
Higher-Order and Symbolic Computation, 17, 245–265, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Retrospective on Region-Based Memory
Management

MADS TOFTE tofte@itu.dk
LARS BIRKEDAL∗ birkedal@itu.dk
MARTIN ELSMAN mael@itu.dk
NIELS HALLENBERG nh@itu.dk
The IT University of Copenhagen, Denmark

Abstract. We report on our experience with designing, implementing, proving correct, and evaluating a region-
based memory management system.

Keywords: dynamic storage management, regions, Standard ML

1. Introduction

Originally, Region-based Memory Management was conceived as a purely theoretical idea
intended to solve a practical problem in the context of Standard ML, namely inventing a
dynamic memory management discipline that is less space demanding and more predictable
than generic garbage collection techniques, such as generational garbage collection.

Over the subsequent nine years, considerable effort has been devoted to refining the
idea, proving it correct, and investigating whether it worked in practice. The practical
experiments revealed weaknesses, which led to new program analyses, new theory, and yet
more experimentation. In short, we have sought to work on memory management as an
experimental science: the work should be scientific in the sense that it should rest on a solid
mathematical foundation and it should be experimental in the sense that it should be tested
against competing state-of-the-art implementation technology.

The purpose of this paper is to step back and consider the process as a whole. We
first describe the main technical developments, with an emphasis on what motivated the
developments. We then summarise what we think has gone well and what has not gone so
well. With these lessons in mind, we suggest some directions for future work and present
some thoughts on what we have learned about the interaction between theory and practice
during the process.

2. First attempts

In the late 1980s, Standard ML of New Jersey (SML/NJ) was the most sophisticated Standard
ML compiler available. While it generated fast code, it did require an inordinate amount of

∗Supported in part by STVF Grant No.: 56-00-0309 and SNF Grant No.: 51-00-0315.



246 TOFTE ET AL.

space. Tofte had for many years been fascinated by the beauty of the Algol stack discipline
and somewhat unhappy about the explanations of why, in principle, something similar
could not be done for the call-by-value lambda calculus (these explanations typically had
to do with “escaping functions”.) Although, in a theoretical sense, heap allocation could
be more efficient than stack allocation (see, e.g., [3]), in practice, the stack discipline
could provide better cache locality and less fragmentation than heap allocation (see, e.g.,
[42]).

Surely, if an expression had type int (in a language with no effects) then all memory
allocated during the computation of the integer (except for the memory needed to hold the
result) could be deallocated once the result had been computed. This observation was in
contrast to the way memory was used with garbage collectors (at the time), which allocated
memory linearly until memory became too full. The beauty of the stack discipline was
that it used memory only proportional to the depth of the call stack, whereas with garbage
collection, the program allocated memory as if it needed to put the entire call tree in memory.
(The call stack may require only the logarithm of the space required to represent the call
tree.)

In 1992, Talpin and Jouvelot published a static type discipline for polymorphic references,
which used an effect system for controlling quantification of type variables [48]. Like earlier
work on effect systems [37–39], their system involved a notion of region (of references).
Tofte and Talpin noticed that the approach could be generalised from dealing with references
to accounting for allocation and deallocation of all values in the call-by-value lambda
calculus. Moreover, Tofte and Talpin developed a basic region inference system for a toy
language based on ML [55]. It had no recursive functions.

In the region-based memory model, the store consisted of a stack of regions, as illustrated
in Figure 1. All values, including function closures, were put into regions.

Every well-typed source language expression, e, was translated into a region-annotated
expression, e′, which was identical to e, except for certain region annotations. The eval-
uation of e′ corresponded, step by step, to the evaluation of e. Two forms of annotations
were

e1 at ρ

letregion ρ in e2 end

r0 r1 r2 r3

. . .

Figure 1. The store consists of a stack of regions; a region is a box in the picture.



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 247

The first form was used whenever e1 was an expression that directly produced a value.
(Constant expressions, λ-abstractions and tuple expressions fell into this category.) The
annotation at ρ indicated that the value of e1 was to be put in the region bound to the region
variable ρ.

The second form introduced a region variable ρ with local scope e2. At runtime, first an
unused region, r , was allocated and bound to ρ. Then e2 was evaluated, probably using r
or other regions on the stack. Finally, r was deallocated. The letregion expression was
the only way of introducing and eliminating regions. Hence regions were allocated and
de-allocated in a stack-like manner.

The translation from the source language to the language of region-annotated terms was
formalised by a set of formal inference rules, the region inference rules, which allowed
inference of conclusions of the form

TE � e ⇒ e′ : (τ, ρ), ϕ

Here TE was a type environment, which mapped program variables to pairs (σ, ρ) of a type
scheme and a region variable. The conclusion was read: “in the type environment TE , the
source expression e is translated into a region-annotated expression e′, which has type τ , is
placed in region ρ, and has effect ϕ,” where, slightly simplified, an effect was a finite set of
region variables. Intuitively, the effect ϕ contained a superset of the regions needed to be
accessed during the evaluation of the expression e.

A proof of correctness with respect to a standard operational semantics, a region inference
algorithm, and a proof of existence of principal types and minimal effects were developed.

Tofte and Birkedal built a prototype implementation of a slightly larger toy language with
recursive functions, pairs, and lists. The implementation contained a different region infer-
ence algorithm and an instrumented interpreter for region-annotated terms. Experimental
results were terrible. There seemed to be two main causes:

1. When a function f , say, returned a result in a region, then all calls of f had to return
their result in the same region. Thus the region had to be kept alive until no result of f
was needed (which was very conservative).

2. In particular, when a function called itself recursively, the result of the recursive call
had to be put in the same region as the result of the function (even in cases where the
recursive call produced a result that was not part of the result of the function).

The solution to the first problem was straightforward: functions should be allowed to take
region parameters at run time. Talpin observed a beautiful connection between region pa-
rameters and quantified region variables in type schemes: a function of type

∀ρ1, . . . , ρkα1, . . . , αn.τ → τ ′

should take ρ1, . . . , ρk as formal region parameters. The actual parameters at a call of f
were the result of instantiating the type scheme to region variables at the call site. A function
was region-polymorphic if it took regions as parameters.



248 TOFTE ET AL.

Thus two more forms of region annotations were introduced in region-annotated terms,
one for declaring (recursive) region-polymorphic functions

letrec f [ρ1, . . . , ρk](x) = e1 in e2

and one for referring to them:

f [ρ ′
1, . . . , ρ

′
k]

3. Polymorphic recursion

Tofte noticed that what was required to solve the second problem mentioned above (re-
cursive functions) was polymorphic recursion in regions. For example, consider the source
expression:

letrec fac(n) =
if n = 0 then 1
else n * fac(n-1)

in fac 100

Translating this expression without polymorphic recursion resulted in the region-annotated
expression

letrec fac[r1](n) =
if n = 0 then 1 at r1
else (n * fac[r1](n-1)) at r1

in fac[r0] 100

which caused 100 values to pile up in the region r0. With polymorphic recursion, however,
the expression was translated into the following region-annotated expression:

letrec fac[r1](n)=
if n = 0 then 1 at r1
else letregion r2

in (n * fac[r2](n-1)) at r1
end

in fac[r0] 100

As a result, each recursive invocation used its own (local) region.
However, even with the presence of region polymorphism, there were still problems

with recursion in the special case of tail recursion and iteration. For example, consider the
following program, which is intended to sum the numbers from 1 to 100 (fst and snd
represent the first and second projection of pairs, respectively) and which has a tail call of
sumit in its own body.



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 249

letrec sumit(p: int*int) =
let acc = fst p
in let n = snd p

in if n = 0 then p
else sumit(n+acc, n-1)

in fst(sumit(0,100))

Region inference would force the two branches of the conditional to put their results in
the same region, so (even with polymorphic recursion) sumit delivered its result pair in
the same region as its argument resided. Thus as a result, 100 pairs would pile up in the
region that contained the initial pair (0,100). What would be preferable was to have the
pair (n+acc, n-1) overwrite the pair p, because—in this program—p is not used after the
pair (n+acc, n-1) is created.

To achieve this overwriting, Birkedal and Tofte devised a so-called storage mode analysis,
which allowed the compiler to generate code to reset a region prior to an allocation when
the analysis could conclude that the region contained no live value.

In 1993, the proof of correctness of the region inference rules was extended to deal
with region polymorphism and polymorhic recursion for regions. The region inference
algorithm was extended to deal with polymorphic recursion by iterative region
inference of the recursive function until a fixed-point type scheme was obtained. Ad-
hoc methods were used in order to ensure termination. These ad-hoc methods also made
it clear, that there was no guarantee that the algorithm would find most general type
schemes for region-polymorphic functions. The results were presented at POPL’94
[57].

The experimental results for runtime space usage varied from the excellent to the poor.
Excellent results were obtained for programs that were written iteratively or had a natural
stack-like behaviour. Good results were obtained for Quicksort and other small, classical
algorithms. Poor results were obtained for programs where lifetimes were not nested or
where higher-order functions were used extensively.

The encouraging facts at this stage were:

1. There were programs for which the region scheme worked extremely well, even without
any other form of garbage collection!

2. Soundness of memory use was guaranteed.
3. Memory behaviour was explicated and could be studied by memory conscious program-

mers.1

The worries at this stage were:

1. What would happen for large programs? What was the “typical” ratio between parts of
the program for which region inference worked well and the parts for which it did not
work well? How difficult and time consuming would it be to rewrite programs to make
them region friendly?

2. The good experimental results were based on an instrumented, inefficient interpreter. Ac-
tual runtime performance was nowhere near what compilers like SML/NJ could deliver.



250 TOFTE ET AL.

Could regions be managed efficiently at runtime, or would administrative overhead at
runtime be prohibitive?

3. There was unclarity about the existence of principal types. Even soundness of the region
inference algorithm was no longer easy.

4. Soundness of the region inference rules was getting complicated, although do-able.
5. Experimental results depended on the storage mode analysis, which had not been de-

scribed and studied independently of the implementation.

Of these questions, the two first seemed the most important to address. In the long run, who
would care about principal types and the correctness of additional analyses, if the overall
scheme did not work in practice?

There seemed to be only one way to determine whether region-based memory manage-
ment could ever become a serious contender to the much more mature garbage collection
techniques that were already present in many implementations. One would have to build
a real language implementation based on region inference and compare it to other imple-
mentations.

Thus Tofte and Birkedal decided to aim at implementing region inference for full Stan-
dard ML. There were pragmatic reasons for choosing Standard ML as the source language:
we already knew the language in detail and we had a Standard ML front-end which was
compliant with the language semantics, namely the ML Kit, originally developed at Edin-
burgh University [6]. Moreover, there existed several sophisticated Standard ML compilers
that could be used for comparison and plenty of Standard ML programs that could be used as
experimental data. But there was another very important reason for choosing Standard ML
as a source language: it is one thing to propose a new way of implementing programming
languages—if one at the same time proposes a new programming language, there is a danger
that the whole enterprise becomes obscure. Focusing on an already existing programming
language, however, would force us to vary as few parameters as possible, which is a key
principle of experimental science.

4. Aiming for the Standard ML core language

The work on extending the ML Kit with regions began in the fall of 1993. Birkedal developed
a region-based runtime system, written in C, and a code generator from region-annotated
terms to C. The runtime system represented regions by linked lists of fixed-size region pages
because the size of each region was not known in advance and was potentially unbounded.
An interesting point was that values stored in regions did not have to be tagged (as they
often were in garbage collected systems). Tofte extended the region inference algorithm to
cover most of the Standard ML core language, so it became possible to compile many core
Standard ML programs to C code, which was then compiled using a C compiler and linked
with the runtime system using an ordinary linker.

With this system it became possible to compile medium sized test programs (the largest
being around 1000 lines of Standard ML) into machine code. The test programs were taken
from the SML/NJ benchmark suite.



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 251

At first, the results were disappointing. The target programs used more space and ran
slower than when the programs were run under other systems. However, inspection of the
produced code revealed that slow running times likely had to do with unnecessary overhead
in managing regions. It appeared that many regions only ever contained one value. Placing
such regions on the stack rather than allocating region pages for them seemed like an obvious
possibility for reducing executing times.

Birkedal, Tofte and Vejlstrup then developed and implemented a so-called multiplicity
inference analysis, the theory of which was developed by Vejlstrup [60]. The idea was to
find out, for every region, an upper bound on the number of values that were written into
the region.

Initially, the bound could be an integer or infinity (meaning that the analysis could not find
any finite bound). Experiments on sample programs revealed that by far, the most common
case was that the upper bound was 1, the second most common case was that the upper
bound was infinity, while only very rarely did finite upper bounds other than one appear.
Consequently, the analysis was simplified to distinguish between finite regions, defined as
regions that have a finite upper bound of one value, and infinite regions, meaning all other
regions. Finite regions were part of the activation record, while an infinite region consisted
of a linked list of fixed-size region pages, allocated from a free-list of region pages. An
example region stack with one finite region (r3) and three infinite regions (r1, r2, and r4) is
shown in Figure 2.

Other optimisations included elimination of regions containing word-sized values only;
such regions could be kept in machine registers—or spilled onto the stack, in case of lack of
registers. Also, Elsman and Hallenberg wrote a machine code generator for the HP PA-RISC
architecture [20].

�

�

�

�

�
�

� �

� �

�

�

�

�

r1 r2

e fp a e fp a

r4

e fp a

r3

Figure 2. An example runtime stack containing three infinite regions (r1, r2, r4) and a finite region (r3). An
infinite region was represented by a region descriptor on the stack and a linked list of fixed size region pages. A
region descriptor was a triple (e, fp, a), where the allocation pointer a pointed to the first free position in the last
region page, the end pointer e pointed to the last position in the last region page, and where the first page pointer
fp pointed to the first region page. A finite region was represented as a number of words on the stack.



252 TOFTE ET AL.

The results of implementing the multiplicity inference and the other optimizations were
presented at POPL’96 [8]. The effects of incorporating these improvements were astonish-
ing: in many programs, 90 percent or more of all allocations at runtime were to finite regions.
In the largest test program (called simple, a 1000 lines program), more than 99 percent of
the allocations were on the stack. Changing the runtime system and code generator to use
finite regions led to an improvement in running times of roughly a factor of 3.

After these optimisations, the test programs ran between 10 times faster and four times
slower with the ML Kit than with SML/NJ version 0.93, which was generally considered
the state-of-the-art Standard ML compiler at the time. Space usage for the test programs
run with the ML Kit varied between 8 percent and over 3000 percent of the space usage
for the same programs run under SML/NJ version 0.93. For most of the test programs that
were modified to be “region friendly” considerably less space was used with the ML Kit
than with SML/NJ version 0.93, which was not tailored to run in a small space.

The process of making programs “region friendly” was time consuming and required
intimate understanding of the analyses involved (although not much knowledge of the
algorithms that implemented the analyses). Basically, the process involved peering at the
region-annotated code to see whether the region annotations gave reasonable life-times.
Deciding what was reasonable lifetimes involved understanding the various test programs
in some detail. For example, because the Game of Life test program conceptually is an
iterative computation of subsequent “generations” of a game board, a reasonable objective
was to organize the use of regions so that no more than two generations of the game were
live at the same time. Once this objective was achieved, space usage was reduced to 376
kilobytes, or around one fourth of the space usage of SML/NJ on the same program. See
the manual “Programming with Regions in the ML Kit” [52] for more examples of making
programs more region friendly.

For the largest of the test programs (1000 lines), it was estimated that a detailed analysis
and perhaps rewriting of the program would be too time consuming; fortunately, the analyses
worked well without any modification of the test program in this case: the program still
used less memory with the ML Kit than with SML/NJ.

The work resulted in significant progress:

1. It was possible to extend the entire scheme to all of the core language of Standard ML.
2. Programs of up to 1000 lines of Standard ML code could be executed with speed and

space usage comparable to that of SML/NJ version 0.93.
3. Programs that were (re)written with care could be made to run in significantly less space

than with SML/NJ (version 0.93).

So, from a purely technical point of view, the region-based memory model had passed its
first test with the competition in the practical world. However, there were some practical
problems with performing the experimental work. Compilation was slow because of region
inference and, moreover, because there was no correctness proof for the region inference
algorithm used in the ML Kit, debugging the ML Kit compiler was not easy. Thus, Tofte
and Birkedal set out to develop provably correct algorithms for region inference. This was
not an altogether easy task, mainly because of the presence of polymorphic recursion. The
work resulted in two different algorithms for region inference. The first is syntax-directed



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 253

and based on algorithm W [16] and fixed-point iteration for dealing with polymorphic
recursion. It was completed in 1996 and documented in two journal papers [50, 51]. The
second algorithm is constraint-based and has the nice property of separating the generation
of constraints from the constraint solving. The constraint-based algorithm was completed in
1998 and described in a journal paper [7]. Both algorithms were implemented in the ML Kit
and experiments suggested that the constraint-based algorithm was about twice as fast as the
syntax-directed algorithm, but that the constraint-based algorithm was considerably more
space-consuming. None of the algorithms are complete with respect to the region inference
rules, although a restricted form of completeness has been proved for the constraint-based
algorithm. The syntax-directed algorithm is the one used by the ML Kit today.

Concerns about the process of programming with regions were also mounting. There
were the following problems:

1. Region inference favoured a particular discipline of programming. How would one
explain this discipline to programmers?

2. Region inference generated a large number of regions and region parameters to region-
polymorphic functions. Thus, region-annotated programs were large and difficult to
read.

3. As source programs change, the region annotations changed as well. Thus, the time
invested in understanding the region annotations of one program could be lost when the
source program was modified slightly.

4. Almost all of the region annotations seemed fine. But given an apparent space leak, how
would a programmer locate it, other than by studying the entire program?

5. Could region inference be extended to Standard ML modules?
6. What was a programmer to do if it was not apparent how to rewrite a program to use

regions more efficiently (or if it would mean an inordinate amount of work)? And, what
about algorithms that simply were not well suited for regions?

In short, there was a strong sense that here was a technology, which could produce as-
tonishing results when it worked well, but it was too difficult to hit those precise points
where the results were good. Moreover, if it was difficult for the people who developed the
technology, what would be the chances of success with the average programmer? We felt
that we lacked instruments other than the source code and the intermediate forms produced
by the compiler to understand the runtime memory behaviour of programs.

5. Region profiling

At this point (Summer 1995), we became aware of the work by Runciman and Wakeling on
profiling of Haskell programs [46]. Based on their system, Hallenberg developed a region
profiler for the ML Kit [28]. This profiler was a breakthrough for our ability to program
with regions in practice. Running some of the programs that had been hand-tuned using the
profiler resulted in fascinating pictures of memory usage. See Figure 3 for an example.

Also, the profiler made it much easier to locate and eliminate space leaks, that is, region
annotations that cause a program to use much more memory than one would expect.



254 TOFTE ET AL.

Figure 3. Region profiling of region-optimised mergesort. The two upper triangles contain unsorted elements
while the two lower triangles contain sorted elements.

A discipline of programming with regions was emerging. From the peering at the region
annotated programs, the authors had learned a great deal about what works well and what
does not work well with regions. The profiler was the tool required to locate space leaks
and, more generally, to verify that memory was used as planned.

Hence, we decided to try to describe a discipline of programming with regions in a
comprehensive report [53]. The report gave a step-by-step introduction to programming
using regions, moving from basic values and lists over first-order recursive functions to
data types, references, exceptions, and higher-order functions. The report was released in
april 1997 as part of the ML Kit version 2.2

We also held a summer school on programming with regions.3 The summer school
covered lectures on the theory behind region-based memory management and practical
programming exercises. Concerning the latter, it was interesting to see how students be-
came very excited about getting their programs to run in as little memory as they could
possibly manage; this showed that the technology really did give the programmer a handle
on understanding memory usage. It also became clear that programmers found that some
of the analyses, especially the storage mode analysis, were unpleasantly complicated.

We felt that we had made good progress on the first and the fourth of the six problems
listed at the end of Section 4. The second and the third problem seemed hard to do anything
about, without changing the approach to, say, considering explicit region annotations in the
source language (which we did not want to do, because this would mean departing from
using Standard ML as the source language).



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 255

Rather than delving into the design of a new programming language, we felt that it was
more interesting to investigate whether regions could be extended to Standard ML modules.
There were two reasons for extending the scheme to work with modules. First, to compile
large programs, the ML Kit would need to compile modules. Second, dealing with region
inference in some modular fashion was a necessity and an interesting challenge in itself.
Region inference depended on a much finer level of description than the Standard ML
type system itself offered. Separate compilation of modules normally required only type
information. Thus the obvious question to ask was: To what extent is it possible to compile
modules separately using region-based implementation technology?

6. Modules and separate compilation

In his Ph.D. thesis, Elsman [17] presented his solution to the problem in the form of a
general scheme for propagation of compile-time information across module boundaries,
exemplified by a separate compilation system for the ML Kit. This scheme was introduced
in version 3 of the ML Kit [54].

The scheme was based on a notion of static interpretation of modules [18], in which the
module language was regarded as a linking language for specifying how program fragments
are combined to form a complete program. As in most ML compilers, functors were type
checked when they were declared. Thus, type errors in functors were caught already when the
functor was declared (as opposed to when it was applied). However, code generation for the
functor was postponed until the functor was applied. Indeed, if a functor was applied to two
different arguments, code for its body was generated twice, possibly with different results.
When the body of a functor was compiled, the actual argument to which it was applied was
known. Thus, the compiler could make use of the information about the actual argument
when code was generated for the functor body. In particular, information about region type
schemes for functions in the actual argument could be used when region inference was
performed for the functor body.

Delaying code generation until functor application time was not feasible for large pro-
grams unless it was integrated with a mechanism for avoiding unneccesary recompilation
of program units and functor bodies upon change of source code. To solve this problem, the
static interpretation of modules scheme collected information, which for each program unit
or functor body told which other units it depended on. Such information included region
type schemes for free identifiers of the program unit. Upon modification of a program unit,
the scheme used the collected information to determine, for each program unit and each
functor application, if recompilation was necessary.

Version 3 of the ML Kit made it possible for the first time to compile large ML programs
for a region-based implementation. AnnoDomini, a 58,000 lines Standard ML program,
took one and a half hours to compile. Running it with the region profiler revealed a couple
of space leaks. It was possible to fix these by rewriting around 10 of the 58,000 lines of ML
code. Thereafter, AnnoDomini used less space with the ML Kit than with SML/NJ (version
110.0.3).

This result was very interesting because much of the code in AnnoDomini was written
by programmers who did not know how to program with regions—in fact, of the 58,000



256 TOFTE ET AL.

lines of code, more than 10,000 lines were accounted for by a machine generated lexer and
parser. On the other hand, it required a regions expert to locate and change the 10 lines.
Nevertheless, there was progress and we solved the fifth problem at the end of Section 4:

1. It was possible to extend region-inference and the related region analyses to all of
Standard ML, including modules.

2. Proof of concept for large programs: A large ML program was compiled and run using
the system.

3. Making this large program region friendly required (surprisingly) few modifications to
the program.

That the compiler was slow was of course a problem that would require further work for
the technology to become attractive in practice; more of a concern were the tools that
programmers would need to use regions in practice.

It was always known that there are programs that are just not well suited for region
inference. Even if the AnnoDomini experiment suggested that one could get far without
performing a major revision of the code, it had to be a concern for everybody who used
regions that there was no guarantee that one would be able to solve all problems that
one encountered within the regions scheme. If control over memory resources and the
other benefits obtained by region inference were called for (e.g., real-time programming
in embedded systems), a programmer would likely be willing to invest time in tuning a
program with a view to using regions. But this willingness would probably fade if at the
very last moment, a problem could occur that would force major revisions to the code or
force giving up on regions altogether!

The solution to the second and third problem at the end of Section 4 still seemed to require
change of source language, which we were not willing to do. A solution could be to allow
region annotations in ML comments. The sixth problem could perhaps be addressed by
combining region inference and garbage collection. If successful, a combination of region
inference and garbage collection could perhaps even reduce the importance of the second
and third problem: one might conceivably not have to look at region-annotated programs at
all, because garbage collection would handle the space leaks instead.

7. Garbage collection and regions

In his M.Sc. thesis [29], Hallenberg developed a scheme for garbage collecting regions and
implemented it in the ML Kit. A slight variation of Hallenberg’s scheme [30], which targets
the x86 architecture, is used in Version 4 of the ML Kit [52].

The scheme was a generalisation of Cheney’s stop-and-copy copying garbage collection
algorithm [13]. Briefly, the idea was to perform a Cheney copying collection of all regions
on the region stack but to do it in such a way that two live values are in the same region
before the collection if and only if they are in the same region after the collection.

To combine region inference and garbage collection, it was necessary to ensure that no
dangling pointers were introduced at runtime when regions were deallocated. Tofte and
Talpin had noticed early that a side condition in the region typing rule for functions would



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 257

make sure that no dangling pointers appeared at runtime [56, p. 50]. Elsman later stated
and proved this property formally and showed that, for a range of benchmark programs, the
added inflexibility had little effect on overall memory behavior [19].

For combining region inference and garbage collection, each region was associated with
a from-space and a to-space. The allocation pointer a in the region descriptor (see Figure 2)
played the dual rôle of the allocation pointer for region inference and the allocation pointer
for garbage collection. The garbage collector never allocated into from-spaces. Scan pointers
were kept in a scan stack; there was no scan pointer in the region descriptor. In the following
explanation, the notation r → a will be used to refer to the allocation pointer a in a region
r ; a similar notation will be used to access the other components of a region descriptor. The
scan pointer for a region r will be written sr .

Cheney’s algorithm was applied locally on each region using the stop criteria: ∀r ∈ Reg :
(r → a) = sr , where Reg was the set of region descriptors on the region stack. The stop
criteria was implemented using the scan stack, which consisted of those scan pointers sr

for which sr �= (r → a).
At the start of a garbage collection, the region stack was traversed and the region pages

in the from-space areas (pointed at by r → fp; see Figure 2) were linked together to form
a single global from-space area. Next, for every region descriptor r on the region stack,
r → fp was initialised to point at a fresh region page taken from the free-list. Moreover,
r → a was initialised to point at the beginning of the page pointed to by r → fp and r → e
at the end of the page pointed to by r → fp. While collection was in progress, region pages
were allocated from the free-list, which was disjoint from the global from-space area. After
garbage collection, the global from-space area was appended to the free-list.

The garbage collector was invoked whenever more than 2/3 of the region pages in the
free-list had been used.

In the case where there was just one region, the algorithm reduced to (essentially) Ch-
eney’s algorithm. Thus one could get a rough idea of the interaction between region inference
and garbage collection by comparing what happened when one forced all values to be put
in a single global region to what happened when region inference was allowed to run its
normal course.

Our benchmark programs revealed that using region inference greatly reduced the number
of times the garbage collector needed to run, [30]. Furthermore, for most of the benchmark
programs, using a combination of region inference and garbage collection was faster than
using the garbage collector without region inference. For all benchmark programs, the
fastest execution was obtained by using region inference without garbage collection (mostly
because tags were not necessary if one did not do garbage collection).

Concerning space, programs that had been optimised for regions used up to four times
more space when running under the combination of region inference and garbage collection
than when using region inference only. (This was not surprising, since the garbage collector
required tags and to-spaces.) So for programs that had been optimised for regions, it was
best not to add garbage collection, both from the point of view of time and space.

However, programs that had not been optimised for regions all used much less space
when run using both the garbage collector and region inference than when using region
inference alone. Again, this was not surprising, for programs that had not been optimised



258 TOFTE ET AL.

for regions often contained space leaks that made memory usage linear in the running time.
The experiments thus confirmed the hope that adding a garbage collector to region inference
really would take care of the (relatively few) allocations that were not reclaimed well by
region inference.

An important question remained, however. What was the space usage using garbage
collection alone compared to combining region inference and garbage collection?

At first, it seemed likely that combining region inference and garbage collection would use
less space than garbage collection alone (because region inference would take care of some
of the deallocation, the garbage collector would need less space to work in). Indeed, this
effect was observed for programs that had been optimised for regions. But for programs that
had not, the opposite happened: less space was required to use the garbage collector alone
than when the garbage collector was combined with region inference. For these programs,
we found the region waste (i.e., non-used memory in region pages) to be as high as 23
percent when garbage collection was combined with region inference [30]. Many infinite
regions with only a few values each could take up much more space than putting all the
values in a global region.

Our experiments showed that what strategy to use (i.e., region inference alone, garbage
collection alone, or a combination of the two) is not a clear cut and depends on the program.
However, the combination of region inference and garbage collection did give the program-
mer the flexibility to either optimise for regions or choose not to and instead use the garbage
collector as a fall-back opportunity. The garbage collector could then be used alone or in
combination with region inference, depending on how region unfriendly a program was.
We believed this flexibility reduced the importance of the second and third problem at the
end of Section 4 and solved the sixth problem.

The garbage collector made it possible to bootstrap the ML Kit using the ML Kit itself [52]
and compare against SML/NJ (version 110.0.7) [30]. (A 1 GHz Pentium III, Coppermine,
machine equipped with 1 Gb RAM was used for the bootstrapping experiment). In the
first setting, the SML/NJ compiler was used to compile the ML Kit sources into a version
of the ML Kit that, when running, used the SML/NJ runtime system. This version of the
ML Kit was called kit1. Using kit1 to compile the ML Kit sources into kit2 used 809 Mb
and took 40:41 min. The kit2 executable ran on the runtime system of the ML Kit using
the combination of region inference and garbage collection. Using kit2 to compile the ML
Kit sources into kit3 used 904 Mb and took 17:33 min. This example showed that the
combination of region inference and garbage collection can work extremely well on very
large programs.

8. Related work

Much work has either influenced or been influenced by the work on region-based memory
management and the later work on the ML Kit implementation.

One of the first suggestions for dividing memory into regions (or zones) appears in the
AED Free storage package by Ross [45]. Memory regions are now also widely used in the
C/C++ language community. For instance, regions (or arenas) are used in the Apache Web
server [47] to dispose memory allocated by a Web script once the script has terminated.



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 259

The idea of region inference was strongly influenced by the early work on effect systems
[37–39, 48, 49]. Other region-based frameworks for reasoning about memory reuse have
been proposed, including a system for programs in continuation-passing style [61], one
based on linear types [62], and one based on an imperative region sublanguage [32, 44].
Another line of related work investigates techniques for improving region-based memory
management [2]. Common to these techniques is that they give up on the stack discipline
of the Tofte-Talpin region type system.

Tofte and Talpin’s quite involved soundness proof for the region type system [57, 58] has
sparked a number of investigations of alternative and simpler techniques for proving type
safety and soundness results for the region calculus [5, 11, 12, 31, 66].

Another line of related work includes the work by Aiken et al. on extending C with
explicit region annotations [22, 23] and the work on Cyclone, a safe dialect of C [27, 35].

Separate from the already mentioned suggestions for extending region-based memory
management, there have been a series of suggestions for making region-based memory
management work for logic programming languages [40] and object oriented languages [10,
14, 65]. Moreover, recently there has also been work on a language-independent framework
for region inference [41].

Also related to the work on region-based memory management is the work by Hofmann
and Jost on static prediction of space usage for first-order functional programs [33, 34].
This work is based on linear typing but does not make use of regions. Instead the work
focuses on tracking allocation and possible deallocation of individual memory cells.

There is a large body of work concerning general garbage collection techniques [36, 64]
and escape analysis for improving stack allocation in garbage collected systems [9, 26].
The additional complexity of region inference and the polymorphic multiplicity analysis
implemented in the ML Kit [8] allow more objects to be stack allocated than does traditional
escape analyses, which allows only local, non-escaping values to be stack allocated. Region
type systems have also been used for reasoning about the correctness of copying garbage
collectors [43, 63]. Related to the latest ML Kit implementation, which uses an almost
tag-free scheme for combining region-inference and garbage collection is the large body of
work on tag-free garbage collection [1, 4, 24, 25, 59].

9. Current status and beliefs

Region-based memory management has matured quite significantly since its conception
in 1994 as exemplified by the following noteworthy points about the status of the latest
Version 4 of the ML Kit [52].

– Optimisations can be combined with region inference: Before region inference and other
region analyses are performed on program fragments [8], the ML Kit performs a se-
ries of optimisations on an intermediate representation of the program fragments. The
optimisations that are performed include function in-lining, specialisation of recursive
functions and unboxing of function arguments. Each of these optimisations is region
memory safe in the sense that executing an optimised program uses no more memory
than when executing the corresponding unoptimised program.



260 TOFTE ET AL.

– The ML Kit can bootstrap itself; see Section 7.
– Measurements show that the combination of region inference and garbage collection, as

implemented in the ML Kit, is as efficient with respect to memory usage and execution
time as a state-of-the-art generational garbage collection system [30].

– Recently, Elsman and Hallenberg [21] have implemented a multi-threaded Web server
platform for Standard ML called SMLserver. The SMLserver project, which builds on
a bytecode backend and interpreter for the ML Kit, demonstrates that region inference
scales to environments where programs run quickly, but are executed often. While pro-
grams in SMLserver may execute simultaneously (running in different threads, without
sharing objects) memory is allocated from a shared pool of region pages; thus, even
programs that run simultaneously may use the same region page at different points in
time.

Currently our beliefs about region-based memory management are as follows.
Things we believe work well:

1. The expressive power of region inference is capable of taking care of the vast majority
of memory management in typical Standard ML programs.

2. The deallocation that is not done well by region inference can be handled adequately by
a garbage collector.

3. Having a proof of soundness of the region inference rules (and the region inference
algorithm) gives an unusually high degree of confidence in the memory integrity of
compiled programs, even if the proof does not cover all of Standard ML.

4. Learning the discipline of programming with regions is a worthwhile effort if one is
interested in control over memory resources.

5. The technology does scale to complicated language constructs (like Standard ML mod-
ules) and large programs.

6. Region-based runtime systems can be small and efficient and the operations they need
to perform fit well with both RISC and CISC machines.

7. The concept of finite regions is very powerful. Finite regions typically account for the vast
majority of allocations at runtime and they can be handled with speed and compactness
at runtime.

8. Region profiling is an excellent way of locating and fixing space leaks, except for the
fact that region profiling requires inspection of region-annotated terms, which can be
verbose.

Things that have disappointed:

1. Unless combined with garbage collection, leaving region inference completely to the
compiler is probably not a good idea. It makes region-annotated terms unnecessary big
and vulnerable to program changes.

2. The storage mode analysis is probably not the best way of handling tail recursion; it is
complicated and vulnerable to program changes. Attempts to address the same problem
as the storage mode analysis include [2, 15, 32].



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 261

3. It is not clear that infinite regions are such a good idea. They give fragmentation problems
and there is no natural size of region page to pick. Moreover, they introduce complications
throughout the analyses and code generation. Experience with the garbage collector
suggests that it might be better to use garbage collection for objects that region inference
puts into infinite regions, due to fragmentation problems. But the experience so far is
not conclusive: more investigation is needed to settle the question about whether infinite
regions are a good or bad idea.

10. Future directions

The general approach taken in the our work so far has been to start from Standard ML and
then push region inference through a number of program analyses right down to machine
language.

What has emerged is that the very heavy employment of automatic program analyses has
pragmatic drawbacks and also that the implementation of regions, once it gets all the way
down to the machine representation, becomes somewhat clumsy. On the other hand, as a
result of the experimentation, we now know much more about what the strong points of
regions are and what parts of the theory and implementation are candidates for scrapping.

One strand of future work is to investigate closer the use of infinite regions. An obvious
thing to try is to use only one infinite region and then use a more sophisticated garbage
collector (a generational collector, for example) on that region. Another issue is that, in
the present implementation of garbage collection, one can only garbage collect at function
entry points—it would, of course, be better if one could collect at each allocation point.

Another strand of future work is to use the accumulated knowledge about regions in
the design of a new programming language that allows programmers to program explicitly
with regions. Interesting steps in this direction have recently been taken in the Cyclone
project [27, 35], which uses region-based memory management for a safe variant of the C
programming language.

11. Conclusion

One form of interaction between theory and practice is that as one tries to make theory
practical, practice produces problems, which one can invent yet more theory to tackle.

But this is perhaps not the most fruitful form of interaction. If practice objects, the reason
could be that the theory is too complicated and not that it is in need of further complication
or refinement.

Some complexity seems unavoidable—for region inference, polymorphic recursion in
regions is a case in point. But when working with theory alone, it is very difficult to know
whether some particular expressive capability is important. Our experience has been that
one pays for expressive power in the source language or program analyses by a sometimes
inordinate amount of further difficult design and implementation choices in the implemen-
tation. Other times, one can be fortunate to invent analyses that do just the right thing and
work wonderfully well. Only experimentation allows one to tell the difference.



262 TOFTE ET AL.

Perhaps the most important power of experimentation and practice is to guide the selection
of what expressive power needs to be present in the source language and in the analyses
embedded in the compiler. Practice is that wonderful thing that allows us to discard some
theory as superfluous, so that we can concentrate on developing and implementing theory
that the programmer finds useful.

Acknowledgments

We wish to thank Peter Bertelsen, Tommy Højfeld Olesen, Nick Rothwell, Peter Sestoft,
and David N. Turner for their contributions to the development of the ML Kit. We would
also like to thank the anonymous reviewers and the editors for valuable comments and
suggestions.

Notes

1. The type schemes inferred by region inference could be used to locate memory leaks: if the type scheme inferred
for a function contained a so-called escaping put-effect, then it indicated that applications of the function could
lead to space leaks [57].

2. See http://www.itu.dk/research/mlkit/kit2/readme.html
3. See http://www.itu.dk/research/mlkit/kit2/summerschool.html

References

1. Aditya, S., Flood, C.H., and Hicks, J.E. Garbage collection for strongly-typed languages using run-time type
reconstruction. In LISP and Functional Programming, 1994, pp. 12–23.

2. Aiken, A., Fähndrich, M., and Levien, R. Better static memory management: Improving region-based analysis
of higher-order languages. In ACM Conference on Programming Language Design and Implementation, 1995,
pp. 174–185.

3. Appel, A.W. Garbage collection can be faster than stack allocation. IPL, 25(4) (1987) 275–279.
4. Appel, A.W. Runtime tags aren’t necessary. Lisp and Symbolic Computation, 2 (1989) 153–162.
5. Banerjee, A., Heintze, N., and Riecke, J.G. Region analysis and the polymorphic lambda calculus. In Logic

in Computer Science, 1999, pp. 88–97.
6. Birkedal, L., Rothwell, N., Tofte, M., and Turner, D.N. The ML Kit (Version 1). Technical Report DIKU-

report 93/14, Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100
Copenhagen, 1993.

7. Birkedal, L. and Tofte, M. A constraint-based region inference algorithm. Theoretical Computer Science, 258,
(2001) 299–392.

8. Birkedal, L., Tofte, M., and Vejlstrup, M. From region inference to von Neumann machines via region
representation inference. In ACM Symposium on Principles of Programming Languages, 1996, pp. 171–183.

9. Blanchet, B. Escape analysis: Correctness proof, implementation and experimental results. In ACM Symposium
on Principles of Programming Languages, 1998, pp. 25–37.

10. Boyapati, C., Salcianu, A., Beebee, W., and Rinard, M. Ownership types for safe region-based memory
management in real-time java. In ACM Conference on Programming Language Design and Implementation,
2003.

11. Calcagno, C. Stratified operational semantics for safety and correctness of the region calculus. In ACM
Symposium on Principles of Programming Languages, 2001.

12. Calcagno, C., Helsen, S., and Thiemann, P. Syntactic type soundness results for the region calculus. Information
and Computation, 173(2) (2002).



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 263

13. Cheney, C.J. A non-recursive list compacting algorithm. Communications of the ACM, 13(11) (1970) 677–
678.

14. Christiansen, M.V. and Velschow, P. Region-based memory management in Java. Master’s thesis, DIKU,
University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark, 1998.

15. Crary, K., Walker, D., and Morrisett, G. Typed memory management in a calculus of capabilities. In ACM
Symposium on Principles of Programming Languages, 1999, pp. 262–275.

16. Damas, L. and Milner, R. Principal type schemes for functional programs. In ACM Symposium on Principles
of Programming Languages, 1982, pp. 207–212.

17. Elsman, M. Program modules, separate compilation, and intermodule optimisation. Ph.D. thesis, Department
of Computer Science, University of Copenhagen, 1999.

18. Elsman, M. Static interpretation of modules. In ACM International Conference on Functional Programming,
Paris, France, 1999, pp. 208–219.

19. Elsman, M. Garbage collection safety for region-based memory management. In ACM Workshop on Types in
Language Design and Implementation, 2003.

20. Elsman, M. and Hallenberg, N. An optimizing backend for the ML Kit using a stack of regions. Student
Project 95-7-8, Department of Computer Science, University of Copenhagen (DIKU), 1995.

21. Elsman, M. and Hallenberg, N. Web programming with SMLserver, In International Symposium on Practical
Aspects of Declarative Languages, 2003.

22. Gay, D. and Aiken, A. Memory management with explicit regions. In ACM Conference on Programming
Language Design and Implementation, 1998, pp. 313–323.

23. Gay, D. and Aiken, A. Language support for regions. In ACM Conference on Programming Language Design
and Implementation, 2001, pp. 70–80.

24. Goldberg, B. Tag-free garbage collection for strongly typed programming languages. In ACM Conference on
Programming Language Design and Implementation, 1991, pp. 165–176.

25. Goldberg, B. and Gloger, M. Polymorphic type reconstruction for garbage collection without tags. In LISP
and Functional Programming, 1992, pp. 53–65.

26. Goldberg, B. and Park, Y.G. Higher order escape analysis: Optimizing stack allocation in functional program
implementations. In Proceedings of the third European Symposium on Programming, LNCS-432, 1990, pp.
152–160.

27. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and Cheney, J. Region-based memory management
in cyclone. In ACM Conference on Programming Language Design and Implementation, 2002.

28. Hallenberg, N. A region profiler for a standard ML compiler based on region inference. Student Project 96-5-7,
Department of Computer Science, University of Copenhagen (DIKU), 1996.

29. Hallenberg, N. Combining garbage collection and region inference in the ML Kit. Master’s thesis, Department
of Computer Science, University of Copenhagen. Available via http://www.it-c.dk/research/mlkit,
1999.

30. Hallenberg, N., Elsman, M., and Tofte, M. Combining region inference and garbage collection. In ACM
Conference on Programming Language Design and Implementation, 2002.

31. Helsen, S. and Thiemann, P. Syntactic type soundness for the region calculus. In Proceedings of the 4th
International Workshop on Higher Order Operational Techniques in Semantics, Published in vol. 41(3) of the
Electronic Notes in Theoretical Computer Science, 2000.

32. Henglein, F., Makholm, H., and Niss, H. A direct approach to control-flow sensitive region-based memory
management. In ACM Conference on Principles and Practice of Declarative Programming, Montréal, Canada,
2001, pp. 175–186.

33. Hofmann, M. A type system for bounded space and functional in-place update. Nordic Journal of Computing,
7(4) (2000) 258–289.

34. Hofmann, M. and Jost, S. Static prediction of heap space usage for first-order functional programs. In ACM
Symposium on Principles of Programming Languages (POPL’03), 2003, pp. 185–197.

35. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang, Y. Cyclone: A safe dialect of C. In
USENIX Annual Technical Conference, 2002.

36. Jones, R. and Lins, R. Garbage Collection, Wiley, 1996.
37. Jouvelot, P. and Gifford, D. Algebraic reconstruction of types and effects. In ACM Symposium on Principles

of Programming Languages, 1991.



264 TOFTE ET AL.

38. Lucassen, J. and Gifford, D. Polymorphic effect systems. In ACM Symposium on Principles of Programming
Languages, 1988.

39. Lucassen, J.M. Types and effects, towards the integration of functional and imperative programming. Ph.D.
thesis, MIT Laboratory for Computer Science, MIT/LCS/TR-408, 1987.

40. Makholm, H. A region-based memory manager for Prolog. In International Symposium on Memory Manage-
ment (ISMM’2000), 2000, pp. 25–34.

41. Makholm, H. A language-independent framework for region inference. Ph.D. thesis, Department of Computer
Science, University of Copenhagen, 2003.

42. Miller, J.S. and Rozas, G.J. Garbage collection is fast, but a stack is faster. Technical Report Memo 1462,
MIT, Cambridge, Massachusetts, 1994.

43. Monnier, S., Saha, B., and Shao, Z. Principled scavenging. In ACM Conference on Programming Language
Design and Implementation, 2001.

44. Niss, H. Regions are imperative: Unscoped regions and control-flow sensitive memory management. Ph.D.
thesis, Department of Computer Science, University of Copenhagen (DIKU), 2002.

45. Ross, D.T. The AED free storage package. Communication of the ACM, 10(8) (1967) 481–492.
46. Runciman, C. and Wakeling, D. Heap profiling of lazy functional languages. Journal of Functional Program-

ming, 3(2) (1993) 217–245.
47. Stein, L. and MacEachern, D. Writing Apache Modules with Perl and C, O’Reilly & Associates, 1999, ISBN

1-56592-567-X.
48. Talpin, J.-P. and Jouvelot, P. Polymorphic type, region and effect inference. Journal of Functional Program-

ming, 2(3), 1992.
49. Talpin, J.-P. and Jouvelot, P. The type and effect discipline. Information and Computation, 111(2) (1994)

245–296. Extended abstract in Proceedings of the IEEE Conference on Logic in Computer Science (LICS’92),
June 1992.

50. Tofte, M. and Birkedal, L. A region inference algorithm. ACM Transactions on Programming Languages and
Systems, 20(4) (1998) 734–767. (plus 24 pages of electronic appendix).

51. Tofte, M. and Birkedal, L. Unification and polymorphism in region inference. In Proof, Language, and
Interaction. Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte (Eds.), Foundations of
Computing. Cambridge, Massachusetts: The MIT Press, 2000, pp. 389–425.

52. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T., and Sestoft, P. Programming with regions
in the ML Kit (for Version 4). The IT University of Copenhagen, 2002. Available via http://www.it-
c.dk/research/mlkit.

53. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T.H., Sestoft, P., and Bertelsen, P. Programming
with regions in the ML Kit, Technical Report DIKU-TR-97/12, Department of Computer Science, University
of Copenhagen, 1997. Available via http://www.it-c.dk/research/mlkit.

54. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T.H., Sestoft, P., and Bertelsen, P. Programming
with regions in the ML Kit (for Version 3). Technical Report DIKU-TR-98/25, Department of Computer
Science, University of Copenhagen, 1998. Available via http://www.it-c.dk/research/mlkit.

55. Tofte, M. and Talpin, J.-P. Data region inference for polymorphic functional languages. Manuscript, 1992.
56. Tofte, M. and Talpin, J.-P. A theory of stack allocation in polymorphically typed languages. Technical Report

DIKU-report 93/15, Department of Computer Science, University of Copenhagen, 1993.
57. Tofte, M. and Talpin, J.-P. Implementing the call-by-value lambda-calculus using a stack of regions. In ACM

Symposium on Principles of Programming Languages, 1994, pp. 188–201.
58. Tofte, M. and Talpin, J.-P. Region-based memory management. Information and Computation, 132(2) (1997)

109–176.
59. Tolmach, A.P. Tag-free garbage collection using explicit type parameters. In LISP and Functional Program-

ming, 1994, pp. 1–11.
60. Vejlstrup, M. Multiplicity inference. Master’s thesis, Department of Computer Science, Univ. of Copenhagen,

1994, report 94-9-1.
61. Walker, D., Crary, K., and Morrisett, G. Typed memory management via static capabilities. ACM Transactions

on Programming Languages and Systems (TOPLAS), 22(4) (2000) 701–771.
62. Walker, D. and Watkins, K. On regions and linear types. In ACM International Conference on Functional

Programming, 2001, pp. 181–192.



A PERSPECTIVE ON REGION-BASED MEMORY MANAGEMENT 265

63. Wang, D.C. and Appel, A.W. Type-preserving garbage collectors. In ACM Symposium on Principles of
Programming Languages, 2001, pp. 166–178.

64. Wilson, P.R., Johnstone, M.S., Neely, M., and Boles, D. Dynamic storage allocation: A survey and critical
review. In International Workshop on Memory Management, 1995.

65. Yates, B.N. A type-and-effect system for encapsulating memory in Java. Master’s thesis, Department of
Computer Science and Information Science, University of Oregon, 1999.

66. Zilio, S.D. and Gordon, A. Region analysis and a pi-calculus with groups. Journal of Functional Programming,
12(3) (2002) 229–292.


