Erratum "Ion Interaction Approach: Pressure Effect on the Solubility of Some Minerals in Submarine Brines and Seawater," published in *J. Solution Chem.* 28, 667–692 (1999)

Boris S. Krumgalz^{1,2,4} and Avraham Starinsky³

The above $\operatorname{article}^{(1)}$ was devoted to the estimation of mineral solubility in the deep waters of several natural brines using the Pitzer volumetric ion-interaction parameters. The solubilities of several evaporite minerals were determined as a function of pressure (depth) of up to 1000 bars for very saline natural water bodies. The degrees of saturation of minerals such as halite (NaCl), anhydrite (CaSO₄), gypsum (CaSO₄ · 2H₂O), celestite (SrSO₄), and barite (BaSO₄) were calculated for the Orca Basin (Gulf of Mexico), the Tyro and Bannock II depressions (the Mediterranean Sea) *in situ* depths in comparison with average oceanic water.

Recently, Dr. Giles M. Marion from the Earth and Ecosystem Sciences, Desert Research Institute, Reno, has drawn our attention to some differences between our calculations and his. We have checked our calculations, and found an arithmetic error in the calculation of $\gamma_{\pm,p}/\gamma_{\pm,p^0}$ and consequently Ω_p/Ω_{p^0} for 1:2 and 2:1 electrolytes. Thus, all our results and conclusions obtained in the discussed paper for the solubility of 1:1 electrolytes NaCl, CaSO₄, CaSO₄ · 2H₂O, BaSO₄, and SrSO₄ in natural waters, are valid and were not affected by the error. The error for 1:2 and 2:1 electrolytes increases with solution concentrations and depth (pressure) reaching for $\gamma_{\pm,p}/\gamma_{\pm,p^0}$ values of ca. 5% for 0.7 *m* K₂SO₄ and ca. 7% for 5.0 *m* MgCl₂ at 1000 bars, while for Ω_p/Ω_{p^0} values were ca. 17 and ca. 23%, respectively. The corrected values of $\gamma_{\pm,p}/\gamma_{\pm,p^0}$ and Ω_p/Ω_{p^0} for K₂SO₄ and MgCl₂ are given in Table I.

¹Environmental Studies and Modeling, P.O.B. 12115, Nesher 36843, Israel.

²Israel Oceanographic & Limnological Research, National Institute of Oceanography, P.O.B. 8030, Haifa 31080, Israel.

³The Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel.

⁴To whom all correspondence should be addressed; e-mail: boris@ocean.org.il

	Pressure $(bar)^a$				
Parameters	1	100	300	700	1000
	K ₂ SO ₄ , 0.7 <i>m</i>				
$K_{\rm sp,p}/K_{\rm sp,p}^{\rm o}$	1.000	1.144	1.496	2.558	3.827
$\gamma_{\rm p}/\gamma_{\rm p}^{\rm o}$ w/o $\Delta k_{\rm s}$	1.000	1.012	1.035	1.080	1.113
$\gamma_{\rm p}/\gamma_{\rm p}^{\rm o}$ with $\Delta k_{\rm s}$	1.000	1.011	1.033	1.068	1.087
$\hat{\Omega}_{\rm p}/\hat{\Omega}_{\rm p}^{\rm o}$ w/o $\Delta k_{\rm s}$	1.000	0.905	0.741	0.492	0.360
$\Omega_{\rm p}^{\rm r}/\Omega_{\rm p}^{\rm o}$ with $\Delta k_{\rm s}$	1.000	0.905	0.736	0.476	0.336
	MgCl ₂ , 1.0 m				
$K_{\rm sp,p}/K_{\rm sp,p}^{\rm o}$	1.000	1.114	1.382	2.127	2.939
$\gamma_{\rm p}/\gamma_{\rm p}^{\rm o}$ w/o $\Delta k_{\rm s}$	1.000	1.007	1.020	1.045	1.061
$\gamma_{\rm p}/\gamma_{\rm p}^{\rm o}$ with $\Delta k_{\rm s}$	1.000	1.007	1.019	1.039	1.049
$\Omega_{\rm p}/\Omega_{\rm p}^{\rm o}$ w/o $\Delta k_{\rm s}$	1.000	0.917	0.769	0.536	0.406
$\Omega_{\rm p}^{\rm P}/\Omega_{\rm p}^{\rm O}$ with $\Delta k_{\rm s}$	1.000	0.917	0.767	0.527	0.393
I.	MgCl ₂ , 5.0 m				
$K_{\rm sp,p}/K_{\rm sp,p}^{\rm o}$	1.000	1.114	1.382	2.127	2.939
$\gamma_{\rm p}/\gamma_{\rm p}^{\rm o}$ w/o $\Delta k_{\rm s}$	1.000	1.015	1.046	1.104	1.146
$\gamma_{\rm p}/\gamma_{\rm p}^{\rm o}$ with $\Delta k_{\rm s}$	1.000	1.015	1.042	1.085	1.107
$\Omega_{\rm p}/\Omega_{\rm p}^{\rm o}$ w/o $\Delta k_{\rm s}$	1.000	0.940	0.828	0.633	0.512
$\Omega_{\rm p}^{\rm P}/\Omega_{\rm p}^{\rm O}$ with $\Delta k_{\rm s}$	1.000	0.939	0.820	0.601	0.461

Table I. Corrected Values of $K_{sp,p}/K_{sp,p}^{o}$, γ_p/γ_p^{o} and Ω_p/Ω_p^{o} at 25°Cfor K_2SO_4 and $MgCl_2$ Solutions

 $^{a}1$ bar = 0.1 MPa.

ACKNOWLEDGMENT

The authors express their appreciation to Dr. G. Marion for drawing their attention to the error.

REFERENCE

1. B. S. Krumgalz, A. Starinsky, and K. Pitzer. J. Solution Chem. 28, 667 (1999).