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Abstract. We study the leave-one-out and generalization errors of voting combinations of learning machines.
A special case considered is a variant of bagging. We analyze in detail combinations of kernel machines, such
as support vector machines, and present theoretical estimates of their leave-one-out error. We also derive novel
bounds on the stability of combinations of any classifiers. These bounds can be used to formally show that, for
example, bagging increases the stability of unstable learning machines. We report experiments supporting the
theoretical findings.
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1. Introduction

Studying the generalization performance of ensembles of learning machines has been
the topic of ongoing research in recent years (Breiman, 1996; Schapire et al., 1998;
Friedman, Hastie, & Tibshirani, 1998). There is a lot of experimental work showing that
combining learning machines, for example using boosting or bagging methods (Breiman,
1996; Schapire et al., 1998), very often leads to improved generalization performance. A
number of theoretical explanations have also been proposed (Schapire et al., 1998; Breiman,
1996), but more work on this aspect is still needed.

Two important theoretical tools for studying the generalization performance of learning
machines are the leave-one-out (or cross validation) error of the machines, and the stability
of the machines (Bousquet & Elisseeff, 2002; Boucheron, Lugosi, & Massart, 2000). The
second, although an older tool (Devroye & Wagner, 1979; Devroye, Györfi, & Lugosi,
1996), has become only important recently with the work of Kearns and Ron (1999) and
Bousquet and Elisseeff (2002).

Stability has been discussed extensively also in the work of Breiman (1996). The theory
in Breiman (1996) is that bagging increases performance because it reduces the variance of
the base learning machines, although it does not always increase the bias (Breiman, 1996).
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The definition of the variance in Breiman (1996) is similar in spirit to that of stability we
use in this paper. The key difference is that in Breiman (1996) the variance of a learning
machine is defined in an asymptotic way and is not used to derive any non-asymptotic
bounds on the generalization error of bagging machines, while here we define stability for
finite samples like it is done in Bousquet and Elisseeff (2002) and we also derive such
non-asymptotic bounds. The intuition given by Breiman (1996) gives interesting insights:
the effect of bagging depends on the “stability” of the base classifier. Stability means
here changes in the output of the classifier when the training set is perturbed. If the base
classifiers are stable, then bagging is not expected to decrease the generalization error. On
the other hand, if the base classifier is unstable, such as often occurs with decision trees,
the generalization performance is supposed to increase with bagging. Despite experimental
evidence, the insights in Breiman (1996) had not been supported by a general theory linking
stability to the generalization error of bagging, which is what Section 5 below is about.

In this paper we study the generalization performance of ensembles of kernel machines
using both leave-one-out and stability arguments. We consider the general case where each
of the machines in the ensemble uses a different kernel and different subsets of the training
set. The ensemble is a convex combination of the individual machines. A particular case of
this scheme is that of bagging kernel machines. Unlike “standard” bagging (Breiman, 1996),
this paper considers combinations of the real outputs of the classifiers, and each machine is
trained on a different and small subset of the initial training set chosen by randomly subsam-
pling from the initial training set. Each machine in the ensemble uses in general a different
kernel. As a special case, appropriate choices of these kernels lead to machines that may use
different subsets of the initial input features, or different input representations in general.

We derive theoretical bounds for the generalization error of the ensembles based on
a leave-one-out error estimate. We also present results on the stability of combinations of
classifiers, which we apply to the case of bagging kernel machines. They can also be applied
to bagging learning machines other than kernel machines, showing formally that bagging
can increase the stability of the learning machines when these are not stable, and decrease it
otherwise. An implication of this result is that it can be easier to control the generalization
error of bagging machines. For example the leave one out error is a better estimate of their
test error, something that we experimentally observe.

The paper is organized as follows. Section 2 gives the basic notation and background.
In Section 3 we present bounds for a leave-one-out error of kernel machine ensembles.
These bounds are used for model selection experiments in Section 4. In Section 5 we
discuss the algorithmic stability of ensembles, and present a formal analysis of how bagging
influences the stability of learning machines. The results can also provide a justification
of the experimental findings of Section 4. Section 6 discusses other ways of combining
learning machines.

2. Background and notations

In this section we recall the main features of kernel machines. For a more detailed account
(see Vapnik, 1998; Schölkopf, Burges, & Smola, 1998; Evgeniou, Pontil, & Poggio, 2000).
For an account consistent with our notation (see Evgeniou, Pontil, & Poggio, 2000).
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Kernel machine classifiers are the minimizers of functionals of the form:

H [ f ] = 1

�

�∑
i=1

V (yi , f (xi )) + λ‖ f ‖2
K , (1)

where we use the following notation:

– Let X ⊂ R
n be the input set, the pairs (xi , yi ) ∈ X × {−1, 1}, i = 1, . . . , � are sampled

independently and identically according to an unknown probability distribution P(x, y).
The set D� = {(x1, y1), . . . , (x�, y�)} is the training set.

– f is a function R
n → R belonging to a Reproducing Kernel Hilbert Space (RKHS) H

defined by kernel K , and ‖ f ‖2
K is the norm of f in this space. See Vapnik (1998) and

Wahba (1990) for a number of kernels. The classification is done by taking the sign of
this function.

– V (y, f (x)) is the loss function. The choice of this function determines different learning
techniques, each leading to a different learning algorithm (for computing the coefficients
αi —see below).

– λ is called the regularization parameter and is a positive constant.

Machines of this form have been motivated in the framework of statistical learning theory.
Under rather general conditions (Evgeniou, Pontil, & Poggio, 2000) the solution of Eq. (1)
is of the form

f (x) =
�∑

i=1

αi yi K (xi , x). (2)

The coefficients αi in Eq. (2) are learned by solving the following optimization problem:

max
α

H (α) =
�∑

i=1

S(αi ) − 1

2

�∑
i, j=1

αiα j yi y j K (xi , x j )

subject to: 0 ≤ αi ≤ C, i = 1, . . . , �, (3)

where S(·) is a continuous and concave function (strictly concave if matrix K (xi , x j ) is not
strictly positive definite) and C = 1

2�λ
a constant. Thus, H (α) is strictly concave and the

above optimization problem has a unique solution.
Support Vector Machines (SVMs) are a particular case of these machines for S(α) = α.

This corresponds to a loss function V in (1) that is of the form θ (1 − y f (x))(1 − y f (x)),
where θ is the Heavyside function: θ (x) = 1 if x > 0, and zero otherwise. The points
for which αi > 0 are called support vectors. Notice that the bias term (threshold b in the
general case of machines f (x) = ∑�

i=1 αi K (xi , x) + b) is incorporated in the kernel K ,
and it is therefore also regularized. Notice also that function S(·) in (3) can take general
forms—leading to machines other than SVM—but in the general case the optimization of
(3) may be computationally inefficient.
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2.1. Kernel machine ensembles

Given a learning algorithm—such as a SVM or an ensemble of SVMs—we define fD�
to

be the solution of the algorithm when the training set D� = {(xi , yi ), i = 1, . . . , �} is
used. We denote by Di

� the training set obtained by removing point (xi , yi ) from D�, that
is the set D� \ {(xi , yi )}. When it is clear in the text we will denote fD�

by f and fDi
�

by fi .
We consider the general case where each of the machines in the ensemble uses a different

kernel and different subsets Dr,t of the training set D� where r refers to the size of the subset
and t = 1, . . . , T to the machine that uses it to learn. Let fDr,t (x) be the optimal solution of
machine t using a kernel K (t). We denote by α

(t)
i the optimal weight that machine t assigns

to point (xi , yi ) (after solving – optimizing – problem (3)). We consider ensembles that are
convex combinations of the individual machines. The decision function of the ensemble is
given by

Fr,T (x) =
T∑

t=1

ct fDr,t (x) (4)

with ct ≥ 0, and
∑T

t=1 ct = 1 (for scaling reasons). The coefficients ct are not learned
and all parameters (C’s and kernels) are fixed before training. The classification is done by
taking the sign of Fr,T (x). Below for simplicity we will note with capital F the combination
Fr,T . In Section 5 we will consider only the case that ct = 1

T for simplicity.
In the following, the sets Dr,t will be identically sampled according to the uniform

distribution and without replacement from the training set D�. We will denote by EDr ∼D�
the

expectation with respect to the subsampling from D� according to the uniform distribution
(without replacement), and sometimes we write fDr,t ∼D�

rather than fDr,t to make clear which
training set has been used during learning. The letter r will always refer to the number of
elements in Dr,t .

2.2. Leave-one-out error

If θ is, as before, the Heavyside function, then the leave-one-out error of f on D� is defined by

LooD�
( f ) = 1

�

�∑
i=1

θ (−yi fi (xi )) (5)

Notice that for simplicity there is a small abuse of notation here, since the leave-one-out
error typically refers to a learning method while here we use the solution f in the notation.
The leave-one-out error provides an estimate of the average generalization performance
of a machine. It is known that the expectation of the generalization error of a machine
trained using � points is equal to the expectation of the Loo error of a machine trained on
� + 1 points. This is summarized by the following theorem, originally due to Luntz and
Brailovsky (see Vapnik, 1998).
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Table 1. Notation.

f Real valued prediction rule of one learning machine, f : X → R

V ( f, y) Loss function

P(x, y) Probability distribution underlining the data

D� Set of i.i.d examples sampled from P(x, y), D� = {(xi , yi ) ∈ X × {−1, 1}}�i=1

Di
� The set D�\{(xi , yi )}

fD�
Learning machine (e.g. SVM) trained on D�. Also noted as f

LooD�
( f ) Leave-one-out error of f on the data set D�

πδ(x) Soft margin loss, πδ(x) = 0, if x < −δ, 1 if x > 0, and x
δ

if −δ ≤ x ≤ 0

Looδ,D�
( f ) Leave one out error with soft margin πδ

β� Uniform stability of f

Dr,t or Dr,t ∼ D� Set of r points sampled uniformly from D� used by machine t , t = 1, . . . , T

Dr ∼ D� Set of r points sampled uniformly from D�

(Dr,t ∼ D�)i “Original” Dr,t with point (xi , yi ) removed

Fr,T , or just F Ensemble of T machines, Fr,T = ∑T
t=1 ct fDr,t

F̂ Expected combination of machines EDr ∼D�
[ fDr ]

DLooD�
(F) Deterministic leave one out error

DLooδ,D�
(F) Deterministic leave one out error with soft margin πδ

Theorem 2.1. Suppose fD�
is the outcome of a deterministic learning algorithm. Then

ED�

[
E(x,y)

[
θ
( − y fD�

(x)
)]] = ED�+1

[
LooD�+1

(
fD�+1

)]
As observed (Kearns & Ron, 1999), this theorem can be extended to general learning
algorithms by adding a randomizing preprocessing step. The way the leave-one-out error is
computed can however be different depending on the randomness. Consider the previous
ensemble of kernel machines (4). The data sets Dr,t , t = 1, . . . , T are drawn randomly from
the training set D�. We can then compute a leave-one-out estimate for example in either of
the following ways:

1. For i = 1, . . . , �, remove (xi , yi ) from D� and sample new data sets Dr,t , t = 1, . . . , T
from Di

�. Compute the fDr,t ∼Di
�

and average then the error of the resulting ensemble
machine computed on (xi , yi ). This leads to the classical definition of leave-one-out
error and can be computed as:

LooD�
(F) = 1

�

�∑
i=1

θ

(
−yi

1

T

T∑
t=1

fDr,t ∼Di
�
(xi )

)
(6)

2. For i = 1, . . . , �, remove (xi , yi ) from each Dr,t ∼ D�. Compute the f(Dr,t ∼D�)i and
average the error of the resulting ensemble machine computed on (xi , yi ). Note that we
have used the notation (Dr,t ∼ D�)i to denote the set Dr,t ∼ D� where (xi , yi ) has been
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removed. This leads to what we will call a deterministic version of the leave-one-out
error, in short det-leave-one-out, or DLoo:

DLooD�
(F) = 1

�

�∑
i=1

θ

(
−yi

1

T

T∑
t=1

f(Dr,t ∼D�)i (xi )

)
(7)

Note that the first computation requires to re-sample new data sets for each “leave-one-out
round”, while the second computation uses the same subsample data sets for each “leave-
one-out round” removing at most one point from each of them. In a sense, the det-leave-one-
out error is then more “deterministic” than the classical computation (6). In this paper, we
will consider mainly the det-leave-one-out error for which we will derive easy-to-compute
bounds and from which we will bound the generalization error of ensemble machines.
Finally notice that the size of the subsampling is implicit in the notation DLooD�

(F): r is
fixed in this paper so there is no need to complicate the notation further.

3. Leave-one-out error estimates of kernel machine ensembles

We begin with some known results about the leave-one-out error of kernel machines. The
following theorem is from Jaakkola and Haussler (1998):

Theorem 3.1. The leave-one-out error of a kernel machine (3) is upper bounded as:

LooD�
( f ) ≤ 1

�

�∑
i=1

θ
(
αi K (xi , xi ) − yi fD�

(xi )
)

(8)

where fD�
is the optimal function found by solving problem (3) on the whole training set.

In the particular case of SVMs where the data are separable the r.h.s of Eq. (8) can be
bounded by geometric quantities, namely Vapnik (1998):

LooD�
( f ) ≤ 1

�

�∑
i=1

θ
(
αi K (xi , xi ) − yi fD�

(xi )
) ≤ 1

�

d2
sv

ρ2
(9)

where dsv is the radius of the smallest sphere in the feature space induced by kernel K
(Wahba, 1990; Vapnik, 1998) centered at the origin containing the support vectors, that is
dsv = maxi :αi >0 K (xi , xi ), and ρ is the margin (ρ2 = 1

‖ f ‖2
K

) of the SVM.
Using this result, the next theorem is a direct application of Theorem 2.1:

Theorem 3.2. Suppose that the data is separable by the SVM. Then, the average gener-
alization error of a SVM trained on � points is upper bounded by

1

� + 1
ED�

(
d2

sv(�)

ρ2(�)

)
,
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where the expectation E is taken with respect to the probability of a training set D� of
size �.

Notice that this result shows that the performance of the SVM does not depend only on
the margin, but also on other geometric quantities, namely the radius dsv .

We now extend these results to the case of ensembles of kernel machines. In the particular
case of bagging, the subsampling of the training data should be deterministic. By this we
mean that when the bounds on the leave one out error are used for model (parameter)
selection, for each model the same subsample sets of the data need to be used. These
subsamples, however, are still random ones. We believe that the results presented below
also hold (with minor modifications) in the general case that the subsampling is always
random. We now consider the det-leave-one-out error of such ensembles.

Theorem 3.3. The det-leave-one-out error of a kernel machine ensemble is upper bounded
by:

DLooD�
(F) ≤ 1

�

�∑
i=1

θ

(
T∑

t=1

ctα
(t)
i K (t)(xi , xi ) − yi F(xi )

)
. (10)

The proof of this Theorem is based on the following lemma shown in Vapnik (1998) and
Jaakkola and Haussler (1998):

Lemma 3.1. Let αi be the coefficient of the solution f (x) of machine (3) corresponding
to point (xi , yi ), αi > 0. Let fi (x) be the solution of machine (3) found when the data point
(xi , yi ) is removed from the training set. Then yi fi (xi ) ≥ yi f (xi ) − αi K (xi , xi ).

Using Lemma 3.1 we can now prove Theorem 3.3.

Proof of Theorem 3.3: Let Fi (x) = ∑T
t=1 ct f (t)

i (x) be the ensemble machine trained with
all initial training data except (xi , yi ) (subsets Dr,t are the “original” ones—only (xi , yi ) is
removed from them). Lemma 3.1 gives that

yi Fi (xi ) = yi

T∑
t=1

ct f (t)
i (xi ) ≥

T∑
t=1

ct
[
yi f (t)(xi ) − α

(t)
i K (t)(xi , xi )

]

= yi F(xi ) −
T∑

t=1

ctα
(t)
i K (t)(xi , xi )

from which it follows that:

θ (−yi Fi (xi )) ≤ θ

(
T∑

t=1

ctα
(t)
i K (t)(xi , xi ) − yi F(xi )

)
.



78 T. EVGENIOU, M. PONTIL AND A. ELISSEEFF

Therefore the leave one out error
∑�

i=1 θ (−yi Fi (xi )) is not more than

�∑
i=1

θ

(
T∑

t=1

ctα
(t)
i K (t)(xi , xi ) − yi F(xi )

)
,

which proves the Theorem. �

Notice that the bound has the same form as the bound in Eq. (8): for each point (xi , yi )
we only need to take into account its corresponding parameter α

(t)
i and “remove” the effects

of α
(t)
i from the value of F(xi ).

The det-leave-one-out error can also be bounded using geometric quantities. To this
purpose we introduce one more parameter that we call the ensemble margin (in contrast
to the margin of a single SVM). For each point (xi , yi ) we define its ensemble margin
to be yi F(xi ). This is exactly the definition of margin in Schapire et al. (1998). For
any given δ > 0 we define Errδ to be the empirical error with ensemble margin less
than δ,

Errδ(F) = 1

�

�∑
i=1

θ (−yi F(xi ) + δ).

and by Nδ the set of the remaining training points—the ones with ensemble margin ≥δ.
Finally, we note by dt(δ) the radius of the smallest sphere in the feature space induced by
kernel K (t) centered at the origin which contains the points of machine t with α

(t)
i > 0 and

ensemble margin larger than δ.1

Corollary 3.1. For any δ > 0 the det-leave-one-out error of a kernel machine ensemble
is upper bounded by:

DLooD�
(F) ≤ Errδ(F) + 1

�

(
1

δ

T∑
t=1

ct d
2
t(δ)

( ∑
i∈Nδ

α
(t)
i

))
(11)

Proof: For each training point (xi , yi ) with ensemble margin yi F(xi ) < δ we upper bound
θ (

∑T
t=1 ctα

(t)
i K (t)(xi , xi )− yi F(xi )) with 1 (this is a trivial bound). For the remaining points

(the points in Nδ) we show that:

θ

(
T∑

t=1

ctα
(t)
i K (t)(xi , xi ) − yi F(xi )

)
≤ 1

δ

T∑
t=1

ctα
(t)
i K (t)(xi , xi ). (12)
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In the case that
∑T

t=1 ctα
(t)
i K (t)(xi , xi ) − yi F(xi ) < 0, Eq. (12) is trivially satisfied. If∑T

t=1 ctα
(t)
i K (t)(xi , xi ) − yi F(xi ) ≥ 0, then

θ

(
T∑

t=1

ctα
(t)
i K (t)(xi , xi ) − yi F(xi )

)
= 1,

while

T∑
t=1

ctα
(t)
i K (t)(xi , xi ) ≥ yi F(xi ) ≥ δ ⇒ 1

δ

T∑
t=1

ctα
(t)
i K (t)(xi , xi ) ≥ 1.

So in both cases inequality (12) holds. Therefore:

�∑
i=1

θ

(
T∑

t=1

ctα
(t)
i K (t)(xi , xi ) − yi F(xi )

)
≤ �Errδ + 1

δ

∑
i∈Nδ

T∑
t=1

ct K (t)(xi , xi )α
(t)
i

≤ �Errδ + 1

δ

T∑
t=1

ct d
2
t(δ)

( ∑
i∈Nδ

α
(t)
i

)
.

The statement of the corollary follows by applying Theorem 3.3. �

Notice that Eq. (11) holds for any δ > 0, so the best bound is obtained for the minimum of
the right hand side with respect to δ > 0. Using Theorem 2.1, Theorems 3.3 and 3.1 provide
bounds on the average generalization performance of general kernel machines ensembles
like that of Theorem 3.2.

We now consider the particular case of SVM ensembles. In this case we have the following

Corollary 3.2. Suppose that each SVM in the ensembles separated the data set used during
training. Then, the det-leave-one-out error of an ensemble of SVMs is upper bounded by:

DLooD�
(F) ≤ Err1(F) + 1

�

T∑
t=1

ct
d2

t

ρ2
t

(13)

where Err1 is the margin empirical error with ensemble margin 1, dt is the radius of the
smallest sphere centered at the origin, in the feature space induced by kernel K (t), containing
the support vectors of machine t, and ρt is the margin of the t-th SVM.

Proof: We chose δ = 1 in (11). Clearly we have that dt ≥ dt(δ) for any δ, and
∑

i∈Nδ
α

(t)
i ≤∑�

i=1 α
(t)
i = 1

ρ2
t

(see Vapnik (1998)) for a proof of this equality). �

Notice that the average generalization performance of the SVM ensemble now depends
on the “average” (convex combination of) D2

ρ2 of the individual machines. In some cases this
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may be smaller than the D2

ρ2 of a single SVM. For example, suppose we train many SVMs
on different sub-samples of the training points and we want to compare such an ensemble
with a single SVM using all the points. If all SVMs (the single one, as well as the individual
ones of the ensemble) have most of their training points as support vectors, then clearly
the D2 of each SVM in the ensemble is smaller than that of the single SVM. Moreover the
margin of each SVM in the ensemble is expected to be larger than that of the single SVM
using all the points. So the “average” D2

ρ2 in this case is expected to be smaller than that
of the single SVM. Another case where an ensemble of SVMs may be better than a single
SVM is the one where there are outliers among the training data. If the individual SVMs
are trained on subsamples of the training data, some of the machines may have smaller D2

ρ2

because they do not use some outliers—which of course also depends on the choice of C
for each of the machines. In general it is not clear when ensembles of kernel machines are
better than single machines. The bounds in this section may provide some insight to this
question.

Finally, we remark that all the results discussed hold for the case that there is no bias
(threshold b), or the case where the bias is included in the kernel (as discussed in the
introduction). In the experiments discussed below we use the results also in the case that
the bias is not regularized (as discussed in Section 2 this means that the separating function
includes a bias b, so it is f (x) = ∑�

i=1 αi K (xi , x)+b), which is common in practice. Recent
work in (Chapelle & Vapnik, 1999) may be used to extend our results to an ensemble
of kernel machines with the bias not regularized: whether this can be done is an open
question.

4. Experiments

To test how tight the bounds we presented are, we conducted a number of experiments using
datasets from UCI2, as well as the US Postal Service (USPS) dataset (LeCun et al., 1990).
We show results for some of the sets in figures 1–5. For each dataset we split the overall set
in training and testing (the sizes are shown in the figures) in 50 different (random) ways,
and for each split:

1. We trained one SVM with b = 0 using all training data, computed the leave-one-out
bound given by Theorem 3.1, and then compute the test performance using the test set.

2. We repeated (1) this time with b 	= 0.
3. We trained 30 SVMs with b = 0 each using a random subsample of size 40% of the

training data (bagging), computed the leave-one-out bound given by Theorem 3.3 using
ct = 1

30 , and then compute the test performance using the test set.
4. We repeated (3) this time with with b 	= 0.

We then averaged over the 50 training-testing splits the test performances and the leave-
one-out bounds found, and computed the standard deviations. All machines were trained
using a Gaussian kernel, and we repeated the procedure for a number of different σ ’s of the
Gaussian, and for a fixed value of the parameter C , (selected by hand so that it is less than 1
in figures 1–5, and more than 1 in figure 6, for reasons explained below—for simplicity we
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Figure 1. Breast cancer data: Top left figure: bagging with b = 0; Top right figure: single SVM with b = 0;
Bottom left figure: bagging with b 	= 0; Bottom right figure: single SVM with b 	= 0. In each plot the solid line is
the mean test performance and the dashed line is the error bound computed using the leave-one-out Theorems 3.1
and 3.3. The dotted line is the validation set error discussed below. The horizontal axis shows the logarithm of the
σ of the Gaussian kernel used.

used the same value of C in figures 1–5, C = 0.5, but we found the same trend for other small
values of C , C < 1). We show the averages and standard deviations of the results in figures 1
to 5. In all figures we use the following notation: Top left figure: bagging with b = 0; Top
right figure: single SVM with b = 0; Bottom left figure: bagging with b 	= 0; Bottom right
figure: single SVM with b 	= 0. In each plot the solid line is the mean test performance and
the dashed line is the error bound computed using the leave-one-out Theorems 3.1 and 3.3.
The dotted line is the validation set error discussed below. The horizontal axis shows the
logarithm of the σ of the Gaussian kernel used. For simplicity, only one error bar (standard
deviation over the 50 training-testing splits) is shown (the others were similar). Notice that
even for training-testing splits for which the error is one standard deviation away from the
mean over the 50 runs (i.e. instead of plotting the graphs through the center of the error
bars, we plot them at the end of the error bars) the bounds for combinations of machines are
still tighter than for single machines in figures 3 to 5. The cost parameter C used is given
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Figure 2. Thyroid data: Notation like in figure 1.

in each of the figures. The horizontal axis is the natural logarithm of the σ of the Gaussian
kernel used, while the vertical axis is the error.

An interesting observation is that the bounds are always tighter for the case of bagging
than they are for the case of a single SVM. This is an interesting experimental finding for
which we provide a possible theoretical explanation in the next section. This finding can
practically justify the use of ensembles of machines for model selection: Parameter selection
using the leave-one-out bounds presented in this paper is easier for ensembles of machines
than it is for single machines.

Another interesting observation is that the bounds seem to work similarly in the case that
the bias b is not 0. In this case, as before, the bounds are tighter for ensembles of machines
than they are for single machines.

Experimentally we found that the bounds presented here do not work well in the case
that the C parameter used is large (C = 100). An example is shown in figure 6. Consider
the leave-one-out bound for a single SVM given by Theorem 3.1. Let (xi , yi ) be a support
vector for which yi f (xi ) < 1. It is known (Vapnik, 1998) that for these support vectors
the coefficient αi is C . If C is such that C K (xi , xi ) > 1 (for example consider Gaussian
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Diabetes data (C=0.5, Train= 468, Test = 300)

Figure 3. Diabetes data: Notation like in figure 1.

kernel with K (x, x) = 1 and any C > 1), then clearly θ (C K (xi , xi ) − yi f (xi )) = 1. In this
case the bound of Theorem 3.1 effectively counts all support vectors outside the margin
(plus some of the ones on the margin, i.e. y f (x) = 1). This means that for “large” C (in the
case of Gaussian kernels this can be for example for any C > 1), the bounds of this paper
effectively are similar (not larger than) to another known leave-one-out bound for SVMs,
namely one that uses the number of all support vectors to bound generalization performance
(Vapnik, 1998). So effectively our experimental results show that the number of support
vectors does not provide a good estimate of the generalization performance of the SVMs
and their ensembles.

5. Stability of ensemble methods

We now present a theoretical explanation of the experimental finding that the leave-one-out
bound is tighter for the case of ensemble machines than it is for single machines. The analysis
is done within the framework of stability and learning (Bousquet & Elisseeff, 2002). It has
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Figure 4. Heart data: Notation like in figure 1.

been proposed in the past that bagging increases the “stability” of the learning methods
(Breiman, 1996). Here we provide a formal argument for this. As before, we denote by Di

�

the training set D� without example point (xi , yi ).
We use the following notion of stability defined in Bousquet and Elisseeff (2002).

Definition (Uniform stability). We say that a learning method is β�—stable with respect
to a loss function V and training sets of size � if the following holds:

∀i ∈ {1, . . . , �}, ∀D�, ∀(x, y) :
∣∣V (

fD�
(x), y

) − V
(

fDi
�
(x), y

)∣∣ ≤ β�.

Roughly speaking the cost of a learning machine on a new (test) point (x, y) should not
change more than β� when we train the machine with any training set of size � and when
we train the machine with the same training set but one training point (any point) removed.
Notice that this definition is useful mainly for real-valued loss functions V . To use it for
classification machines we need to start with the real valued output (2) before thresholding.
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Figure 5. USPS data: Notation like in figure 1.

We define for any given constant δ the leave-one-out error Looδ on a training set D� to be:

Looδ,D�
( f ) = 1

�

�∑
i=1

πδ

(−yi fDi
�
(xi )

)
,

where the function πδ(x) is 0 for x < −δ, 1 for x > 0, and x
δ

+ 1 for −δ ≤ x ≤ 0 (a soft
margin function).3 For ensemble machines, we will consider again a definition similar to
(7):

DLooδ,D�
(F) = 1

�

�∑
i=1

πδ

(
−yi

1

T

T∑
t=1

f(Dr,t ∼D�)i (xi )

)
,

Notice that for δ → 0 we get the leave one out errors that we defined in Section 2, namely
Eqs. (5) and (7), and clearly DLoo0,D�

(F) ≤ DLooδ,D�
(F) for all δ > 0.
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Figure 6. USPS data: Using a large C (C = 50). In this case the bounds do not work—see text for an explanation.
Notation like in figure 1.

Let β� be the stability of the kernel machine for the real valued output wrt. the �1 norm,
that is:

∀i ∈ {1, . . . , �}, ∀D�, ∀x :
∣∣ fD�

(x) − fDi
�
(x)

∣∣ ≤ β�

For SVMs it is known (Bousquet & Elisseeff, 2002) that β� is upper bounded by C ·κ
2 where

κ = supx∈X K (x, x) is assumed to be finite. The bound on the stability of a SVM is not
explicitly dependent of the size of the training set �. However, the value of C is often chosen
such that C is small for large �. In the former experiments, C is fixed for all machines which
are trained on learning sets of same sizes. This means that they have all the same stability
for the �1 norm.

We first state a bound on the expected error of a single kernel machine in terms of its
Looδ error. The following theorem is from Bousquet and Elisseeff (2002).
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Theorem 5.1. For any given δ, with probability 1−η the generalization misclassification
error of an algorithm that is β� stable w.r.t. the �1 norm is bounded as:

E(x,y)
[
θ (−y fD�

(x))
] ≤ Looδ,D�

( fD�
) + β� +

√
�

2

(
2
β�−1

δ
+ 1

�

)2

ln

(
1

η

)
,

where β� is assumed to be a non-increasing function of �.

Notice that the bound holds for a given constant δ. One can derive a bound that holds
uniformly for all δ and therefore use the “best” δ (i.e. the empirical margin of the classifier)
(Bousquet & Elisseeff, 2002). For a SVM, the value of β� is equal to Cκ

2 . Theorem 5.1
provides the following bound:

E(x,y)
[
θ
( − y fD�

(x)
)] ≤ Looδ,D�

(
fD�

) + Cκ

2
+

√
�

2

(
Cκ

δ
+ 1

�

)2

ln

(
1

η

)

The value of C is often a function of �. Depending on the way C decreases with �, this
bound can be tight or loose.

We now study a similar generalization bound for an ensemble of machines where each
machine uses only r points drawn randomly with the uniform distribution from the training
set. We consider only the case where the coefficients ct of (4) are all 1

T (so taking the average
machine like in standard bagging (Breiman, 1996)). Such an ensemble is very close to the
original idea of bagging despite some differences—namely that in standard bagging each
machine uses a training set of size equal to the size of the original set created by random
subsampling with replacement, instead of using only r points.

We will consider the expected combination F̂ defined as:4

F̂(x) = EDr ∼D�

[
fDr (x)

]
where the expectation is taken with respect to the training data Dr of size r drawn uniformly
from D�. The stabilility bounds we present below hold for this expected combination and
not for the finite combination considered so far—as mentioned below how close these two
are is an open question. The leave-one-out error we define for this expectation is again
like in (7) (as in Eq. (7) the size r of the subsamples for simplicity is not included in the
notation):

DLooδ,D�
(F̂) = 1

�

�∑
i=1

πδ

(−yiEDr ∼D�

[
fDi

r
(xi )

])

which is different from the “standard” leave-one-out error:

1

�

�∑
i=1

πδ

(−yiEDr ∼Di
�

[
fDr (xi )

])



88 T. EVGENIOU, M. PONTIL AND A. ELISSEEFF

which corresponds to (6). As an extreme case when T → ∞:

DLooδ,D�

(
1

T

T∑
t=1

fDr,t

)
→ DLooδ,D�

(F̂) (14)

This relation motivates the choice of our method of calculation for the leave one out estimate
in Section 3. Indeed the right hand side of the equation corresponds to the quantity that we
have bounded in Sections 3 and 4 and that ultimately we would like to relate to the stability
of the base machine. It is an open question to measure how fast the convergence Eq. (14)
is. As we discuss below and as also mentioned in Breiman (1996), increasing T beyond
a certain value (typically small, i.e. 100) does not influence the performance of bagging,
which may imply that the convergence (14) is fast.

We then have the following bound on the expected error of ensemble combinations:

Theorem 5.2. For any given δ, with probability 1−η the generalization misclassification
error of the expected combination of classifiers F̂ each using a subsample of size r of the
training set and each having a stability βr wrt. the �1 norm is bounded as:

E(x,y)[θ (−y F̂(x))] ≤ DLooδ,D�
(F̂) + r

�
βr +

√
r2

2�

(
2βr−1

δ
+ 1

r

)2

ln

(
1

η

)

Proof: We will apply the stability Theorem 5.1 to the following algorithm:

– On a set of size �, the algorithm is the same as the expected ensemble machine we
consider.

– On a training set of size � − 1, it adds a dummy input pair (x0, y0) and uses the same
sampling scheme as the one used with D�. That is, Dr is sampled from Di

� ∪ {(x0, y0)}
with the same distribution as it is sampled from D� in the definition of F̂ . When (x0, y0)
is drawn in Dr , it is not used in training so that fDr is replaced by fDr \{(x0,y0)}.

The new algorithm that we will call G can then be expressed as: G(x) = EDr ∼D�
[ fDr (x)]

and Gi , its outcome on the set Di
� is equal to Gi (x) = EDr ∼D�

[ fDi
r
(x)] where (xi , yi ) plays

the role of the dummy pair (x0, y0) previously mentioned. The resulting algorithm has then
the same behavior on training sets of size � as the ensemble machine we consider, and
the classical leave-one-out error for G corresponds to the det-leave-one-out error we have
defined previously for F̂ .

From that perspective, it is sufficient to show that G is rβr

�
stable wrt. the �1 norm and to

apply Theorem 5.1. We have:

|G − Gi | = ∣∣EDr ∼D�

[
fDr

] − EDr ∼D�

[
fDi

r

]∣∣
where Di

r = Dr\(xi , yi ). We have by definition:

|G − Gi | =
∣∣∣∣
∫

fDr dP −
∫

fDi
r
dP

∣∣∣∣
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where P denotes here the distribution over the sampling of Dr from D�. Defining the
function 1A of the set A as to be: 1A(z) = 1 iff z ∈ A, we decompose each of the integral
as follows:

|G − Gi | =
∣∣∣∣
∫

fDr 1(xi ,yi )∈Dr dP +
∫

fDr 1(xi ,yi )/∈Dr dP −
∫

fDi
r
1(xi ,yi )∈Dr dP

−
∫

fDi
r
1(xi ,yi )/∈Dr dP

∣∣∣∣
Clearly, if (xi , yi ) /∈ Dr , Dr = Di

r , so that:

|G − Gi | =
∣∣∣∣
∫

fDr 1(xi ,yi )∈Dr dP −
∫

fDi
r
1(xi ,yi )∈Dr dP

∣∣∣∣
≤

∫
βr 1(xi ,yi )∈Dr dP

≤ βr P[(xi , yi ) ∈ Dr ]

where the probability is taken with respect to the random subsampling of the data set Dr

from D�. Since this subsampling is done without replacement, such a probability is equal
to r

�
which finally gives a bound on the stability of G = EDr ∼D�

[ fDr ]. This result plugged
into the previous theorem gives the final bound. �

This theorem holds for ensemble combinations that are theoretically defined from the
expectation EDr ∼D�

[ fDr ]. Notice that the hypothesis do not require that the combination is
formed by only the same type of machines. In particular, one can imagine an ensemble of
different kernel machines with different kernels. We formalize this remark in the following

Theorem 5.3. Let F̂ S be a finite combination of SVMs fs, s = 1, . . . , S with different
kernels K 1, . . . , K S:

F̂ S = 1

S

S∑
s=1

EDr ∼D�

[
f s

Dr

]
(15)

where f s
Dr ∼D�

is a SVM with kernel K s learned on Dr . Denote as before by DLooδ,D�
(F̂ S)

the det-leave-one-out error of F̂ S computed with the function πδ . Assume that each of the
f s

Dr ∼D�
are learned with the same C on a subset Dr of size r drawn from D� with a uniform

distribution. For any given δ, with probability 1 − η, the generalization misclassification
error is bounded as:

E(x,y)[θ (−y F̂ S(x))] ≤ DLooδ,D�
(F̂ S) + r

2�
(Cκ) +

√
r2

2�

(
Cκ

δ
+ 1

r

)2

ln

(
1

η

)
,

where κ = 1
S

∑S
s=1 supx∈X K s(x, x).
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Proof: As before, we study

G − Gi = 1

S

S∑
s=1

EDr ∼D�

[
f s

Dr

] − EDr ∼D�

[
f s

Di
r

]

Following the same calculations as in the previous theorem for each of the summand, we
have:

|G − Gi | ≤ 1

S

∫ S∑
s=1

βr,s1(xi ,yi )∈Dr dP,

where βr,s denotes the stability of a SVM with kernel K s on a set of size r , and P is the
distribution over the sampling of Dr from D�. As before, since (xi , yi ) appears in Dr only
r
�

times in average, we have the following bound:

|G − Gi | ≤ 1

S

S∑
s=1

βr,sr

�
.

Replacing βr,s by its value for the case of SVMs yields a bound on the generalization error
of G in terms of its leave-one-out error. This translates for F as a bound on its generalization
error in terms of its det-leave-one-out error which is the statement of the theorem. �

Notice that Theorem 5.3 holds for combinations of kernel machines where for each kernel
we use many machines trained on subsamples of the training set. So it is an “ensemble of
ensembles” (see Eq. (15)).

Compared to what has been derived for a single SVM, combining SVMs provides a tighter
bound on the generalization error. This result can then be interpreted as an explanation of
the better estimation of the test error by the det-leave-one-out error for ensemble methods.
The bounds given by the previous theorems have the form:

E(x,y)[θ (−yF(x))] ≤ DLooδ,D�
(F) + O


 r√

�
Crκ

√
ln

(
1
η

)
δ2




although the bound for a single SVM is:

E(x,y)[θ (−y f (x))] ≤ Looδ,D�
( f ) + O


√

�C�κ

√
ln

(
1
η

)
δ2



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We have indexed the parameters C with an index that indicates that the SVMs are not learned
with the same training set size in the first and in the second case. In the experiments, the
same C was used for all SVMs (C� = Cr ). The bound derived for a combination of SVMs
is then tighter than for a single SVM by a factor of r/�. The improvement is because the
stability of the combination of SVMs is better than the stability of a single SVM. This is
true if we assume that both SVMs are trained with the same C but the discussion becomes
more tricky if different C’s are used during learning.

The stability of SVMs depends indeed on the way the value of C is determined. For a
single SVM, C is is generally a function of �, and for combination of SVMs, C also depends
on the size of the subsampled learning sets Dt . In Theorem 5, we have seen that the stability
of the combination of machines was smaller than rβr

�
where βr is equal to Cκ

2 for SVMs. If
this stability is better than the stability of a single machine, then combining the functions
fDr,t provides a better bound. However, in the other case, the bound gets worse. We have
the following corollary whose proof is direct:

Corollary 5.1. If a learning system is β� stable and β�

βr
< r

�
, then combining these learning

systems does not provide a better bound on the difference between the test error and the
leave-one-out error. Conversely, if β�

βr
> r

�
, then combining these learning systems leads to

a better bound on the difference between the test error and the leave-one-out error.

This corollary gives an indication that combining machines should not be used if the
stability of the single machine is very good. Notice that the corollary is about bounds, and
not about whether the generalization error for bagging or the actual difference between the
test and leave one out error is always smaller for unstable machines (and larger for stable
ones)—this depends on how tight the bounds are in every case.

However, it is not often the case that we have a highly stable single machine and therefore
typically bagging improves stability. In such a situation, the bounds presented in this paper
show that we have better control of the generalization error for combination of SVMs in
the sense that the leave one out and the empirical errors are closer to the test error. The
bounds presented do not necessarily imply that the generalization error of bagging is less
than that of single machines. Similar remarks have already been made by Breiman (1996)
for bagging where similar considerations of stability are experimentally discussed. Another
remark that can be made from the work of Breiman is that bagging does not improve
performances after a certain number of bagged predictors. On the other hand, it does not
reduce performances either. This experimentally derived statement can be translated in our
framework as: When T increases, the stability of the combined learning system tends to
the stability of the expectation EDr ∼D�

[
fDr

]
which does not improve after T has passed a

certain value. This value may correspond to the convergence of the finite sum 1
T

∑T
t=1 fDr,t

to its expectation wrt. Dr,t ∼ D�.
At last, it is worthwhile noticing that the stability analysis of this section holds also for

the empirical error. Indeed, for a β� stable algorithm, as it is underlined in Bousquet and
Elisseeff (2002), the leave-one-out and the empirical error are related by:

Looδ,D�
( f ) ≤ Err0( fD�

) + β�,
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where Err0( fD�
) is the empirical error on the learning set D�. Using this inequality in

Theorems 5.2, and 5.3 for the algorithm G, we can bound the generalization error of F in
terms of the empirical error and the stability of the machines.

6. Other ensembles and error estimates

6.1. Validation set for model selection

Instead of using bounds on the generalization performance of learning machines like the
ones discussed above, an alternative approach for model selection is to use a validation
set to choose the parameters of the machines. We consider first the simple case where we
have N machines and we choose the “best” one based on the error they make on a fixed
validation set of size V . This can be thought of as a special case where we consider as
hypothesis space the set of the N machines, and then we “train” by simply picking the
machine with the smallest “empirical” error (in this case this is the validation error). It is
known that if VEi is the validation error of machine i and TEi is its true test error, then for
all N machines simultaneously the following bound holds with probability 1−η (Devroye,
Györfi, & Lugosi, 1996; Vapnik, 1998):

TEi ≤ VEi +
√

log(N ) − log
(

η

4

)
V

. (16)

So how “accurately” we pick the best machine using the validation set depends, as expected,
on the number of machines N and on the size V of the validation set. The bound suggests
that a validation set can be used to accurately estimate the generalization performance of a
relatively small number of machines (i.e. small number of parameter values examined), as
done often in practice.

We used this observation for parameter selection for SVMs and for their ensembles.
Experimentally we followed a slightly different procedure from what is suggested by bound
(16). For each machine (that is, for each σ of the Gaussian kernel in our case, both for a single
SVM and for an ensemble of machines) we split the training set (for each training-testing
split of the overall dataset as described above) into a smaller training set and a validation set
(70–30% respectively). We trained each machine using the new, smaller training set, and
measured the performance of the machine on the validation set. Unlike what bound (16)
suggests, instead of comparing the validation performance found with the generalization
performance of the machines trained on the smaller training set (which is the case for which
bound (16) holds), we compared the validation performance with the test performance of
the machine trained using all the initial (larger) training set.

This way we did not have to use less points for training the machines, which is a typical
drawback of using a validation set, and we could compare the validation performance with
the leave-one-out bounds and the test performance of the exact same machines we used in
the Section 4.

We show the results of these experiments in figures 1–5 (see the dotted lines in the plots).
We observe that although the validation error is that of a machine trained on a smaller
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training set, it still provides a very good estimate of the test performance of the machines
trained on the whole training set. In all cases, including the case of C > 1 for which the
leave-one-out bounds discussed above did not work well, the validation set error provided
a very good estimate of the test performance of the machines.

6.2. Adaptive combinations of learning machines

The ensembles of kernel machines (4) considered so far are voting combinations where the
coefficients ct in (4) of the linear combination of the machines are fixed. We now consider
the case where these coefficients are also learned. In particular we consider the following
two-layer architecture:

1. A number T of kernel machines is trained as before (for example using different training
data, or different parameters). Let f t (x), t = 1, . . . , T be the machines.

2. The T outputs (real valued in our experiments, but could also be thresholded—binary)
of the machines at each of the training points are computed.

3. A linear machine (i.e. linear SVM) is trained using as inputs the outputs of the T machines
on the training data, and as labels the original training labels. The solution is used as the
coefficients ct of the linear combination of the T machines.

In this case the ensemble machine F(x) is a kernel machine itself which is trained using
as kernel the function:

K(x, t) =
T∑

t=1

f t (x) f t (t).

Notice that since each of the machines f t (x) depend of the data, also the kernel K is data
dependent. Therefore the stability parameter of the ensemble machine is more difficult to
compute (when a data point is left out the kernel K changes). Likewise the leave-one-out
error bound of Theorem 3.3 does not hold since the theorem assumes fixed coefficients ct .5

On the other hand, an important characteristic of this type of ensembles is that independent
of what kernels/parameters each of the individual machines of the ensemble use, the “second
layer” machine (which finds coefficients ct ) always uses a linear kernel. This may imply
that the overall architecture is less sensitive to the kernel/parameters of the machines of the
ensemble. We tested this hypothesis experimentally by comparing how the test performance
of this type of machines changes with the σ of the Gaussian kernel used from the individual
machines of the ensemble, and compared the behavior with that of single machines and
ensembles of machines with fixed ct . In figure 7 we show two examples. In our experiments,
for all datasets except from one, learning the coefficients ct of the combination of the
machines using a linear machine (we used a linear SVM) made the overall machine less
sensitive to changes of the parameters of the individual machines (σ of the Gaussian kernel).
This can be a useful characteristic of the architecture outlined in this section. For example
the choice of the kernel parameters of the machines of the ensembles need not be tuned
accurately.
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Figure 7. When the coefficients of the second layer are learned using a linear SVM the system is less sensitive
to changes of the σ of the Gaussian kernel used by the individual machines of the ensemble. Solid line is one
SVM, dotted is ensemble of 30 SVMs with fixed ct = 1

30 , and dashed line is ensemble of 30 SVMs with the
coefficients ct learned. The horizontal axis shows the natural logarithm of the σ of the Gaussian kernel. Left is
the Heart dataset, and right is the Diabetes one. The threshold b is non-zero for these experiments.

6.3. Ensembles versus single machines

So far we concentrated on the theoretical and experimental characteristics of ensembles of
kernel machines. We now discuss how ensembles compare with single machines.

Table 2 shows the test performance of one SVM compared with that of an ensemble of
30 SVMs combined with ct = 1

30 and an ensemble of 30 SVMs combined using a linear
SVM for some UCI datasets (characteristic results). For the tables of this section we use,
for convenience, the following notation:

– VCC stands for “Voting Combinations of Classifiers”, meaning that the coefficients ct of
the combination of the machines are fixed.

– ACC stands for “Adaptive Combinations of Classifiers”, meaning that the coefficients ct

of the combination of the machines are learned-adapted.

We only consider SVMs and ensembles of SVMs with the threshold b. The table shows
mean test errors and standard deviations for the best (decided using the validation set

Table 2. Average errors and standard deviations (percentages) of the “best” machines (best σ of the Gaussian
kernel and best C)—chosen according to the validation set performances. The performances of the machines are
about the same. VCC and ACC use 30 SVMs.

Dataset SVM VCC ACC

Breast 25.5 ± 4.3 25.6 ± 4.5 25.0 ± 4.0

Thyroid 5.1 ± 2.5 5.1 ± 2.1 4.6 ± 2.7

Diabetes 23.0 ± 1.6 23.1 ± 1.4 23.0 ± 1.8

Heart 15.4 ± 3.0 15.9 ± 3.0 15.9 ± 3.2
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Table 3. Comparison between error rates of a single SVM v.s. error rates of VCC and ACC of 100 SVMs for
different percentages of subsampled data. The last dataset is from Osuna, Freund, and Girosi (1997).

Dataset VCC 10% VCC 5% VCC 1% ACC 10% ACC 5% ACC 1% SVM

Diabetes 23.9 26.2 – 24.9 24.5 – 23 ± 1.6

Thyroid 6.5 22.2 – 4.6 4.6 – 5.1 ± 2.5

Faces 0.2 0.2 0.5 0.1 0.2 0.2 0.1

performance in this case) parameters of the machines (σ ’s of Gaussians and parameter
C—hence different from figures 1–5 which where for a given C). As the results show,
the best SVM and the best ensembles we found have about the same test performance.
Therefore, with appropriate tuning of the parameters of the machines, combining SVMs
does not lead to performance improvement compared to a single SVM.

Although the “best” SVM and the “best” ensemble (that is, after accurate parameter
tuning) perform similarly, an important difference of the ensembles compared to a single
machine is that the training of the ensemble consists of a large number of (parallelizable)
small-training-set kernel machines—in the case of bagging. This implies that one can gain
performance similar to that of a single machine by training many faster machines using
smaller training sets—although the actual testing may be slower since the size of the union
of support vectors of the combination of machines is expected to be larger than the number
of support vectors of a single machine using all the training data. This can be an important
practical advantage of ensembles of machines especially in the case of large datasets. Table 3
compares the test performance of a single SVM with that of an ensemble of SVMs each
trained with as low as 1% of the initial training set (for one dataset—for the other ones we
could not use 1% because the size of the original dataset was small so 1% of it was only a
couple of points). For fixed ct the performance decreases only slightly in all cases (Thyroid,
that we show, was the only dataset we found in our experiments for which the change was
significant for the case of VCC), while in the case of the architecture of Section 5 even with
1% training data the performance does not decrease. This is because the linear machine used
to learn coefficients ct uses all the training data. Even in this last case the overall machine
can still be faster than a single machine, since the second layer learning machine is a linear
one, and fast training methods for the particular case of linear machines exist (Platt, 1998).

7. Conclusions

We presented theoretical bounds on the generalization error of ensembles of kernel machines
such as SVMs. Our results apply to the general case where each of the machines in the
ensemble is trained on different subsets of the training data and/or uses different kernels
or input features. A special case of ensembles is that of bagging. The bounds were derived
within the frameworks of cross validation error and stability and learning. They involve
two main quantities: the det-leave-one-out error estimate and the stability parameter of the
ensembles.
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We have shown that the det-leave-one-error of the ensemble can be bounded with a func-
tion of the solution’s parameters (ct and αt

i ’s in Eq. (4)) which can be computed efficiently.
In the case of bagging of SVMs, this bound is experimentally found to be tighter, i.e. closer
to the test error, than the equivalent one for single kernel machine. This experimental finding
could be justified by the stability analysis.

In the case of ensembles of kernel machines, each trained with the same regularization
parameter C , the stability parameter is a linearly increasing function of the number of
points used by each machine. Then ensembles of kernel machines are more stable learning
algorithms than the equivalent single kernel machine. The derived bound on the difference
between empirical or leave-one-out estimates and generalization error is tighter for bagging
than for single kernel machines—which is experimentally observed. This can be important
for example for model selection. It does not necessarily imply that the generalization error
of bagging is smaller than that of single machines—as also shown by the experiments.

A main research direction which emerges from the paper is that the theoretical framework
presented here can be applied to bagging of any learning machine other than kernel machines,
showing formally for which machines bagging increases the stability. Another important
open problem is how to extend the bounds of Section 3 and 5 to the type of machines
discussed in Section 6.2, or to the case of boosting (Schapire et al., 1998). As discussed
above the theoretical results presented in this paper do not hold when the coefficients of the
linear combination of the machines are not fixed a priori.
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Notes

1. In the case of SVMs, these are the support vectors of machine t with ensemble margin larger than δ.
2. Available from http://www.ics.uci.edu/mlearn/MLRepository.html
3. We define π0 to be the Heavyside function θ .
4. Here, we assume that all functions are measurable and that all the sets are countable. By doing so, we avoid

the measurability discussions and we assume that all the quantities we consider are integrable.
5. A validation set can still be used for model selection for these machines.
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