase
VPREDICT operates using an appropriate learning rate βi , which is optimized as a function
of the upper bound U using the techniques of Cesa-Bianchi et al. (1997). The i th phase
continues as long as the loss of the best expert is smaller than or equal to U . When the i th
phase ends, a new guess is formed, a new appropriate learning rate is calculated and then a
new phase starts.

We now provide a regret bound for RDWM. Our analysis relies on the following theorem
from Cesa-Bianchi et al. (1997), which gives a bound on the total loss of VPREDICT when
applied with an upper bound on the loss of the best expert (with appropriate learning rate,
as specified in Algorithm RDWM).

Theorem 3.1 (Cesa-Bianchi et al., 1997, Section 4.4.3). Let y be any outcome sequence
and let U be an upper bound on the loss L∗ of the best expert with respect to y. Then, the
total loss of VPREDICT when applied with the learning rate g(

√
ln N/U ) (where g is defined

in Algorithm RDWM in figure 5), is bounded above by

LRDWM(y) ≤ L∗ +
√

U ln N + ln N

2 ln 2
. (3)

The following theorem provides a regret bound for RDWM as a function of its parameter
α. Later on in Corollary 3.1 we optimize and find the α that minimizes the regret.

Theorem 3.2. Let y be any outcome sequence and let L∗ be the loss of the best expert
with respect to y. Then, for any α ≥ 1,

E[LRDWM(y)] − L∗ ≤ 2
√

(α − 1)L∗ ln N

ln α
+ O(ln L∗ ln N ),

where the expectation is with respect to the random choice made by RDWM.

Proof: Let T be the integer satisfying

αT −1 ln N ≤ L∗ ≤ αT ln N .

Let x ∈ [0, 1) be the solution of

L∗ = αT +x−1 ln N .
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Thus,

T = logα(L∗/ ln N ) − x + 1. (4)

Note that for i ≥ 2,√
Fi − Fi−1 =

√
αδ+i−1 ln N − αδ+i−2 ln N

=
√

(α − 1)αδ+i−2 ln N . (5)

We consider two cases: (i) δ ≥ x , and (ii) δ < x . In the first case, using (4), we have

αT +δ = L∗

ln N
α1−x+δ ≥ L∗

ln N
α1−x+x ≥ L∗

ln N
α.

Therefore, L∗ ≤ αδ+T −1 ln N = FT and considering the algorithm definition (and in
particular, definition (2)), we deduce that the last phase is the T th.

In the second case (δ < x) we similarly have,

αT +δ = L∗

ln N
α1−x+δ ≥ L∗

ln N
αδ,

and therefore, L∗ ≤ αT ln N ≤ αδ+T ln N = FT +1. Thus, in this case the last phase is at
most the (T + 1)st.

Let Ri and L∗
i denote the loss of algorithm RDWM and respectively, the loss of the best

expert during the i th phase. Recalling that the guessed upper bound set by RDWM for the
i th phase is (Fi − Fi−1) ln N , for each phase i we can apply Theorem 3.1 to bound

Ri ≤ L∗
i +

√
(Fi − Fi−1) ln N + ln N

2 ln 2
+ 1,

where the extra 1 is due to the possible delay (of at most 1 loss unit) in detecting that the
best expert loss exceeded the threshold. Therefore, in the first case (δ ≥ x) where there are
T phases we have

LRDWM =
T∑

i=1

Ri ≤
T∑

i=1

(
L∗

i +
√

(Fi − Fi−1) ln N + ln N

2 ln 2
+ 1

)

= L∗ + T ·
(

ln N

2 ln 2
+ 1

)
+

T∑
i=1

√
(Fi − Fi−1) ln N

= L∗ + (logα(L∗/ ln N ) − x + 1) ·
(

ln N

2 ln 2
+ 1

)

+
T∑

i=1

√
(Fi − Fi−1) ln N

≤ L∗ +
T∑

i=1

√
(Fi − Fi−1) ln N + O(log L∗ log N ).



HOW TO BETTER USE EXPERT ADVICE 283

Using (5) we have

T∑
i=1

√
(Fi − Fi−1) ln N =

√
ln N

(√
αδ ln N +

T∑
i=2

√
(α − 1)αδ+i−2 ln N

)

= αδ/2 ln N

(
1 + √

α − 1
T −2∑
i=0

αi/2

)

= αδ/2 ln N

(
1 +

√
α − 1√
α − 1

α(T −1)/2 −
√

α − 1√
α − 1

)

= αδ/2 ln N

(
1 +

√
α − 1√
α − 1

α(logα (L∗/ ln N )−x)/2 −
√

α − 1√
α − 1

)

= αδ/2 ln N

(
1 +

√
(α − 1)L∗/ ln N√

α − 1
α−x/2 −

√
α − 1√
α − 1

)

<

√
(α − 1)L∗ ln N√

α − 1
α(δ−x)/2,

where the last inequality follows from the inequality 1 −
√

α−1√
α−1 < 0, which holds since

α > 1. Overall, in the first case (δ ≥ x) we have

LRDWM ≤ L∗ +
√

(α − 1)L∗ ln N√
α − 1

α(δ−x)/2 + O(log L∗ log N ). (6)

In the second case (δ < x) we can obtain, using a very similar derivation,

LRDWM ≤ L∗ +
√

α(α − 1)L∗ ln N√
α − 1

α(δ−x)/2 + O(log L∗ log N ). (7)

Noting that δ is uniformly distributed in [0, 1), we can bound the expected loss of RDWM
by combining (6) and (7) as follows.

E[LRDWM] <

∫ x

0

(
L∗ +

√
α(α − 1)L∗ ln N√

α − 1
α(δ−x)/2 + O(log L∗ log N )

)
dδ

+
∫ 1

x

(
L∗ +

√
(α − 1)L∗ ln N√

α − 1
α(δ−x)/2 + O(log L∗ log N )

)
dδ

= L∗ +
√

(α − 1)L∗ ln N√
α − 1

(∫ x

0
α(δ−x+1)/2dδ +

∫ 1

x
α(δ−x)/2dδ

)
+ O(log L∗ log N )

= L∗ +
√

(α − 1)L∗ ln N√
α − 1

· 2(
√

α − 1)

ln α
+ O(log L∗ log N )

= L∗ + 2
√

(α − 1)L∗ ln N

ln α
+ O(log L∗ log N )
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Corollary 3.1. The expected regret of RDWM is bounded above by

2.49
√

L∗ ln N + O(ln L∗ ln N ).

Proof: We use the regret bound of Theorem 3.2. The function f (α) = 2
√

α − 1/ ln α is
minimized when 2 + α ln α = 2α. In terms of Lambert’s W function this equation has the
solution

α∗ = −2/W

(−2

e2

)
≈ 4.92155,

and it is not hard to see that f (α∗) < 2.48527.

4. The WMVP algorithm—absolute loss setting

In this section we present our second expert advice algorithm for the absolute loss setting.
The algorithm is called “Weighted Majority with Vovk-Phases” or WMVP for short. A
pseudo-code of the algorithm is given in figures 7 and 6. Figure 7 contains the master
routine called WMVP. WMVP operates in phases where at the start of each phase it calls
the prediction routine VPREDICT given in figure 6. WMVP is parameterized by a sequence
of monotone increasing positive reals T1, T2, . . . , which specify “loss thresholds”. These
thresholds determine the phases, where the i th phase lasts as long as the loss of best expert

Figure 7. The WMVP algorithm.
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so far is smaller than Ti . Although the algorithm given in figure 7 receives pre-specified
loss thresholds, Ti may be chosen online.

Like RDWM of Section 3, predictions are formed only within phases and only by the
VPREDICT routine. Note, however, that unlike algorithm RDWM we do not initialize expert
weights when we call VPREDICT from WMVP. The expert weights and losses input to
VPREDICT always reflect expert performance so far. At the end of each phase, VPREDICT

returns to WMVP the last trial number, and updated expert weights and losses. WMVP then
uses these losses to adjust expert weights. Then, it computes a new appropriate learning
rate β and starts a new phase by calling VPREDICT again, etc.

Expert punishments are controlled via the β parameter which remains fixed throughout
a phase, but is always increased by WMVP in the next phase (which means that experts are
punished less severely as phases advance).

The expert weight adjustments performed by WMVP (at the end of a phase i) call for
some attention. Notice that these adjustments always raise the weight of an expert whose
loss exceeds the last loss threshold Ti (this follows from the fact that the βi are increasing
with i). Through these adjustments the algorithm performs “loss shifts” that coordinate
expert weights so that at all times, the weights associated with experts reflect a (fictitious)
situation where all past expert mistake rates were identical during each of the previous
phases. Nevertheless, these adjustments always keep a set of weights which reflect the
relative success of the experts so far. Before we give the following lemma, which formally
establishes this fact, we introduce some notation that will be used throughout the paper.

First, j always denotes the j th expert (1 ≤ j ≤ N ), t represents a trial number and i , a
phase index. We denote by ti the trial number where the i th phase ended. For all 1 ≤ j ≤ N
and t ≥ 1 we denote by w j,t and (resp. L j,t ) the weight (resp. loss) of the j th expert just after
the t th trial (as computed by VPREDICT). The adjusted weight (of the j th expert) after the
i th phase ends (at trial ti ) is denoted by w′

j,ti
= w j,ti · ( βi+1

βi
)L j,ti −Ti . We set Wi = ∑N

j=1 w j,ti ,
the sum of expert weights at the end of the i th interval (before weight adjustments), and
similarly W ′

i = ∑N
j=1 w′

j,ti
is the sum of adjusted weights just after the i th phase (and

after weight adjustments). Thus, W ′
i is the sum of weights at the beginning of the (i + 1)st

interval (the beginning of the (ti + 1)st trial). By convention we set W0 = W ′
0 = N . For

any outcome sequence y we denote by yi the segment of y corresponding to the i th phase;
that is, yi = yti−1+1, . . . , yti . For each (phase) i we set τi = Ti − Ti−1 where T0 = 0.

Lemma 4.1 (Weight adjustments). Let i be any phase index. During this phase, the j th
expert weight w j , just after this expert incurred loss L j , is

w j =
(

i−1∏
k=1

β
τk
k

)
· β

L j −Ti−1

i

Proof: We prove the lemma by induction on i . The base case, i = 1, holds since the
weight of the j th expert is simply w j = β

L j

1 . Assume that the induction hypothesis holds
for the i th phase. We prove that it holds for the (i + 1)st phase. By inspection of the
algorithm, when the i th phase ends, for all j = 1, . . . , n, L j ≥ Ti , and by the induction
hypothesis, at this moment (before the weight adjustments) w j = (

∏i−1
k=1 β

τk
k ) ·βL j −Ti−1

i . But
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L j − Ti−1 = (L j − Ti ) + (Ti − Ti−1) = (L j − Ti ) + τi , so w j = (
∏i−1

k=1 β
τk
k ) ·βτi

i ·βL j −Ti

i =
(
∏i

k=1 β
τk
k ) · β

L j −Ti

i .
The adjusted weight is obtained by multiplying the weight by ( βi+1

βi
)L j −Ti . Therefore,

during the (i + 1)st phase, w j = (
∏i

k=1 β
τk
k ) · β

L j −Ti

i · ( βi+1

βi
)L j −Ti = (

∏i
k=1 β

τk
k ) · β

L j −Ti

i+1 .

Let j and j ′ be two expert indices. A straightforward corollary of Lemma 4.1 is that during
any phase i , while the experts j and j ′ have weights w j and w j ′ , and losses L j and L j ′ ,

w j > w j ′ ⇔
(

i−1∏
k=1

β
τk
k

)
· β

L j −Ti−1

i >

(
i−1∏
k=1

β
τk
k

)
· β

L j ′ −Ti−1

i ⇔ L j < L j ′

The following lemma concerns a basic property of VPREDICT and will be used in our analysis
for proving Lemma 4.3. The lemma is an adaptation of a result that was first established
by Vovk (1990). The proof we provide in Appendix A is adapted from Cesa-Bianchi et al.
(1997).

Lemma 4.2. For any 0 < β < 1, and any outcome sequence y of length �,

LVPREDICT(y) ≤ 1

2 · ln 2
1+β

ln

(∑N
j=1 w j,0∑N
j=1 w j,�

)
, (10)

where, for each 1 ≤ j ≤ N and 1 ≤ t ≤ �, w j,t is the weight of the j th expert after the tth
trial, and the w j,0 are the initial weights.

Let Bi = 1
2 ln 2

1+βi

. Using Lemma 4.2 we can now upper bound the loss incurred during each
phase.

Lemma 4.3 (Phase loss). For any phase i and any 0 < βi−1 < βi < 1,

LWMVP(yi ) ≤ Bi (ln W ′
i−1 − ln Wi ).

Proof: By definition of the W ′
i−1 and Wi ,

Bi (ln W ′
i−1 − ln Wi ) = Bi

(
ln

N∑
j=1

w j,ti−1 ·
(

βi

βi−1

)L j,ti−1 −Ti−1

− ln
N∑

j=1

w j,ti

)

= Bi ln

∑N
j=1 w j,ti−1 · (

βi

βi−1

)Li,ti−1 −Ti−1∑N
j=1 w j,ti

.

Noting that in the numerator we have the weights at the beginning of the phase and in the
denominator, the weights at the end of the phase, we can complete the proof by applying
Lemma 4.2.
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The following lemma bounds the loss of algorithm WMVP with respect to finite outcome
sequences.

Lemma 4.4 (Finite sequence loss). For any outcome sequence y and expert responses,

LWMVP(y) < ln N ·
(

Bk +
k−1∑
i=1

(
Bi − ln βi+1

ln βi
· Bi+1

))
−

k−1∑
i=1

(τi ln βi Bi )

− z ln βk Bk − ln β1 B1, (11)

where k is the consequent number of phases, with a possibly incomplete last phase, and
0 ≤ z ≤ τk is the loss incurred by the best expert during the last phase.

Proof: Decomposing y into phases y = y1, . . . , yk (and the last phase may be incomplete)
we have LWMVP = ∑k

i=1 LWMVP(yi ). By Lemma 4.3,

k∑
i=1

LWMVP(yi ) ≤
k∑

i=1

Bi (ln W ′
i−1 − ln Wi ), (12)

so for an upper bound on the algorithm’s loss it is sufficient to maximize the upper bounds
on the individual phase losses (the right hand side of (12)), where the maximization is over
feasible expert weights. Recalling that W ′

0 = N , the right hand side of (12) can be rewritten
as

B1 ln N − Bk ln Wk +
k−1∑
i=1

(Bi+1 ln W ′
i − Bi ln Wi ). (13)

For each phase i we define

W max
i =

N∑
j=1

i∏
k=1

β
τk
k = N

i∏
k=1

β
τk
k . (14)

W max
i is the maximum sum of possible expert weights after phase i . Also, define γi =

Wi/W max
i . Let χ be the solution of

Wi =
N∑

j=1

i∏
k=1

β
τk
k β

L j −Ti

i =
N∑

j=1

i∏
k=1

β
τk
k β

χ

i = N ·
i∏

k=1

β
τk
k β

χ

i . (15)

Clearly, γi = β
χ

i . Note that χ = logβi
γi represents a (uniform) extra loss above Ti in a

scenario where all experts (uniformly) incur exactly the same loss during the i th phase.
Similarly, let χ ′ be the solution of

W ′
i =

N∑
j=1

i∏
k=1

β
τk
k β

L j −Ti

i+1 =
N∑

j=1

i∏
k=1

β
τk
k β

χ ′
i+1 = N ·

i∏
k=1

β
τk
k β

χ ′
i+1. (16)
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By Lemma A.1 (appearing in the appendix), χ ′ ≥ χ and we conclude that

W ′
i = N ·

i∏
k=1

β
τk
k β

χ ′
i+1 < N ·

i∏
k=1

β
τk
k β

χ

i+1. (17)

The summation in (13) (the r.h. term) can now be bounded (from above) as follows.

r.h. term of (13)

=
k−1∑
i=1

(Bi+1 ln W ′
i − Bi ln Wi )

=
k−1∑
i=1

{
Bi+1 ln

(
N

i∏
k=1

β
τk
k β

χ ′
i+1

)
− Bi ln Wi

}

≤
k−1∑
i=1

{
Bi+1 ln

(
N

i∏
k=1

β
τk
k β

χ

i+1

)
− Bi ln Wi

}
(18)

=
k−1∑
i=1

{
Bi+1 ln

((
N

i∏
k=1

β
τk
k β

χ

i

) (
βi+1

βi

)χ
)

− Bi ln Wi

}

=
k−1∑
i=1

{
Bi+1 ln

(
Wi

(
βi+1

βi

)χ)
− Bi ln Wi

}

=
k−1∑
i=1

{
Bi+1 ln

(
W max

i γi

(
βi+1

βi

)logβi
γi
)

− Bi ln
(
W max

i γi
)}

=
k−1∑
i=1

{
Bi+1

(
ln W max

i + ln γi + ln γi

ln βi
ln

(
βi+1

βi

))
− Bi

(
ln W max

i + ln γi
)}

=
k−1∑
i=1

{
ln W max

i (Bi+1 − Bi ) + ln γi

(
Bi+1 − Bi + Bi+1

ln βi+1

ln βi
− Bi+1

ln βi

ln βi

)}

=
k−1∑
i=1

{
ln W max

i (Bi+1 − Bi ) + ln γi

(
Bi+1

ln βi+1

ln βi
− Bi

)}
, (19)

where (18) follows from (17). Using (19) we can write an upper bound on (13) as J1 +J2,
where

J1 =
k−1∑
i=1

ln W max
i (Bi+1 − Bi ) + B1 ln N − Bk ln Wk (20)

J2 =
k−1∑
i=1

ln γi

(
Bi+1

ln βi+1

ln βi
− Bi

)
. (21)
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Taking W max
0 = N , we have

J1 = Bk
(
ln W max

k−1 − ln Wk
) +

k−1∑
i=1

Bi
(
ln W max

i−1 − ln W max
i

)
. (22)

We first consider the r.h. term. (The reason we partition J1 is that the last phase may be
incomplete.) By definition of W max (see Eq. (14)),

ln W max
i−1 − ln W max

i = ln N +
i−1∑
q=1

τq ln βq −
(

ln N +
i∑

q=1

τq ln βq

)
= −τi ln βi .

Therefore, the r.h. term of J1 equals − ∑k−1
i=1 Biτi ln βi . The only free parameters in J1

(which can be controlled by the adversary) are k and Wk . For each choice of k by the
adversary, the best choice of expert response (that maximizes the regret) would minimize
Wk (appearing in the l.h. term of J1). Clearly, the sum of all weights is not smaller than the
weight of the best expert, which we denote by W min (W min

i after the i th phase),

Wk > W min
k ≡ β z+1

k

k−1∏
i=1

β
τi
i , (23)

where the extra βk factor in W min
k is due to a maximum delay (of one loss unit) in detecting

that the loss of the best expert increased above the threshold Tk−1. Overall, we have, for the
l.h. term of J1,

Bk
(

ln W max
k−1 − ln Wk

)
< Bk

(
ln W max

k−1 − ln

(
β z+1

k

k−1∏
i=1

β
τi
i

))

= Bk

(
ln N +

k−1∑
q=1

τq ln βq − (z + 1) ln βk −
k∑

q=1

τq ln βq

)

= Bk(ln N − ln βk(1 + z)). (24)

Thus, we can bound J1 as follows:

J1 < −
k−1∑
i=1

Biτi ln βi + Bk(ln N − ln βk(1 + z)). (25)

We now consider J2. Here the free parameters are γi ’s. It is not hard to see11 that
Bi+1

ln βi+1

ln βi
− Bi < 0, and since 0 < γi ≤ 1, by minimizing the γi ’s in J2 we will get an

upper bound on J2.
By the definitions of γi and of W min, W max

i γi = Wi > W min
i . Thus,

γi >
W min

i

W max
i

= βi
∏i

q=1 β
τq
q

N
∏i

q=1 β
τq
q

= βi

N
. (26)
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Therefore,

J2 =
k−1∑
i=1

ln γi

(
Bi+1

ln βi+1

ln βi
− Bi

)

<

k−1∑
i=1

ln
βi

N

(
Bi+1

ln βi+1

ln βi
− Bi

)

= ln N
k−1∑
i=1

(
Bi − Bi+1

ln βi+1

ln βi

)
+

k−1∑
i=1

ln βi

(
Bi+1

ln βi+1

ln βi
− Bi

)

= ln N
k−1∑
i=1

(
Bi − Bi+1

ln βi+1

ln βi

)
+

k−1∑
i=1

(Bi+1 ln βi+1 − Bi ln βi )

= ln N
k−1∑
i=1

(
Bi − Bi+1

ln βi+1

ln βi

)
+ Bk ln βk − B1 ln β1.

In the expert advice game the adversary’s goal, when playing against WMVP, is to choose
an outcome sequence y and expert predictions so as to maximize the regret, defined to be
LWMVP(y) − L∗(y), with L∗(y) being the loss of the best expert. One interesting property
of an expert advice algorithm is the growth rate of its regret, as the loss of the best expert
increases. The following theorem determines this asymptotic rate for WMVP applied with
“geometric” thresholds.

Theorem 4.1. Let T1, T2, . . . be any geometric loss threshold sequence satisfying Ti+1 =
αTi where α > 1. Then, as L∗, the loss of the best expert increases,

LWMVP − L∗ <

(
2α + √

α + 1

2
√

2α
+ o(1)

)
·
√

ln N · L∗.

Proof: Consider

LWMVP − L∗
√

L∗ · ln N
. (27)

Our goal is to show that the asymptotic value of this fraction, as L∗ increases, is at most
2α+√

α+1
2
√

2α
. Consider a finite game with k phases where the kth phase may be incomplete. By

Lemma 4.4,

LWMVP < ln N ·
(

Bk +
k−1∑
i=1

(
Bi − ln βi+1

ln βi
· Bi+1

))
−

k−1∑
i=1

τi · (ln βi Bi )

− z · (ln βk Bk) − ln β1 B1.
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The proof is straightforward: In (27) we substitute this upper bound for LWMVP (ignoring the
constant ln β1 B1) and substitute Tk−1 + z for L∗ (recall the definition of z in Lemma 4.4).
Specifically, let

uk(z) = ln N ·
(

Bk +
k−1∑
i=1

(
Bi − ln βi+1

ln βi
· Bi+1

))

−
k−1∑
i=1

τi · (ln βi Bi ) − z · (ln βk Bk);

Ck(z) = uk(z) − (Tk−1 + z)√
(Tk−1 + z) ln N

.

To prove the theorem we need to show that

sup
z

lim
k→∞

Ck(z) ≤ 2α + √
α + 1

2
√

2α
.

We write Ck(z) = I1 + I2 + I3, where

I1 = ln N · Bk√
(Tk−1 + z) · ln N

=
√

ln N · Bk√
(Tk−1 + z)

(28)

I2 =
ln N · ∑k−1

i=1

(
Bi − ln βi+1

ln βi
· Bi+1

)
√

(Tk−1 + z) · ln N
=

√
ln N · ∑k−1

i=1

(
Bi − ln βi+1

ln βi
· Bi+1

)
√

(Tk−1 + z)
(29)

I3 = − ∑k−1
i=1 τi · (ln βi Bi + 1) − z · (ln βk Bk + 1)√

(Tk−1 + z) · ln N
. (30)

By Lemma A.2 (appearing in the appendix),

lim
k→∞

I1 ≤
√

α/2;

lim
k→∞

I2 = 0;

lim
k→∞

I3 ≤
√

α + 1

2
√

2α
.

To conclude, we have

sup
z

lim
k→∞

Ck(z) = sup
z

lim
k→∞

I1 + I2 + I3

≤
√

α√
2

+
√

α + 1

2
√

2α

= 2α + √
α + 1

2
√

2α
.
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Corollary 4.1. Let ε > 0 be given. Then, algorithm WMVP can be operated such that its
asymptotic regret (for sufficiently large L∗) is bounded above as

LWMVP − L∗ < (
√

2 + ε) ·
√

ln N L∗.

Proof: By Theorem 4.1, for any threshold sequence of the form Ti+1 = αTi , α > 1, an
asymptotic bound of 2α+√

α+1
2
√

2α

√
ln N L∗ on the regret is guaranteed. It is easy to see that

this bound is minimized when α → 1. In particular, with α = 1, 2α+√
α+1

2
√

2α
= √

2. It is not
hard to see that for any ε > 0 there exists αε such that the bound of the corollary holds.
Note that operating WMVP with arbitrarily small α > 1 is equivalent to terminating each
application of the VPREDICT routine immediately after an increase in the loss of the best
expert is detected.

5. The WMVP algorithm—0/1 loss setting

In this section we present two variants of the WMVP algorithm for the 0/1-loss setting. For one
of these variants we are able to provide an asymptotic bound of ( α+√

α+1
2
√

α
+o(1))·√ln N · L∗

on the regret of WMVP. As it is in the absolute loss case, this performance guarantee is
optimized when α → 1 in which case the asymptotic bound is ( 3√

2
+ o(1)) · √

ln N · L∗.
In the 0/1-loss setting we consider outcome values that can be elements of a finite alphabet

(i.e. “nominal” values). That is, no non-trivial metric or even an order relation are assumed
to hold over the outcome set. Both the expert predictions and master algorithm predictions
are required to be elements of this outcome set. Although the 0/1 loss function is an extreme
special case of the absolute loss, the above WMVP algorithm, based on Vovk’s (absolute
loss) prediction routine (VPREDICT), does not generate nominal predictions and is therefore
not suitable for the 0/1-loss setting. In order to generate nominal predictions our master
algorithm must rely on appropriate prediction routines. Whenever the alphabet is binary,
two prediction routines, proposed by Littlestone and Warmuth (1994), can be utilized:

• Weighted Majority General (WMG): Uses the weighted average of experts’ predictions
(which can be elements of [0, 1]) to form its prediction by thresholding this average
against 1/2 (i.e. it is 0 iff the average is <1/2). See figure 1.

• Weighted Majority Randomized (WMR): Randomly chooses one expert, with proba-
bility proportional to its weight, and uses this expert’s prediction. See figure 2.

Notice that Wmr can be directly applied when the alphabet (outcome set) has cardinality
larger than 2.12 In this section we discuss and analyze two variants of the WMVP algorithm
which are based on the WMG and Wmr prediction routines.

When we measure prediction discrepancies using the 0/1-loss, the total loss of experts
(and that of the master algorithm) equal the number of mistakes made by the experts (resp.
the master algorithm). Thus, throughout this section we often use m j and M for the number
of mistakes made by the j th expert and number of mistakes made by the master algorithm,
respectively, and we note that always m j = L j and M = LWMVP.
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Table 3. Upper bounds attained by three Weighted Majority prediction variants.

VPREDICT Wmr WMG

Bound
ln N+m∗·ln 1

β

2 ln 2
1+β

ln N+m∗·ln 1
β

1−β

ln N+m∗·ln 1
β

ln 2
1+β

It is interesting to compare the (known) worst case bounds that can be attained by the
three prediction routines we consider: VPREDICT, Wmr and WMG (which all depend on a
particular learning rate β). These bounds, which were established in (Vovk, 1990; Littlestone
and Warmuth, 1994), are summarized in Table 3, where m∗ denotes the number of mistakes
(total loss) of the best expert and, as usual, N is the number of experts. As can be seen, the
three bounds differ in their denominators. In addition, as will be later shown, when using
our techniques, the WMG bound is not sufficient to guarantee an asymptotic bound on the
regret. In figure 8 we plot the three denominators. For any β ∈ [0, 1], the denominator of
VPREDICT is the largest, thus producing the best (smallest) bound. As can be observed, the
second best bound is attained by Wmr.

Figure 8. Denominators of the bounds for VPREDICT, WMR and WMG.
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Figure 9. Two versions of the 0/1-VPREDICT routine, based on WMG and Wmr.

In figure 9 we provide a pseudo code for adapted versions of both Wmr and WMG. The
routines (called here 0/1-VPREDICT) are adapted to work with our WMVP master algorithm.
The only differences of these routines from the absolute loss version of VPREDICT (figure 6)
are the prediction functions (which are now based on either WMG or Wmr), and the update
function, which is now based on the 0/1-loss, denoted L0/1(·) and defined to be

L0/1(x, y) =
{

0, if x = y

1, otherwise.

The following lemma, due to Littlestone and Warmuth (1994), bounds the loss of the WMG

and Wmr variants of VPREDICT for any finite segment of the outcome sequence. This lemma
is analogous to Lemma 4.2 and is given here without a proof.

Lemma 5.1 (WMG and WMR, Littlestone and Warmuth, 1994). Let y be any outcome
(sub)sequence, and 0 < β < 1 be the update factor used while processing the sequence
y. Let MWMG (resp. MWMR) denote the number of mistakes (total loss) suffered by the WMG

(resp. Wmr) variant of VPREDICT when applied with a pool of N experts. Let Wstart and
Wend denote the sum of expert weights before and after processing y, respectively, and let
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m∗ be the number of mistakes incurred by the best expert over the sequence y. Then,

MWMG ≤
ln Wstart

Wend

ln 2
1+β

≤
ln N + m∗ · ln 1

β

ln 2
1+β

;

E[MWMR] ≤
E

[
ln Wstart

Wend

]
1 − β

≤
ln N + E[m∗] · ln 1

β

1 − β
.

Using Lemma 5.1 we can easily bound the loss incurred by WMVP during each phase.
Denote by LWMG

WMVP(·) (resp. LWMR
WMVP(·)) the loss suffered by WMVP when applied with the

WMG (resp. Wmr) variant of VPREDICT.

Lemma 5.2 (Phase loss). For any phase i and any 0 ≤ βi ≤ 1,

LWMR
WMVP(yi ) ≤ (ln W ′

i−1 − ln Wi )

1 − β

LWMG
WMVP(yi ) ≤ (ln W ′

i−1 − ln Wi )

ln 2
1+β

.

Proof: By definition of the W ′
i−1 and Wi (see Section 4),

Bi (ln W ′
i−1 − ln Wi ) = Bi

(
ln

N∑
j=1

w j,ti−1 ·
(

βi

βi−1

)L j,ti−1 −Ti−1

− ln
N∑

j=1

w j,ti

)

= Bi ln

∑N
j=1 w j,ti−1 · (

βi

βi−1

)Li,ti−1 −Ti−1∑N
j=1 w j,ti

,

where Bi = 1
1−βi

for the Wmr variant, and Bi = 1
ln 2

1+βi

for the WMG variant. The proof

is completed by applying Lemma 5.1, with the appropriate bounds for WMG and Wmr,
respectively.

The following lemma bounds the loss of the 0/1-loss variants of the WMVP with respect
to a finite outcome sequence. This lemma is analogous to Lemma 4.4.

Lemma 5.3 (Finite sequence 0/1-loss). For any outcome sequence y and expert responses,

L0/1
W MVP(y) < ln N ·

(
Bk +

k−1∑
i=1

(
Bi − ln βi+1

ln βi
· Bi+1

))

−
k∑

i=1

Biτi ln βi − z · (Bk ln βk),
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where k is the consequent number of phases, 0 ≤ z ≤ τk is the loss incurred by the best
expert during the last phase, and Bi = 1

ln 2
1+βi

in the case where WMVP is applied with the

WMG variant of VPREDICT, and Bi = 1
1−β

in the case of the Wmr variant.

Proof: The proof closely follows the proof of Lemma 4.4. We only specify the changes.
In the 0/1-loss case we can assume, without loss of generality, that the thresholds Ti are
natural numbers. Otherwise, we can take instead T ′

i = �Ti without changing the behavior
of the algorithm. Thus, the first change is that now

W min
k = β z

k

k−1∏
l=1

β
τi
i , (31)

instead of (23). This affects (and simplifies) inequality (24) which is now

Bk
(

ln W max
k−1 − ln W max

k

) ≤ Bk ln N − Bk ln βk z.

Consequently, we have the following bound on J1

J1≤−
k−1∑
i=1

Biτi ln βi + Bk(ln N − ln βkτk) = Bk ln N−
k−1∑
i=1

Biτi ln βi − Bk · z ln βk,

instead of the previous bound of Eq. (25).
The updated expression for W min

k (31) also affects the bound on γi (Eq. (26)), which now
becomes γi > 1

N . Consequently, we have

J2 <

k−1∑
i=1

ln
1

N

(
Bi+1

ln βi+1

ln βi
− Bi

)
= ln N

k−1∑
i=1

(
Bi − Bi+1

ln βi+1

ln βi

)
,

which completes the proof.

Remark. Notice that the overall difference between the statements of Lemmas 4.4 and 5.3
is the additional − ln β1 B1 term (in the bound of Lemma 4.4) and the definitions of βi and
Bi .

For the 0/1 loss variant of WMVP, applied with the Wmr prediction routine, we have the
following theorem.

Theorem 5.1. Let T1, T2, . . . be any sequence of thresholds satisfying Ti+1 = αTi where
α > 1. Then, as L∗, the expected loss of the best expert increases,

LWMR
WMVP − L∗ <

(
α + √

α + 1√
2α

+ o(1)

)
·
√

ln N · L∗.
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Proof: The proof very closely follows the proof of Theorem 4.1. The only differences
are the bound on the limit of the term I3, and the derivations of the limits of I1, I2 and I3,
which now depend on a different definition of βi (and Bi ). By Lemma 5.3.

LWMR
WMVP(y) < ln N ·

(
Bk +

k−1∑
i=1

(
Bi − ln βi+1

ln βi
· Bi+1

))

−
k−1∑
i=1

Biτi ln βi − z · (Bk ln βk)

We substitute Tk−1 + z for L∗, and let

uk(z) = ln N ·
(

Bk +
k−1∑
i=1

(
Bi − ln βi+1

ln βi
· Bi+1

))
−

k−1∑
i=1

Biτi ln βi − z · (Bk ln βk);

Ck(z) = uk(z) − (Tk−1 + z)√
(Tk−1 + z) ln N

.

To prove the theorem we need to show that

sup
z

lim
k→∞

Ck(z) ≤ α + √
α + 1√

2α
.

We write Ck(z) = I1 + I2 + I3, where

I1 =
√

ln N · Bk√
Tk−1 + z

;

I2 =
√

ln N · ∑k−1
i=1

(
Bi − ln βi+1

ln βi
· Bi+1

)
√

Tk−1 + z
;

I3 = − ∑k−1
i=1 τi · (ln βi Bi + 1) − z · (ln βk Bk + 1)√

(Tk−1 + z) · ln N
.

By Lemma A.3 (appearing in the appendix)

I1 ≤
√

α√
2

;

I2 = 0;

I3 ≤ 1√
2

(
1 + 1√

α

)
.

To conclude, when using Wmr, we have

sup
z

lim
k→∞

Ck(z) ≤
√

α√
2

+ 1√
2

(
1 + 1√

α

)
=

(
α + √

α + 1√
2α

+ o(1)

)
·
√

ln N · L∗.
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Remark. When using the WMG version of VPREDICT we cannot obtain a finite asymptotic
canonic bound on the regret. Specifically, it can be shown that I3 → ∞.

A result analogous to Corollary 4.1 also holds in the 0/1 loss case.

Corollary 5.1. Let ε > 0 be given. Then, the 0/1 loss variant of algorithm WMVP,

applied with WMR, can be operated such that its asymptotic regret (for sufficiently large
L∗) is bounded above as

LWMVP − L∗ <

(
3√
2

+ ε

)
·
√

ln N L∗.

6. Concluding remarks

We would like to point out a number of open questions. Clearly, one of the most important
goals in this line of research is to determine a tight bound on expert advice algorithms
for both the 0/1 and absolute loss. While such bounds are known for other loss functions
such as square loss and log-loss, these two loss functions remain hard to crack. Of course,
such tight bounds for finite sequences is the main challenge, but even tight asymptotic
bounds would be challenging and perhaps revealing. The bounds of Lemma 4 (absolute
loss case) and Lemma 8 (0/1 loss) provide non-asymptotic finite sequence regret bounds
for WMVP. However, these bounds are of quite complex form. It would be interesting to
derive non-asymptotic, finite sequence regret canonical bounds for WMVP.

The asymptotic bounds we prove for WMVP are based on “geometric” threshold se-
quences. Nevertheless, based on the asymptotic regret analysis we see that the WMVP

algorithms minimize the asymptotic regret when α → 1 and therefore, they have a much
simpler form (they perform expert weight updates after every increase in the loss of the best
expert; see Corollary 4.1). It would be interesting to derive direct bounds for these simpler
types of WMVP algorithms.

One of the more basic open questions in computational learning theory is how to decom-
pose multi-class classification problems into an equivalent collection of binary problems.
Such decompositions allow for using strong discriminant binary classifiers (such as Sup-
port Vector Machines) to solve multi-class problems. This problem is also interesting in
the context of online learning: Consider 0/1 loss algorithms for finite alphabet predictions
which work by operating binary algorithms (or even absolute loss algorithms). Is it possi-
ble to obtain for these algorithms regret bounds which are better than our 0/1 loss regret
bound?

Appendix A: Some proofs

A.1. Proof of Lemma 4.2

The following proof is by Cesa-Bianchi et al. (1997).
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Proof: We show that for 1 ≤ t ≤ �,

|ŷt − yt | ≤ ln

( ∑N
j=1 w j,t∑N

j=1 w j,t+1

) /
2 ln

2

1 + β
. (32)

The lemma then follows by summing the above inequality for all choices of t . By the update
rule and the choice of Uβ(·) (Eq. (9)) we have,

ln

( ∑N
j=1 w j,t∑N

j=1 w j,t+1

)
= − ln

(∑N
j=1 w j,tUβ(|ξ j,t − yt |)∑N

j=1 w j,t

)

≥ − ln

(∑N
j=1 w j,t (1 − (1 − β)|ξ j,t − yt |)∑N

j=1 w j,t

)
.

By writing the numerator of the right hand side as

N∑
j=1

w j,t − (1 − β)

∣∣∣∣∣
N∑

j=1

w j,tξ j,t − yt

N∑
j=1

w j,t

∣∣∣∣∣ ,
we get that

− ln

(∑N
j=1 w j,t (1 − (1 − β)|ξ j,t − yt |)∑N

j=1 w j,t

)
= − ln (1 − (1 − β) |rt − yt |) .

Noting that y ∈ {0, 1}, we have the following two cases: (i) yt = 0, in which case ŷt ≤
− ln(1−(1−β)rt ))

2 ln 2
1+β

; and (ii) yt = 1, in which case 1 − ŷt ≤ − ln(1−(1−β)(1−rt )
2 ln 2

1+β

= − ln(β+rt −βrt )
2 ln 2

1+β

.

Therefore,

|ŷt − yt | ≤ − ln(1 − (1 − β)|rt − yt |)
2 ln 2

1+β

,

and Eq. (32) holds.

A.2. Lemma A.1

Lemma A.1. Let χ be the solution of

Wi =
N∑

j=1

i∏
k=1

β
τk
k β

L j −Ti

i = N ·
i∏

k=1

β
τk
k β

χ

i , (33)
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and let χ ′ be the solution of

W ′
i =

N∑
j=1

i∏
k=1

β
τk
k β

L j −Ti

i+1 = N ·
i∏

k=1

β
τk
k β

χ ′
i+1. (34)

Then, given that βi < βi+1 < 1, χ ′ ≥ χ .

Proof: From the equations N · β
χ

i = ∑N
j=1 β

m j

i and N · β
χ ′
i+1 = ∑N

j=1 β
m j

i+1, we get

χ = ln
∑N

j=1 β
m j

N

ln βi
= ln N − ln

∑N
j=1 β

m j

i

ln 1
βi

,

χ ′ = ln N − ln
∑N

j=1 β
m j

i+1

ln 1
βi+1

.

Consider the function

y(x) = ln N − ln
∑N

j=1 xm j

ln 1
x

.

Clearly, χ = y(βi ) and χ ′ = y(βi+1). To complete the proof it is thus sufficient to show
that y is monotone non-decreasing in the interval [0, 1]. The derivative of y is

y′(x) =
−

∑N
j=1 m j ·xm j −1∑N

j=1 xm j
· ln 1

x + 1
x · (

ln N − ln
∑N

j=1 xm j
)

ln2 1
x

=
1
x ·

(∑N
j=1 m j ·xm j∑N

j=1 xm j
· ln x + ln N − ln

∑N
j=1 xm j

)
ln2 1

x

. (35)

Denote by B the numerator of (35),

B =
∑N

j=1 m j · xm j∑N
j=1 xm j

· ln x + ln N − ln
N∑

j=1

xm j .

Let u j = xm j and let p j = u j/(u1 + · · · + uN ). Then

B =
∑

j

p j ln u j − ln
∑

j

u j + ln N

=
∑

j

p j ln p j + ln N

= −H(p) + ln N ≥ 0
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where H(·) is the Shannon entropy. The last inequality holds since the entropy of a discrete
random variable is at most the logarithm of the size of its range. Since B is non negative
we get that y′(x) ≥ 0.

A.3. Lemma A.2 (Applied in Theorem 4.1)

Lemma A.2.

lim
k→∞

I1 ≤ √
α/2;

lim
k→∞

I2 = 0;

lim
k→∞

I3 ≤
√

α + 1

2
√

2α
.

Remark. Throughout the limit calculations in this appendix, we use without special men-
tion the following elementary result: Let f (x) be a real-valued function. If an = f (n) for
every natural n, and limx→∞ f (x) = L , then limn→∞ an = L .

Proof: Recall that

I1 = ln N · Bk√
(Tk−1 + z) · ln N

=
√

ln N · Bk√
(Tk−1 + z)

;

I2 =
ln N · ∑k−1

i=1

(
Bi − ln βi+1

ln βi
· Bi+1

)
√

(Tk−1 + z) · ln N
=

√
ln N · ∑k−1

i=1

(
Bi − ln βi+1

ln βi
· Bi+1

)
√

(Tk−1 + z)
;

I3 = − ∑k−1
i=1 τi · (ln βi Bi + 1) − z · (ln βk Bk + 1)√

(Tk−1 + z) · ln N
.

The case of I3. Noting that T0 = 0 we represent the denominator of I3 as a summation√
(Tk−1 + z) ln N

=
k−1∑
i=1

(
√

Ti ln N −
√

Ti−1 ln N ) +
√

(Tk−1 + z) ln N −
√

Tk−1 ln N .

Thus,

I3 = − ∑k−1
i=1 τi · (ln βi Bi + 1) − z · (ln βk Bk + 1)

ln N
∑k−1

i=1 (
√

Ti − √
Ti−1) + √

(Tk−1 + z) ln N − √
Tk−1 ln N

.

Define

J1 = − ∑k−1
i=1 τi · (ln βi Bi + 1)

ln N
∑k−1

i=1 (
√

Ti − √
Ti−1)

;

J2 = −z · (ln βk Bk + 1)√
(Tk−1 + z) ln N − √

Tk−1 ln N
.
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To prove that lim I3 ≤
√

α+1
2
√

2α
, it is sufficient to prove that the limits of both J1 and J2

are bounded above by
√

α+1
2
√

2α
.13 We start with J1 and calculate the limit of the ratio of J1’s

numerator’s summand to its denominator’s summand,

lim
Ti →∞

−τi · (ln βi · Bi + 1)√
Ti ln N − √

Ti−1 ln N
. (36)

If (36) approaches
√

α+1
2
√

2·α , then also J1 approaches this constant.14 Expanding βi = 1/(1 +√
2 ln N

Ti
) and abbreviating A = √

Ti and B = √
2 ln N , we have

βi = 1

1 + B/A
= A

A + B
; (37)

Bi = 1

/ (
2 ln

2

1 + βi

)
= 1

/ (
2 ln

2

1 + 1
1+B/A

)
= 1

2 ln 2(A+B)
2A+B

. (38)

Using the identities τi = Ti −Ti−1 = Ti − Ti
α

= A2 · (1− 1
α

), and
√

Ti −
√

Ti−1 = A− A√
α

=
A · (1 − 1√

α
), we have

(36) = lim
A→∞

−τi ·
(

ln A
A+B

2 ln 2(A+B)
2A+B

+ 1

)
B√
2

· (
√

Ti − √
Ti−1)

= lim
A→∞

(1 − 1
a ) · A2

B√
2

· (
1 − 1√

a

) · A

(
− ln A

A+B

2 ln 2(A+B)
2A+B

− 1

)
=

√
α + 1

2
√

2α
, (39)

where (39) can be established using L’Hospital’s rule. To deal with J2 we introduce the
abbreviation A′ = √

Tk . Recalling the abbreviation B = √
2 ln N , and observing that

Tk−1 = Tk
α

= A′2
α

, we can therefore write (as in (37) and (38)),

βk = A′

A′ + B
(40)

Bk = 1/2 ln
2(A′ + B)

2A′ + B
. (41)

Define x to be the solution of A′x = √
Tk−1 + z. Thus, A′x =

√
A′2
α

+ z. Clearly, x is

minimized when z = 0 and therefore, x ≥
√

A′2
α

/A′ = 1/
√

α. On the other hand, x is
maximized when z = τk and therefore x ≤ 1. Overall we have 1√

α
≤ x ≤ 1.15 Noting that

z = A′2x2 − Tk−1 = A′2
(

x2 − 1

α

)
,
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we have

lim
k→∞

−z · (ln βk · Bk + 1)√
Tk−1 + z) ln N − √

Tk−1 ln N

= lim
A′→∞

−z ·
(

ln A′
A′+B

2 ln 2(A′+B)
2A′+B

+ 1

)
B√
2

· (
√

Tk−1 + z − √
Tk−1)

= lim
A′→∞

(
x2 − 1

α

) · A′2
B√
2

· (
x − 1√

α

) · A′

(
− ln A′

A′+B

2 ln 2(A′+B)
2A′+B

− 1

)

≤
√

α + 1

2
√

2α
, (42)

where inequality (42) follows from

(
x2 − 1

α

) · A′2
B√
2

· (
x − 1√

α

) · A′ =
√

2

B
·
(

x + 1√
α

)
A′ ≤

√
2

B
·
(

1 + 1√
α

)
A′.

We can therefore conclude that limk→∞ J2 ≤
√

α+1
2
√

2·α , and therefore the limit of I3 is also
bounded above by this limit, as claimed.

The case of I1. We need to show that limk→∞ I1 ≤ √
α/

√
2. Using the above abbrevia-

tions we write I1 as follows

I1 =
√

ln N Bk√
Tk−1 + z

= B√
2

1/
(

2 ln 2(A′+B)
2A′+B

)
A′x

.

Thus, using L’Hospital’s rule,

lim
k→∞

I1 = 1

x
lim

A′→∞
B√
2

·
1
A′

2 ln 2(A′+B)
2A′+B

= 1

x
lim

A′→∞
B√
2

· − 1
A′2

2 · − 2B
2(A′+B)(2A′+B)

= 1

x
√

2
.

Noting that x ≥ 1/
√

α we get that lim I1 ≤ √
α/2.

The case of I2. Write the summand in the numerator of I2 as

Bi − ln βi+1

ln βi
Bi+1 = Bi · ln βi − Bi+1 · ln βi+1

ln βi
.
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Using the identities (37), (38), βi+1 = 1/(1 +
√

2 ln N
Ti+1

), and Ti+1 = αTi = αA2, we have

βi+1 = A
√

α

A
√

α + B
;

Bi+1 = 1/2 ln
2

1 + A
√

α

A
√

α+B

,

Using L’Hospital’s rule it is not hard to see that

lim
βi →1

Bi · ln βi − Bi+1 · ln βi+1

ln βi
= lim

A→∞

ln A
A+B

2 ln 2(A+B)
2A+B

− ln A
√

α

A
√

α+B

2 ln 2(A
√

α+B)
2A

√
α+B

ln A
A+B

= 1

4

(
1 − 1√

α

)
.

Since the limit of the numerator’s summand is a constant while the denominator’s sum-
mand diverges with A, the limit of the ratio is 0. That is, I2 → 0.

A.4. Lemma A.3 (Applied in Theorem 5.1)

Lemma A.3.

lim
k→∞

I1 ≤
√

α/2;

lim
k→∞

I2 = 0;

lim
k→∞

I3 ≤
√

α + √
2√

2α
.

Proof: The proof is similar to the proof of Lemma A.2 (the differences are entailed by
the different definition of Bi used in the 0/1 loss case). Recall that

I1 = ln N · Bk√
Tk−1 · ln N

=
√

ln N · Bk√
Tk−1 + z

; (43)

I2 =
ln N · ∑k−1

i=1

(
Bi − ln βi+1

ln βi
· Bi+1

)
√

Tk−1 · ln N
=

√
ln N · ∑k−1

i=1

(
Bi − ln βi+1

ln βi
· Bi+1

)
√

Tk−1 + z
; (44)

I3 = − ∑k−1
i=1 τi · (ln βi Bi + 1) − z · (ln βk Bk + 1)√

(Tk−1 + z) · ln N
. (45)

The case of I3. Noting that T0 = 0 we represent the denominator as a summation

√
(Tk−1 + z) ln N

=
k−1∑
i=1

(
√

Ti ln N −
√

Ti−1 ln N ) +
√

(Tk−1 + z) ln N −
√

Tk−1 ln N .
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Thus,

I3 = − ∑k−1
i=1 τi · (ln βi Bi + 1) − z · (ln βk Bk + 1)

ln N
∑k−1

i=1 (
√

Ti − √
Ti−1) + √

(Tk−1 + z) ln N − √
Tk−1 ln N

.

Define

J1 = − ∑k−1
i=1 τi · (ln βi Bi + 1)

ln N
∑k−1

i=1 (
√

Ti − √
Ti−1)

;

J2 = −z · (ln βk Bk + 1)√
(Tk−1 + z) ln N − √

Tk−1 ln N
.

To prove that lim I3 ≤
√

α+1
2
√

2α
, it is sufficient to prove that the limits of both J1 and J2 are

bounded above by
√

α+1√
2α

. We start with J1 and calculate the limit of the ratio of J1’s nu-
merator’s summand to its denominator’s summand,

lim
Ti →∞

−τi · (ln βi · Bi + 1)√
Ti ln N − √

Ti−1 ln N
. (46)

We show that (46) approaches
√

α+1
2
√·α , which means that J1 also approaches this constant.

Expanding βi = 1/(1 +
√

2 ln N
Ti

) and abbreviating A = √
Ti and B = √

2 · ln N , we have

βi = 1

1 + B/A
= A

A + B
;

Bi = 1

1 − βi
= 1

1 − A
A+B

.

Using the identities τi = Ti −Ti−1 = Ti − Ti
α

= A2 · (1− 1
α

), and
√

Ti −
√

Ti−1 = A− A√
α

=
A · (1 − 1√

α
), we have

(46) = lim
A→∞

−τi · (
ln A

A+B
1

1− A
A+B

+ 1
)

B√
2

· (√
Ti −

√
Ti−1

)

= lim
A→∞

(
1 − 1

α

) · A2

B√
2

· (
1 − 1√

α

) · A


− ln A

A+B
1

1− A
A+B

− 1


 =

√
2

2
·
√

α + 1√
α

, (47)

where (47) can be established using L’Hospital’s rule. To deal with J2 we introduce the
abbreviation A′ = √

Tk . Recalling the abbreviation B = √
2 ln N , and observing that

Tk−1 = Tk
α

= A′2
α

, we can therefore write,

βk = A′

A′ + B
(48)

Bk = 1

1 − A′
A′+B

. (49)
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Define x to be the solution of A′x = √
Tk−1 + z. Thus, A′x =

√
A′2
α

+ z. Clearly, x is

minimized when z = 0 and therefore, x ≥
√

A′2
α

/A′ = 1/
√

α. On the other hand, x is
maximized when z = τk and therefore x ≤ 1. Overall we have 1√

α
≤ x ≤ 1. Noting that

z = A′2x2 − Tk−1 = A′2
(

x2 − 1

α

)
,

we have

lim
k→∞

−z · (ln βk · Bk + 1)√
Tk−1 + z) ln N − √

Tk−1 ln N

= lim
A′→∞

−z ·
(

A′
A′+B

1

1− A′
A′+B

+ 1

)

B√
2

· (
√

Tk−1 + z − √
Tk−1)

= lim
A′→∞

(
x2 − 1

α

) · A′2
B√
2

· (
x − 1√

α

) · A′


−

A′
A′+B

1
1− A′

A′+B

− 1




≤
√

α + 1√
2α

, (50)

where inequality (50) follows from(
x2 − 1

α

) · A′2
B√
2

· (
x − 1√

α

) · A′ =
√

2

B
·
(

x + 1√
α

)
A′ ≤

√
2

B
·
(

1 + 1√
α

)
A′.

We can therefore conclude that limk→∞ J2 ≤
√

α+1√
2·α , and therefore the limit of I3 is also

bounded above by this limit, as claimed.
The case of I1. We need to show that limk→∞ I1 ≤ √

α/
√

2. Using the above abbrevia-
tions we write I1 as follows

I1 =
√

ln N Bk√
Tk−1 + z

= B√
2

1/
(

1 − A′
A′+B

)
A′x

.

Thus, using L’Hospital’s rule,

lim
k→∞

I1 = 1

x
lim

A′→∞
B√
2

·
1
A′
B

A′+B

= 1

x
lim

A′→∞
B√
2

· − 1
A′2

− B
(A′+B)2

= 1

x
√

2
.
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Noting that x ≥ 1/
√

α we get that lim I1 ≤ √
α/2.

The case of I2. Write the summand in the numerator of I2 as

Bi − ln βi+1

ln βi
Bi+1 = Bi · ln βi − Bi+1 · ln βi+1

ln βi
.

Noting that

βi+1 = A
√

α

A
√

α + B
;

Bi+1 = 1

1 − A
√

α

A
√

α+B

,

it is not hard calculate, using L’Hospital’s rule, that

lim
A→∞

Bi · ln βi − Bi+1 · ln βi+1

ln βi
= lim

A→∞

ln A
A+B

1− A
A+B

− ln A
√

α

A
√

α+B

1− A
√

α

A
√

α+B

ln A
A+B

= 1

2

(
1 − 1

α

)
.

Since the limit of the numerator’s summand is constant, and the denominator’s summand
diverges with A, the limit of the ratio is 0. That is, I2 → 0.
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Notes

1. When analyzing randomized expert advice algorithms we assume an “oblivious adversary”, which is oblivious
of the random choices made by the randomized algorithm; see Borodin and El-Yaniv (1998, Chap. 7) for a
more comprehensive discussion on types of adversaries.

2. Although the absolute loss bound is not “(c, η) realizable” (since cL = ∞ for the absolute loss), given the
performance of the best expert (L∗) in advance, the η parameter can be calculated for any given c, such that
the algorithm will never fail.

3. This a is the C coefficient of the “canonical” bound mentioned earlier.
4. In the case of the generic algorithm of Section 2.2 β is determined by e−η .
5. The optimal factor is ≈2.6, when selecting the best coefficients for the algorithm.

6. The non-asymptotic (finite sequence) regret bound of this algorithm is ( φ
3
2

φ−1 + 0.805
√

φ
4a(ln 2)(ln φ) + 0.805

√
φ

2a(ln N )(ln φ) )√
L∗ ln N + (a + 1

2 ln 2 ) ln N , where φ = 1+√
5

2 (the golden ratio), c = φ2 and a ≥ 0 is any real.

7. The finite sequence regret bound of this algorithm is 2
√

2L∗ ln N + 9
2 · ln N · ln(1 + L∗) + 6 ln N + 1.

8. P-NORM algorithms are more generally studied in the context of classification and regression.
9. Randomized algorithms that use a single random choice (at the start) are sometimes called “barely random”

(see e.g. Borodin and El-Yaniv, 1998, Chap. 2). Such algorithms can be viewed as mixed strategies of games
in normal form (rather than behavioral strategies of games in extensive form).
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10. The VPREDICT routine has a slightly more general functionality than is needed here, for the purposes of
RDWM (in particular, VPREDICT receives and returns a trial number, and expert weights and losses). This is
so because VPREDICT is later used by our stronger WMVP algorithm of Section 4, which requires this extra
functionality.

11. Set f (x) = ln x
2 ln 2

1+x
. Then f (x) is monotone increasing, since it is a ratio of a monotone increasing function

and a monotone decreasing function. Now, βi+1 > βi ⇒ ln βi+1

2 ln 2
1+βi+1

>
ln βi

2 ln 2
1+βi

⇒ Bi+1 · ln βi+1 > Bi · ln βi .
Since 0 < βi < βi+1 < 1, we know that Bi+1

ln βi+1
ln βi

< Bi .
12. Also WMG can be applied in the multi-valued alphabet setting, but indirectly. This can be done using “standard”

or more sophisticated decompositions of the problem into a number of binary subproblems.
13. It is easy to see that for non-negative real sequences an , bn , cn and dn , if limn→∞ an

bn
≤ L1 and limn→∞ cn

dn
≤

L2, then limn→∞ an+cn
bn+dn

≤ max{L1, L2}.
14. If {ai } and {bi } are two real sequences satisfying (i) bi > 0 for all i ; limn→∞

∑n
i=1 bi = ∞; and (iii)

limi→∞ ai
bi

= L , then limn→∞
∑n

i=1 ai∑n
i=1 bi

= L .

15. The lower bound on x is later used when analyzing I1.
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