@ Information Retrieval, 8, 2540, 2005
(© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Automatic Alphabet Recognition*

MAAYAN GEFFET mary @cs.huji.ac.il
YAIR WISEMAN wiseman @cs.huji.ac.il
DROR FEITELSON feit@cs.huji.ac.il

Hebrew University Jerusalem

Received October 29, 2002; Revised August 7, 2003; Accepted October 29, 2003

Abstract. The last step of the Information Retrieval process is to display the found documents to the user.
However, some difficulties might occur at that point. English texts are usually written in the ASCII standard.
Unlike the English language, many languages have different character sets, and do not have one standard. This
plurality of standards causes problems, especially in a web environment, where one may download a document
with an unknown standard. This paper suggests a purely automatic way of finding the standard which was used by
the document writer based on the statistical letters distribution in the language. We developed a vector-space-based
method that creates frequencies vectors for each letter of the language and then matches a new document’s vectors
to the pre-computed templates. The algorithm was applied on various types of corpora in Hebrew, Russian and
English, and provides an efficient solution to the stated problem in most cases.

Keywords: natural language alphabet, characters set, letters’ mapping

1. Introduction

As the Internet has become a part of contemporary life, people all over the world access the
web and look for information on a daily basis. The importance of national language support
is growing together with the increasing popularity and spread of the network.

Most languages are alphabetical, so they have a constant set of letters. Thus, all the words
are composed from them. However, in computer documents, the same letter may be encoded
in different ways. Some of these different methods are part of the language usage, such as
the distinction between upper case and lower case letters in English. Other distinctions are
formatting tools used by document authors, such as the distinction between boldface and
italics.

“Encoding” is a mapping of letters within the document to binary codes. In infor-
mation technology, the letters are represented by byte-long codes. Unicode uses two
bytes codes. Sometimes, different codes are assigned to the same letter of the alphabet
according to the encoding type. For example, English is commonly represented by
the ASCII code, which defines a 7-bit value for each lower case letter, upper case
letter, and punctuation symbol. This has not always been so; early IBM mainframes used
EBCDIC (IBM Character Data Representation Architecture, Reference and Registry,

*A preliminary version appeared in SCI2002, Orlando, FL, pp. 122-128.

26 GEFFET, WISEMAN AND FEITELSON

SC09-2196-00, Dec. 1996), which utilizes a different encoding. The ISO-8859 standard
stipulates that ASCII be used, and today practically all English documents use ASCII. When
such a document is downloaded, there is no ambiguity with regard to which letters should be
displayed.

As ASCII only defines 7-bit codes, the first bit in the byte-long encoding used by com-
puters is always 0. The second set of 128 values, in which the first bit is 1, is undefined by
ASCII. Thus fonts that translate the ASCII codes to graphical representations are free to
use whatever representation they wish for the additional codes. A common usage is to use
special characters; either Latin characters with special markings (e.g. 4, 4, &, €, o, ¢, 1) or
characters of foreign languages. Note that common punctuation symbols do not have to be
included, as they are already defined by ASCII, and this has become a de-facto standard for
other languages as well.

The ISO-8859 standard defines the mapping of the higher 128 codes for Latin alphabets
and for many other languages, including Cyrillic, Arabic, Greek, and Hebrew alphabets
(these use different numbers: 8859-5 is Cyrillic, 8859-6 is Arabic, etc.) (Information Tech-
nology 1998). An alternative is the Unicode standard, which uses 16-bit codes to provide
unique codes to the symbols needed for all commonly used alphabets in the world. Re-
grettably, these standards have not come to dominate usage, as opposed to the dominance
of ASCII for English. For example, the standard used by Microsoft software for Hebrew
characters (known as Windows-1255) (Northrup 1999) does not conform to ISO-8859.
Thus, it is relatively common to download a document in a non-English language and
find that it uses an unexpected encoding of letters. The result is that the wrong glyphs
are displayed and the document cannot be read (figure 1). Such cases occur quite often
while exploring non-English sites on the web. The typical solution is to try different fonts
supported by the browser with the hope that one of them uses the same mapping as the
document.

Another typical problem for Semitic languages is bi-directional text, where some text is
read right-to-left (e.g. words) and some other characters (e.g. numbers) are read left-to-right.
There are two ways to represent this type of text: (i) logical, and (ii) visual. In the logically
encoded text, the characters are stored in the order they are typed by the human user, using
the direction marking flags (‘/tr’ for left-to-right, ‘r#l’ for right-to-left). Obviously, there is
aneed for a special conversion algorithm to display logically stored text. The most common
algorithm is the Unicode Bi-directional algorithm (The Unicode Consortium 2000). The
visual representation stores the text as it should be displayed on the screen device. As this
method has many disadvantages (Northrup 1999), the logical representation has become
a standard and is supported by the Internet Explorer 5 (Bracewell and Karp 1998) and
the Netscape Navigator 6.1 Browsers (Smith 2001). The existing standards for web pages,
HTML-4 (Graham 1998) and XHTML 1.0 (Kennedy and Musciano 2000) (latest version,
which is a reformulation of HTML 4 in XML 1.0), support Bi-directional text as defined
in Unicode’s Bi-directional algorithm (Northrup 1999, Jaeger 2002). According to this
standard users supply a language, a charset (to identify the encoding standard) and a dir
(the direction of a page—*‘rfl’ or ‘Itr’) parameters in their HTML pages in order to allow
a browser to process a document correctly. Unfortunately, many Hebrew documents are
encoded visually in various non-standard ways, and therefore cannot be displayed even by

AUTOMATIC ALPHABET RECOGNITION 27

ttp: /i wwwi~wiseman/kohelat.html

OYWAeI To TAT 2 MEnE dNaY

ttp://www/~wiseman/kohelet.html

[c] Qe - o

Ihttp://www /~wiseman/kohelet.html

HMIenIise KMO rer mnmsé bmMAY Uusr

Figure 1. Results of displaying a Hebrew document with different fonts, using a Hebrew version of Netscape
(Smith 2001). The top one provides the correct decoding of the letters. The second font does not define any
glyphs for the higher 128 codes, so the browser displays question marks for all the unknown symbols. Only spaces
are displayed correctly. The third font uses the Unicode standard, which shows some special graphical symbols.
The last one is a Cyrillic font, which displays Cyrillic letters that share the same code as the desired Hebrew
ones.

standard-conforming browsers. Thus, even if the user knows the language of the document,
it is not enough for correct decoding.

Our goal in this paper is to develop a methodology that can be used by a browser to
automatically determine which encoding was used in a document. This will allow the
browser to choose the correct font for displaying the document, without requiring a trial-
and-error search by the user. We assume that the decoded document, and the language
and the direction of the document are given as an input to our algorithm. It should be
noted that the solutions for the language recognition and the bi-directional text problems

28 GEFFET, WISEMAN AND FEITELSON

can be easily derived from our method as well. The outline of the algorithm is given
below.

2. Template-based recognition

We aim to find an efficient statistical solution to the text encoding recognition problem, with
no knowledge of morphological or syntactic rules. Therefore, this is a general method for
any alphabetic language. The basic premise is to pre-compute universal templates of letter
distribution in a language based on various corpora examples, and then compare them to
the statistics of a given document that needs to be decoded.

2.1. Position vectors

The first problem determining which kind of statistics analysis to use. It has been shown
in Wiseman (2000) that the distribution of letters in a given human language is generally
similar in many texts. There are always exceptions to this rule. For example, the first chapter
of the Hebrew Bible doesn’t contain the letter “Samech” (S). This was likely a purposeful
omission, so that it does not reflect a regular Hebrew text.

Unfortunately, a good recognition cannot be achieved by this information. There are
groups of 3—4 letters (e.g. A, B, $, and N) which have very close frequencies, so it will
be hard or even impossible to distinguish between them (figure 2). We are interested in
getting more detailed characteristics of each letter in the language. This leads us to a
vector-space-based model. Our first attempt was to construct a “position vector” for each
letter, by counting its occurrences at every position in the word separately.

10 - Letters Distribution in Hebrew

=

Letters Frequencies in %

ABGDHWZX6 | KLMNSS&PCQRZS$T

Figure 2. Letters frequencies distribution in Hebrew Scientific Journals (HSJ in Table 1). The Hebrew letters are
displayed using their Latin transliteration table from the appendix.

AUTOMATIC ALPHABET RECOGNITION 29

More formally, define count;; to be the number of times letter / appears in position i
in the word. The 20th position in the vector is dedicated for the letter’s occurrences at the
last position in the word. For example, for the word “bicycle”, the last—the 20th position
of the letter’s “e” vector will be incremented (and not the 7th position in the vector).
Thus, count;; = count!?' 145t 4 countllfj.S’. The position vector P; is then defined to be

not—last

1,
count;; count!®s!
(@1, @, ..., @19, Arasy), Where @; = 22 4 100, and @y = =22 4 100, total

denotes the total number of all the letters in the text and words are asstloltrﬁed to be shorter
than 20 letters long. Note, that practically all encodings agree on the ASCII standard, so the
white spaces, newlines and punctuation marks will be encoded identically in all of them.
Based on this information, the document can be parsed into words and the position of each
letter in the word can be discovered. It should be noted that the direction of the text is given
as an input.

Comparing the vectors of frequencies of the letters, rather than single values, provides
much more accurate results (figures 3, 4 and 7). Some letters tend to appear more often
in the beginning of a word, and others in the middle or in the end. For instance, articles,
prepositions and verb prefixes are single letters which appear in the beginning of words very
frequently in Hebrew, while plural form suffixes will be often found in the end. In Hebrew
and Arabic there are also several letters that are written differently in different positions. In
Hebrew, these are special forms in the final position, while in Arabic there may be special
forms for both the first and the final positions. Such forms will therefore never appear in the
middle, and their vectors will include all zeros except for the correct position. The non-final
form of these letters, on the other hand, will have a zero at the first and/or last place, as for

M in figure 3.

The Four Top Letters Positions Vectors in Hebrew

45
~
N WA
t
i e
i h Y I
ss A e
\
3 b3
= '
& } £ :
25 . 5]
S | ; N]
> i 4 {
o> By i
D 2 <
g]
@ {
R H
= s 50 !
N [
I
N ¥
i -, 17
1 "'\ 1z
-, i
0.5 :1 ;
S S i
¥ e W i
o —— h Sy -
9 15 16 17 18 19 LAST

8 —= = 10 ...:..11 . 12 1(:‘ 14
The Letter Position in the Word

Figure 3. Position vectors for the four most frequent letters (I, W, H, M) in the Hebrew Scientific Journals (HSJ
in Table 1). While in this and other graphs the x axis is actually discrete, plotting lines that connect the values aids
the eye in making the comparison. As we can see the vectors are very different.

30 GEFFET, WISEMAN AND FEITELSON

The Rarest Letters Positions Vectors in Hebrew

0.9

The Frequency in %

e rrest Ryl SN

A B < R S L
The Letter Position in the Word

Figure 4. Position vectors for the six rarest letters (S, 6, X, &, Q, Z) are quite characterizing as well.

2.2. Environmental vectors

So far, we looked at the text as a Oth order Markov Chain, as we treated each letter indepen-
dently. However, it may be helpful to consider the closest neighbors of the letter in order to
identify it, and for that purpose to extend our model to a higher order Markov Chain.

The basic approach of using statistical letters distribution in the language was proposed
by Shannon (1948). In Benedetto (2002) the authors use statistical information on the dis-
tribution of n-grams of letters in different languages in order to construct clusters of similar
languages. Damashek and Huffman employed n-grams of letter statistics to classify docu-
ments by their topic (Damashek 1995, Huffman 1995). Markov Chains are also commonly
used in a human language processing to define compression rules (Bookstein and Klein
1990, Cormack and Horspool 1987) and to compute the probability of the next letter by its

@ 9

precedents (Horspool and Cormack 1986, Yoon et al. 1999). For example, in English “q
tends to be followed by “u”, while “x” almost never occurs after “z” (Wiseman 2000, Ziv
and Lempel 1978). Such rules are a very strong feature in English, but less so in Hebrew
writing, which puts almost no restrictions on letters combinations, since it does not contain
vowels. Nevertheless, the differences in the probabilities of different pairs are sufficient to
aid in recognition.

First, we collect information about all possible pairs of letter occurrences in the corpus.
This data may be viewed as a matrix M of the size: |Alphabet| x |Alphabet|, where every
cell M;; contains the frequency, a; ;, of the corresponding pair of letters, where a; ; =
% * 100. The next step is to use this matrix of pairs to find characteristics for individual
letters. We notice that rows and columns of M represent the subsequent and preceding vectors
of all the letters, respectively. So here again we took a vector-space-model to represent a
letter’s closest environment (figures 5 and 8). For each letter / in the alphabet, we define its

“environmental vector” to be its row M, of frequencies of different successors: M; = (a;, 4,

AUTOMATIC ALPHABET RECOGNITION 31

The Letters Environment in Hebrew

2.5

The Frequency in %

8 1 K L M N
The Following Letter

Figure 5. Environmental vectors of the most frequent letters in the Hebrew Scientific Journals (HSJ in Table 1).
The difference between the letters is even bigger than as determined by the position vectors in figure 3.

1, . .
4 B.. . - Qi z), Where a; ;= % 100, where s is the letter I’s successor in the text, so the

complexity of the algorithm that constructs the environmental vectors is O (|Alphabet|®).

The main problem of both algorithms is ambiguity, when several distinct letters in the
document are mapped to a single letter in the template.

Note that we still did not use the information contained in the columns of the matrix,
the precedents “environmental vectors” (PM). This redundant information is useful to dis-
ambiguate the results, thus increasing our model to 2nd order Markov chains. Another
way to eliminate ambiguity is to combine the two proposed algorithms, the “environmental
vectors” and the “position vectors”, in the following way: the basic recognition is done
by the former technique as it usually outperforms the latter one, followed by the “position
vectors” results to correct errors obtained from the “environmental vectors” algorithm. The
“combined” method resulted in better accuracy precentages, as shown in Table 1.

2.3. On-line matching

Once the off-line construction of templates for various languages is completed, the system
can start to work on-line, getting new documents and matching their vectors to the templates.

The matching procedure receives two sets of vectors, V;, V, generated from two texts,
and output is a set of pairs, that are the closest to each other: PS = {(v,w) : v € V,w €
Va, f(v, w) = ming,ey, f (v, wl)}. V; usually stands for the template vectors and V; for the
new text vectors set.

Another question to be discussed in this context is the f function, i.e. the vectors distance
metries. We experimented with two versions of the norm formula: f; = ||V} — V|1 =

Doicicn Xi = yilvs. o = Vi = Valla = /<<, (xi — yi)?. The latter norm decreased

32 GEFFET, WISEMAN AND FEITELSON

Table 1. The combined method results table.

Sources Accuracy in %

Language Testno. Compared types Positions vectors Environmental vectors ~ Combined method

Hebrew 1 HN-HN** 100 100 100
Hebrew 2 HNI - HN2*** 91(2,1)* 100 100
Hebrew 3 HSJ - HSJ 100 100 100
Hebrew 4 HSJ - HN 100 100 100
Hebrew 5 HS - HS 94(2,0) 94(2,0) 100
Hebrew 6 HB - HB 100 100 100
Hebrew 7 HS - HN 76(6,2) 91(2,1) 91(2,1)
Hebrew 8 HB - HS 76(8,0) 91(3,0) 91(3,0)
Hebrew 9 HB - HSJ 76(6,2) 94(2,0) 94(2,0)
English 10 EC-EC 100 100 100
English 11 ES - ES 100 100 100
English 12 EL - EL 100 100 100
English 13 EL - ES 94(0,2) 94(2,0) 100
English 14 EL - EC 94(2,0) 94(2,0) 94(2,0)
English 15 ES - EC 76(4,4) 85(3,2) 91(1,2)
Russian 16 RN - RN 100 100 100
Russian 17 RS - RS 100 100 100
Russian 18 RP - RP 100 100 100
Russian 19 RD - RD 100 100 100
Russian 20 RP - RD 91(3,0) 91(2,1) 94(2,0)
Russian 21 RN - RP 80(5,2) 88(4,0) 88(4,0)

*The numbers of the errors of two types: (i) multiple matches (including the correct one), and (ii) unmatched
letters, are shown in the parenthesis, respectively.

**We denote X - X for comparison of two distinct parts of the same source.

**We denote HN1 - HN2 for comparison of two different newspapers.

the accuracy by up to 10% as demonstrated in figure 9, so we chose f; as the better metric
for our purposes. We also tried to use the well-known Kullback-Leibler divergence metric,
but it produced very poor results (less than 10% matches). This can be explained by the fact
that the KL-divergence metric works with probabilities instead of frequencies of the letters
co-occurrences.

We noticed that sometimes the direction of mapping had a crucial influence on the
accuracy. Therefore, mapping is executed in both directions: V; = V, and V, = V) to
reduce ambiguity and to ensure that every letter gets a pair from the other set. The two
results are then merged. Thus, the final number of errors is limited by the number of errors
the best of the directions made. This helped increase the hit ratio by up to 6% in 25% of the
cases as shown in figure 9.

AUTOMATIC ALPHABET RECOGNITION 33

2.4. The combined method
The final version of the proposed algorithm is summarized below:

0. Compute positions (P;) and environmental (M, PM) vectors for the templates set. This
is done off-line.

Get a new document from the user.

Compute positions (P,) and environmental (M,, PM,) vectors for the document.

Pick a template, either the default “Newspapers Style” or according to a user selection.
Compare the successors’ environmental vectors of the template, M, to those of the
document, M;, using f;. The resulting pairs of letters are stored in PS (the matched pairs
set).

5. For letters that got no or several mappings do:

Ll S

e Execute the 4th step mapping in the opposite direction:
M, = M,
e Check:
a) If a letter 15-2) in M, was mapped to n different letters in M, and if it got a unique
mapping ll.(l)
— Add a pair (151), 15.2)) as a match in PS.

now (which is one of those n):

b) If a letter l}z) in M, was not mapped at all and if it got a unique mapping li(l) now:
— Add a pair (ll.(]), l;z)) as a match in PS.

6. For letters that are still not resolved:

e Compare the precedents environmental vectors of the template, PM, and the docu-
ment, PM, in both directions, using f;. Repeat step 5 with PM, and PM.

e Compare the position vectors of the template, P; and the document, P>, in both
directions, using fj. Repeat step 5 with Py, and P>.

7. If there is only one unidentified letter l,({z) left in the document alphabet:

e Match it to the remaining letter in the language alphabet.

2.5. Results of the combined method

We tested our methods on various types of texts in three languages: Hebrew, Russian, and
English. The source types in Hebrew experiments were on-line newspapers (HN, HN1,
HN2), the Parliament protocols (HS), which represent the conversation language, several
on-line scientific journals (HSJ) (Hebrew resources, http://www.snunit.k12.il/), and the
Jewish Bible (HB). The English sources included Computer Science text (EC) (The Con-
versation English resource, http://www.athel.com), Conversation language (ES) (The Sci-
entific English resource, http://citeseer.nj.nec.com/cs), and the complete works of William
Shakespeare (EL) (The English Literature resources, http://www.chemicool.com/). The
Russian corpus contained on-line newspapers (RN), scientific articles collection (RS),

34 GEFFET, WISEMAN AND FEITELSON

The Accuracy Growth as Function of the Document Size

//
e

70

The Accuracy in %
\

-
——
——

30

1000 _ 3000 5000 . 10000
The Size of the Document in Bytes

Figure 6. The document size has a crucial influence on the accuracy of the statistical encoding recognition.
The larger the document, the more accurate the results. Naturally, the accuracy is quite low for extremely small
documents (of 30—150 words). It grows steadily with increasing text size, and reaches a maximum accuracy in
texts 700-1,500 words in length.

and the prose of A. S. Pushkin (RP), and F. M. Dostojevsky (RD) (Russian resources,
http://ruslit.virtualave.net.).

We also examined the influence of the text size on the computed statistics in order to find
the lower bound on the new document size. We ran the algorithms on texts of sizes varying
from 200 Bytes (30—40 words) to 100 MB (~15 million words). Significant changes occur
below 10 K (~1,500 words), mostly in the bottom half of this range; the difference between
5 K and 10 KB was of 2-3 letters. Starting from 10 K the matching results never changed
(as shown in figure 6).

Below are illustrative graphs for different stages of the algorithm (figures 7, 8, and 9).
The comparative results of the described algorithms are detailed in Table 1. Both vector
methods in isolation succeeded for homogeneous corpora, but produced some mismatching
for different types of text. The best case is, therefore, when we compared two similar sources,
such as two newspapers, the same author’s books or two halves of the same source, (e.g. the
Bible), that was divided into two parts and matched one to the other. The worst case is when
comparing ancient text to modern one, or written to conversational language. The lower
hit ratio for conversational language samples can be explained by their high number of
participants, since conversational language has almost no norms or restrictions. In order to
slove this problem, we need to find some common basis for all the language styles and genres.

3. Automatically generated dictionary

A list of frequently used words can provide a common basis for a language. So we would
like to construct a dictionary of the most common words constructed out of a large corpus.

AUTOMATIC ALPHABET RECOGNITION 35

The Letters "Positions Vectors" Comparison in Hebrew

fmm— A
A1
B
B1
N
o N

The Frequency in %

Agg
o T T T T T T T lwl T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19LAST
The Letter Position in the Word

Figure 7. Example of identification of 3 letters that have similar frequencies, based on position vectors. The
vectors are for A, B, N, obtained from two different texts in Hebrew; Scientific Journals (HSJ in Table 1) vs.
Newspapers articles (test no. 4 in Table 1). despite the similar frequencies, there is no ambiguity in matching by
position vectors: the two vectors for each letter are nearly overlapping. Note that N never occurs at the last position
since it has a special character for the final form.

The Letters "Environmental Vectors" Comparison in Hebrew
0.7
o.e
0.5

o.4

0.3

The Frequency in %

0.2

0.1

o T T T T

L S S S B T T T T T T T T T
A B G D H W Z X 6 | K L M N S8 & P C Q R 8 T
The Following Letter

Figure 8. Matching three medium-frequency letters from Hebrew Scientific Journals (HSJ in Table 1) vs. News-
papers articles (test no. 4 in Table 1), using environmental vectors. These vectors consist of over 20 meaningful
points (dimensions) while in the position vectors usually only the first 10 and the last one were informative,
therefore the similarity of the corresponding letter vectors is even more distinct in this model.

Building a dictionary is a very common method in other fields, like Data Compression
(Ziv and Lempel 1978) and Speech Recognition (Sloboda 1995). For this purpose the al-
gorithm takes a large text. We can use the text that was employed for template generation
in Section 2. The text is split into words. We consider a “word” any sequence of letters
surrounded by non-letter characters. The algorithm counts the words and sorts them ac-
cording to their number of appearances. Then, we can easily take the N most frequent

words.

36 GEFFET, WISEMAN AND FEITELSON

The comparative accuracy of
the different features
WO+ 1WM
2+ 1WM
| 1 +2WM

100 -

95 —

90 -

Accuracy in %

85 —

80 -

75 -~

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
The Tests

Figure 9. Comparison of the accuracy achieved by 3 on-line matching schemes, based on different combinations
of the vector distance norm f vs. f> and the use of one-way or two-way mapping (denoted ‘1W M’ or 2WM’).
The test numbers refer to Table 1. As we can see, the f1 + 2W M combination is always better than or equal to
the other two.

From this point, the dictionary integrates into our algorithm. We have some letters that
were mapped to several differnt letters in the template by the combined algorithm from
Section 2. For each mapping of such a letter, the modified algorithm fetches from the
dictionary the N most frequent words. Then these words are searched in the original text. The
mapping of a letter with the highest number of found words is assessed to be the correct one.

Afterward, the “disqualified” mappings have to be assigned to alternative letters. For
this we use the combined algorithm described in the previous section. We look for the best
matching letter, excluding the previously disqualified ones. This procedure is repeated until
there are no ambiguous mappings or when there is no change in the letters’ mapping table.
A sketch of the algorithm is given below:

1. Automatic Dictionary Generation out of large text (off-line):

(a) Split the text into words.
(b) Build a dictionary containing these words.
(c) Sort the dictionary according to the frequency of the words occurrences.

2. Given a new document to be decoded:

(a) For each letter / with an ambiguous mapping:
i. For each possible mapping m of [:

Fetch from the dictionary a list L of the N most frequent words containing m.
Substitute all the letters of all the words in L by their current mappings.
Search for the resulting words in the given document.

Set the mapping with the highest number of words occurrences to be the correct
one.

oawp>

(b) For the disqualified mappings apply the combined method from Section 2 to assign
them to alternative letters.

AUTOMATIC ALPHABET RECOGNITION 37

The Accuracy Growth as a Function of the Text Size

s
‘‘‘‘‘ SR dict. words —---aeeeeen
e P L AN E S T £ SRR
7 & = .
. Y 256 dict. words
A RERZ I RNV 73 1 S —
3 2 .
8 N AN
=.)
% &
=
S \ \
=4 .
P .,
€ N N\
=
3
= ; N
2ge e e =
RS ™ . ..,
S . - \\\\
S .. \\
1 = - S
N
. S
~ ..
F-\n \\\
o
16K 32K 64K N R 256K 1024K
The Decoded Text Size in KB

Figure 10. 'The number of mismatchings in the worst case as a function of text size for various numbers of words
fetched from the dictionary.

We have run the new algorithm on the test files from Section 2, and the accuracy has
been increased. The number of the mapping mistakes in the worst case (comparing different
texts types) as a function of N most frequent words and the size of the text can be seen in
figure 10. The conclusion from the graph is that 100% mapping accuracy can be achieved
by either working with a large enough document or increasing the number of words fetched
from the dictionary.

According to our method, there is no need for a special computerized linguistic resource,
rather we generate our dictionary automatically from the text. We use any text of the lan-
guage. Such a text can usually be found on the web. Moreover, the algorithm looks just
for N words in the dictionary. Since N is a constant, the algorithm will perform |Alphabet|
iterations of letters fixing in the worst case. Actually, this means that our algorithm’s com-
plexity is |Alphabet|*, since theoretically each letter can be mapped to every other letter in
the alphabet until it receives the correct interpretation.

4. Conclusions and future work

We developed and presented a purely automatic method for the document encoding recog-
nition, based on a vector-space model. It produced excellent results for languages from
different families: Semitic, Slavic, and Indo-European. The time complexity of the vectors
generation process is ®(n), where n is a number of characters in the new document. The
matching procedure performance is bound by @(|Alphabet|*).

We would like to suggest some possible extensions and further applications of our re-
search. The method may be naturally used to easily identify the language of the document
by comparing its statistics to pre-computed templates of given languages. Only one of them
will have a relatively small number of unmatched or multiple-matched letters. It can also

38 GEFFET, WISEMAN AND FEITELSON

be applied to determine document direction (‘/zr’, ‘rtl’) and representation type (visual,
logical) by simply running the “position vectors” algorithm in both ways and comparing
the results to the templates. Obviously, only one of the two obtained vectors sets will match
the templates, which reveals the correct direction and representation of the text. These are
common difficulties since people tend to omit this information despite the fact that it is
mandated by the HTML 4 standard. In summary, the only item our algorithm needs in order
to recognize the encoding of a given piece of text is the list of candidate languages to choose
from. Given this, it executes the three following stages, first it identifies the language, then
the representation type and the direction, and finally the character set.

It is interesting to note that we received consistently different frequencies for different
text types. Furthermore, it is a known fact in Linguistics (Yalin 1942) that every person uses
certain very common stop words and prepositions with a constant individual frequency.
There are also extreme examples, such as the first Prime Minister of Israel, David Ben-
Gurion, who never used the case preposition “AT”. This feature can be very effective in
identifying the authorship of written documents. We suggest to apply the presented method
to classify texts according to their date, author, and style. First, we prepare sample vectors
(templates) for various types of text and then compare them to a new document vectors and
index it to the closest vectors category, respectively.

The templates vectors as described so far were once calculated and then remain static.
Another possible extension is to generate and update the templates as new documents arrive
and are decoded, and thus make error correction dynamically.

Appendix

In this paper we used the Latin transliteration of the Hebrew and Russian Letters. The Rus-
sian alphabet consists of 33 letters: 21 consonants, 10 vowels and two letters without sound—
soft sign and hard sign (Russian transliteration, www.geocities.com/Colosseum/Track/
7635/). Undotted Hebrew alphabet consists of 22 letters, all of them are consonants, and
5 of them have a special “final” form (Segal and Itai, Hebrew transliteration, http://www.
cs.technion. ac.il/~serelgl/bxi/hmntx/teud.html) for a total of 27 symbols.

The Russian-Latin and Hebrew-Latin Transliteration Table:

Russian Latin Hebrew Latin
ah A alef A
beh B bet B
veh \Y% gimel G
geh G dalet D
deh D hei H
yeh Ye waw w
yo Yo zain Z
zheh Zh chet X

(Continued on next page.)

AUTOMATIC ALPHABET RECOGNITION 39

(Continued).

Russian Latin Hebrew Latin
zeh Z tet 6
ee I yod I
short ee J kaf final k
kah K kaf K
ehl L lamed L
ehm M mem final m
ehn N mem M
oh (0] nun final n
peh P nun N
ehr R samech S
ehs S ain &
teh T pei final p
00 U pei P
ehf F tzadi final c
khah H tzadi C
tseh Ts quf Q
cheh Ch resh R
shah Sh shin/sin $
schyah Sch tav T
hard sign ’

i Y

soft sign s

eh E

yoo Yu

yah Ya

References

Benedetto D, Caglioti E and Loreto V (2002) Language trees and zipping. Physical Review Letter., 88(4).

Bookstein A and Klein ST (1990) Compression, information theory and grammars: A unified approach. ACM
Trans. on Information Systems, 8:27—49.

Bracewell M and Karp DA (1998) O’Reilly Utilities—Quick Solutions for Windows 98 Annoyances, O’Reilly &
Associates, Inc.

Cormack GV and Horspool RN (1987) Data compression using dynamic Markov modelling. Computer Journal,
30(6):541-550.

Damashek M (1995) Gauging similarity via N-Grams: Language-independent categorization of text. Science,
246:843-848.

Graham IS (1998) HTML 4.0 Sourcebook. Wiley Computer Publishing, New York, pp. 450-451.

Hebrew resources, http://www.snunit.k12.il/.

Horspool RN and Cormack GV (1986) Dynamic Markov modelling—A prediction algorithm. In: Proc. 19th
Hawaii International Conference on System, Sciences, vol. II, pp. 700-707.

40 GEFFET, WISEMAN AND FEITELSON

Huffman S (1995) Acquaintance: Language-independent document categorization by N-grams. The Fourth Text
REtrieval Conference (TREC-4), Nov. Gaithersburg, Maryland, USA.

IBM Character Data Representation Architecture, Reference and Registry; (Dec. 1996) SC09-2196-00.

Information Technology (1998) ISONET Manual, ISO/IEC 8859, Jersey City. NJ.

Jaeger G (2002) Some notes on the formal froperties of bidirectional optimality theory, Journal of Logic, Language,
and Information, 11(4):427-451.

Kennedy B and Musciano C (2000) HTML & XHTML: The Definitive Guide, O’Reilly & Associates, Inc., 4th
edition, Section 15.1.

Northrup A (1999) Introducing Microsoft Windows2000 Server, Microsoft Press, Washington, pp. 15-16.

Russian transliteration, www.geocities.com/Colosseum/Track/7635/

Russian resources, http:/ruslit.virtualave.net.

Segal E and Itai A, Hebrew transliteration, http://www.cs.technion.ac.il/~erelsgl/bxi/hmntx/teud.html

Shannon CE (1948) A mathematical theory of communication. Bell System Tech. Journal, 27:398—403.

Sloboda T (1995) Dictionary learning: Performance through consistency. In: Proc. of ICASSP 95, Detroit, MI,
pp. 453-456.

Smith B (2001) SUN Microsystems Unveils Netscape 6 for Solaris, Sun’s Press Releases, Brookline, MA.

The Conversation English resource, http://www.athel.com

The Scientific English resource, http://citeseer.nj.nec.com/cs

The English Literature resources, http://www.chemicool.com/

The Unicode Consortium (2000) The Unicode Standard, Version 3.0, Addison-Wesley Developers Press, Reading,
MA.

Wiseman Y (2000) Parallel Compression, Ph.D. Thesis, Computer Science Dept., Bar-Ilan University, Ramat-Gan,
Israel, pp. 76-79.

Yalin D (1942) Grammar of the Hebrew Language, R. Mass Press, Jerusalem, (In Hebrew).

Yoon HS, Soh J, Min B and Yang HS (1999) Recognition of Alphabetical Hand Gestures Using Hidden Markov
Model, IEICE Transactions Fundamentals, E82-A(7):1358-1366.

Ziv J and Lempel A (1978) Compression of individual sequences via variable-rate coding. IEEE Trans. on Infor-
mation Theory IT-24, pp. 530-536.

