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Abstract. The infrastructure of a typical search engine can be used to calculate and resolve persistent document
identifiers: a string that can uniquely identify and locate a document on the Internet without reference to its original
location (URL). Bookmarking a document using such an identifier allows its retrieval even if the document’s URL,
and, in many cases, its contents change. Web client applications can offer facilities for users to bookmark a page by
reference to a search engine and the persistent identifier instead of the original URL. The identifiers are calculated
using a global Internet term index; a document’s unique identifier consists of a word or word combination that occurs
uniquely in the specific document. We use a genetic algorithm to locate a minimal unique document identifier: the
shortest word or word combination that will locate the document. We tested our approach by implementing tools
for indexing a document collection, calculating the persistent identifiers, performing queries, and distributing the
computation and storage load among many computers.
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“Users should beware that there is no general guarantee that a URL which at one time points to a given object
continues to do so, and does not even at some later time point to a different object due to the movement of objects
on servers.”

—T. Berners-Lee et al. Uniform Resource Locators (URL). RFC 1738

1. Introduction

Internet resources are typically specified using the string representation of “Uniform Re-
source Locators” (URLs). URLs are a subset of the Uniform Resource Identifiers (URIs)
that provide an abstract identification of a resource location (Berners-Lee et al. 1994). URLs
are often used to identify resources in hypertext links, printed media such as business cards,
billboards, and publications, and in user-maintained collections such as bookmarks and
visited site history files.

The dynamic nature of the web—Chankhunthod et al. (1996) report the average lifetime
of an HTML text object to be 75 days—results in URLs that quickly decay and become
inaccessible (Pitkow 1999, Ashman 2000). According to our earlier work (2003) around
27% of the URLs referenced in IEEE Computer and the Communications of the ACM articles
from 1995–2000 were no longer accessible at the end of the period. In addition, after four
years almost 50% of the referenced URLs are inaccessible. Lawrence et al. (2001) have
identified similar trends for published URLs. A number of solutions have been proposed for
handling this link integrity or referential integrity problem. The solution classes that have
been identified (Ashman 2000) include prohibiting change, maintaining document versions,
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regularly updating all links, aliasing a link’s end points, posting notifications of changes
to document locations, implementing forwarding mechanisms, automatically detecting and
correcting broken links, and creating all links dynamically. For links to published papers
citation linking (Hitchcock et al. 1999), provided as a service by publishers or public-
service efforts (Lawrence et al. 1999), may lead to publication formats that actively support
hypertext links across time.

Although URNs, PURLs and the Handle mechanism may offer a long-term solution, they
have up to now not been universally adopted. Thus, individual user bookmarks and publicly
distributed URLs quickly become obsolete as documents change names, directories, or are
hosted on different places. Although a search engine (Lawrence and Giles 1999, Takeda
2000) can be used to relocate a document after a web server’s “404—document not found”
response, this is a tedious and error-prone procedure. In this paper we describe a way to
automate the searching task by providing a more persistent alternative to a URL. Such
an alternative can be used both to provide page bookmarks that are relatively immune to
URL changes and as a centralized, alternative method for creating URNs without the active
cooperation of the content creators.

Our scheme involves having a search engine calculate for every URL an augmented, per-
sistent version. The augmented URL, containing the original URL and words that uniquely
identify the document, will have a high probability to locate the original document even if its
contents have changed location. Users who save the persistent URL to bookmark a page can
later transparently retrieve the document through a search engine’s infrastructure. If the de-
fault document retrieval mechanism fails, the search engine will resolve the URL by search-
ing for documents containing the words embedded in the URL. In addition, web sites can
use persistent URLs to point to pages outside their administrative domain with a lower prob-
ability that these links will become unavailable when the respective page contents change
location. As an example, given the URL http://moving.org/target whose contents could be
uniquely identified by the words gloxinia and obelisk the corresponding persistent URL
would be of the form: http://resolve.com/find?orig=http://moving.org/target&w=gloxinia
+ obelisk (to make the example clearer we have not URL-encoded the original URL). When
the user tries to access the above URL the search engine infrastructure at resolve.com will
first try to retrieve the document at http://moving.org/target. If that fails, it will search its
(up to date) index for a document containing the words gloxinia and obelisk. If one of the
two above actions succeeds the user will be redirected to the document’s original or revised
location, otherwise a “404 Not found” error will be returned.

The remainder of this paper outlines the current process of document retrieval and the
associated errors (Section 2), describes our algorithm for calculating unique document
discriminants (Section 3), and sketches a prototype implementation of the concept (Section
4). In Section 5 we discuss the method’s performance in terms of retrieval accuracy, time
and space requirements, and scalability. The paper concludes with a presentation of possible
extensions and applications of our technique.

2. Web document retrieval

In general, URLs consist of a scheme (e.g. http, ftp, mailto) followed by a colon and a
scheme-specific part. The syntax of the scheme-specific part can vary according to the
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scheme. However, URL schemes that involve direct use of an IP-based protocol to an
Internet host use the following common syntax:

//<user>:<password>@<host>:<port>/<url-path>

The double slash indicates that the scheme data complies with the Internet scheme syntax.
The host is specified using the fully qualified domain name of a network host or its IP address.
The default port for the HTTP scheme is 80 and is usually omitted.

For a web page of a given URL to appear on a browser’s screen, a number of differ-
ent technologies and protocols must work in concert. In addition, the changing realities
of the web and the Internet have vastly complicated the simple end-to-end request-reply
protocol that used to form the basis of the early HTTP transactions. Any failure along
the complicated chain of actions needed to retrieve a web page will lead to a failed URL
reference.

The path appearing in a URL will nowadays not necessarily match with a correspond-
ing local file on the server. Web servers provide a number of mechanisms for manag-
ing namespaces. Some of them are: the creation of a separate namespace for every local
user, the definition of protection domains and access mechanisms, the support of aliases
to map namespaces to local directories, and the dynamic creation of content using tech-
nologies such the common gateway interface (CGI), servlets, and server-modified pages
(ASP, JSP, PHP). In addition, a feature of the HTTP protocol called content negotia-
tion allows a server to provide different pages based on technical or cultural character-
istics of the incoming request (e.g. bandwidth, display technology, languages the user can
understand).

The HTTP protocol defines 24 different errors that can occur within an HTTP exchange.
In addition, some errors can occur before the client and server get a chance to communicate.
In practice, while verifying thousands of published URLs we encountered the following
errors:

400 Bad request: The syntax used for the request could not be understood by the server.
This may signify a badly formed URL often coupled with a browser bug.

401 Unauthorized: The request requires user authentication. Such an error can result
when citations are given to URLs that exist within a domain of services that require
registration, or when such services move from a free access to a registration-based
model.

403 Forbidden: The server is refusing to fulfill the given request, in this case however
proper authorization can not be used to retrieve the page. It is conceivable that URLs
that are not part of the public Internet end up as citations when the authors fail to re-
alize that they have special privileges to access certain repositories that do not apply to
the global Internet population. As an example, our organization has transparent access
to a collection of on-line journals with authentication based on the client IP address.
URLs to this collection provided by unsuspecting users will typically generate a 403
error.

404 Not found: This infamous and quite common response signifies that the server has not
found anything matching the Request-URI. This error is typically generated when web
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site maintainers change file names that are part of the given URL path or entirely remove
the referenced material. Note that this protocol error can be followed by customized
content—typically HTML text that informs the user of the problem and provides alter-
native navigation options.

500 Internal server error: The server encountered an unexpected condition which prevented
it from fulfilling the request. This error can occur when a server is wrongly configured,
or, more commonly, if a program or database that is used to serve dynamic content
fails.

503 Service unavailable: The server is currently unable to handle the request due to tempo-
rary overloading or maintenance of the server. Errors of this type sometimes appear on a
misconfigured server, or servers overwhelmed by traffic.

504 Gateway time-out: The server, acting as a proxy or gateway did not receive a timely
response from the upstream server specified by the URI (e.g. HTTP, FTP) or some
other auxiliary server (e.g. domain name server—DNS) it needed to access in attempt-
ing to complete the request. When HTTP requests are transparently intercepted by
a proxy caching server, network connectivity problems are likely to appear as 504
errors.

901 Host lookup failure: The host name could not be mapped to an IP address. This error
(which is not part of the HTTP protocol) signifies a problem in retrieving the IP address
of the server using the DNS services. Likely causes include changes of host names, and
DNS server failures or connectivity problems.

Not all of the above problems can be solved by the provision of persistent URLs. A
persistent URL will help in cases where the original document has changed its name (in-
cluding the path to its name) resulting in a “404 Not found” error, and in cases where
the domain hosting the URL is renamed resulting in a “901 Host lookup failure” error.
Changes in a document’s access authorization are not a technical but a legal problem, while
the 500-class server errors are more appropriately handled by a robust network infrastruc-
ture and mechanisms such as proxies, mirrors, archives, and content delivery networks. In
addition, persistent URLs can not deal with documents that are deleted or modified, un-
less the corresponding URLs are designed to work in concert with an appropriate archive
repository.

3. Unique document discriminants

Our method for creating persistent URLs involves calculating a minimal set of identi-
fying words that can be used to uniquely select a given document in a search engine
query. Consider three documents and their respective word contents 1: ABCF, 2: ABDF,
and 3: AKCDF. The minimal unique identifiers (discriminants) for these documents are
for document 1: A ∧ B ∧ C , for document 2: D ∧ B, and for document 3: K. In cal-
culating the minimal discriminants we also take into account the length of each word to
minimize the length of the respective search engine query. Given such a discriminant a
search engine query with that discriminant, will result in a single matching element: the
identified document, irrespective of the document’s location (URL). As an example, our
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application calculated that the words sedam protectable currently uniquely identify the web
page http://research.unc.edu/otd/inventors/overview.html. Thus a search engine query for
the above terms will result in a single result: the corresponding document. We theorize
that for large collections and a regularly updated search engine index, the discriminants
will continue to uniquely and correctly identify the document, even as new documents are
added to the collection. The form submission mechanism of many search engines allows
one to create a URL that will automatically perform the above search and return the corre-
sponding result; as an example the Google search engine URL for the page we described
would be http://www.google.com/search?&q=sedam+protectable. Furthermore, a simple
addition of an appropriate redirection header to the query results would even allow the entire
operation to be transparently performed.

The computing infrastructure of a large search engine is ideally placed to efficiently
perform both the calculation of the persistent URLs and their resolution. These two can
then be provided as an extra service to the engine’s users. In addition, the search engine
will draw additional traffic (and potentially advertising revenues) each time a user accesses
a bookmarked persistent URL or follows such a URL on the web.

The persistent URLs will most likely be less easy to remember than the URLs they are
derived from. However, these URLs will be primarily stored as bookmarks and hyperlinks
and automatically processed, rather than memorized and communicated by humans. For
this reason, it is not necessary to use natural terms for searching; any terms that uniquely
identify the document are suitable for this purpose.

The idea of locating documents by words those documents contain is not novel. Phelps and
Wilensky (2000) proposed the construction of robust hyperlinks by means of the similarly
working lexical signatures and suggested a heuristic technique for calculating the signatures.
Specifically, their method involves using terms that are rare in the web (have a high inverse
document frequency—IDF), while also favoring terms with a high term frequency (TF)
within the document, capping TF at 5 to avoid diluting a term’s rarity. The IDF of each
term is derived from a search engine, while the rest of the signature calculation can be
performed locally. Park et al. (2002) expanded on this idea by evaluating four basic and
four hybrid lexical signature selection methods based on the TF, document frequency—DF,
and IDF of those terms. For example, one of their proposed methods TFIDF3DF2 involves
selecting two words based on increasing DF order, filtering out words having a DF value
of one, and selecting three additional words maximizing TFIDF. An important contribution
of their work is an evaluation of the documents that the search engine returns in response
to a lexical signature query in terms of uniqueness, appearance of the desired document at
the top of the result list, and relevance of any other document links returned.

Our approach differs from the two methods we outlined in that it uses the search engine as
an oracle for evaluating the selected word set. A stochastic algorithm can rapidly explore the
search space (word combinations) to locate the ones that better suit a selection criterion. This
allows us, instead of having a fixed algorithm (such TFIDF3DF2) identifying a document’s
discriminants, to flexibly select from each document the discriminant that maximizes an
objective function. Although the objective function we used is based on uniqueness and
URL length, different functions such as the relevance of the returned documents could also
be used.
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3.1. Discriminant calculation

Trying all document’s term combinations to find a unique discriminant is a futilely expen-
sive exercise. The number of n different terms that can be selected from a document is
given by

n∑
i=1

nCi =
n∑

i=1

n!

i!(n − i)!
= 2n − 1

At 31 average unique terms per document of our data set this gives us 4 · 109 different term
combinations for each document. Although selecting fewer terms (in practice we found
that unique discriminants consisted on average of 1.47 terms) lowers the above figure, the
complexity’s exponential nature makes the exhaustive search prohibitively expensive on
larger documents; selecting 2 out of 1000 terms results in 1000C2 = 499,500 combinations
(out of the total 1030 possible ones).

An efficient deterministic solution to the problem would be preferable to the exhaustive
search we outlined above. However, as we will show in the following paragraphs, the
problem is intractable, NP-complete.

3.2. Intractability proof

We will prove that the problem of locating a discriminant that identifies k documents is NP-
complete by demonstrating that a tractable P-time solution to the problem could be used to
solve the subset sum problem, known to be NP-complete (Garey and Johnson 1979). We
can formally express our problem as follows: Let D = {T1, . . . , Tn} (our document) be a
set of terms T. Each term Ti is expressed as a set of the documents it occurs in. Let D′ ⊆ D
be a document’s discriminant. The number of documents k that the discriminant D′ with
m = |D′| identifies is expressed as the cardinality of the intersection of the corresponding
sets:

k =
∣∣∣∣

m⋂
i=1

D′
i

∣∣∣∣

A unique discriminant is one for which k = 1.
Similarly, the subset sum problem can be expressed as follows: Let A = {a1, . . . , an} be

a set of positive integers. Given an integer s find a set A′ ⊆ A with m = |A′| so that

s =
m∑

i=1

ai

If the n elements of the set A have values 0 . . . m we can solve the subset sum problem
in terms of the discriminant cardinality problem by using set intersection in the place of
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addition. For each element ai ∈ A we construct a set

Bi =




b0,1

. . .

bm,n




−




b0,i

...

bm−ai ,i




and let B = {B1 . . . Bi }. The sets we constructed have the property that given a set of
positive integers Q = {q | q ∈ {1 . . . n}}

∣∣∣∣∣
|Q|⋂
i=1

Bqi

∣∣∣∣∣ =
|Q|∑
i=1

aqi

Using our hypothetical discriminant cardinality P-time algorithm we find a B ′ ⊆ B such
that

s =
∣∣∣∣∣

n⋂
i=1

B ′
i

∣∣∣∣∣

The ai elements that correspond to the B ′ subset will satisfy the subset sum problem

s =
n∑

i=1

ai | ai ∈ A′

Having shown that the subset sum problem—known to be NP-complete—can be reduced
to the discriminant cardinality problem we have proved that the discriminant cardinality
problem is also NP-complete.

3.3. Genetic algorithm

We therefore use a non-deterministic, stochastic algorithm to search the term space. Genetic
algorithms (GAs) (Holland 1975, Goldberg 1989, Forrest 1996) are global optimization
techniques that avoid many of the shortcomings exhibited by local search techniques on
difficult search spaces, such as our unique discriminant selection problem. Goldberg (1994)
describes a number of diverse GA applications, while Karr (1993) presents their use for
modeling, design, and process control. GAs rely on modeling the problem as a population of
organisms. Every organism represents a possible valid solution to the problem. Organisms
are composed of alleles representing parts of a given solution. Standard genetic recombina-
tion operators are used to create new organisms out of existing ones by combining alleles of
the existing organisms. In addition, mutations can randomly change the composition of ex-
isting organisms. Typically, the algorithm evaluates all the organisms of the population and
creates new organisms by combining existing ones based on their fitness. This procedure is
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repeated until the variance of the population reaches a predefined minimum value or another
heuristic criterion is satisfied.

GAs base their operation on a fitness function that evaluates an organism’s suitability. The
fitness function Ō(x) we want to maximize depends inversely on the number of documents
ND a particular discriminant x identifies and, less, on its length L as determined by the
number of words NW and the length of each word Li :

1

Ō(x)
= 100(ND(x) − 1) +

NW (x)∑
i=1

Li + 1

As an exception to the above function definition, organisms that fail to identify a single
document (ND(X ) = 0) are given a fitness rank of 0.

An important characteristic of a genetic algorithm’s implementation concerns the repre-
sentation of each candidate solution. A good representation should ensure that the appli-
cation of standard crossover recombination operators (where a new organism is composed
from parts of two existing ones) will result in a valid new representation. The first organism
implementation we used was an ordered set of terms. Thus, for a document containing the
words [ABCDEF] two organisms could be [ACF] and [BE]. Following experimentation, we
found that a boolean vector sized to represent all possible terms of a document—with dis-
criminant terms represented by true values—was a more efficient implementation allowing
our code to function in a third of the original runtime. Using a boolean vector scheme, the
two above organisms would now be represented as [TFTFFT] and [FTFFTF].

Using the integers 0 and 1 for representing the true and false boolean values, the genetic
algorithm for selecting the minimal unique discriminant out of N different terms can be
described in the following steps:

1. [Initialize a population of size S.] Set P0...S,0...N ← �rand[0 . . . 1]�.
2. [Evaluate population members creating the organism fitness vector T .] For i ← 0 . . . S:

set Ti ← Ō(Pi ).
3. [Create roulette selection probability vector R.] Set Ri ← ∑i

j=0(Tj/
∑S

k=0 Tk).
4. [Create new population using crossovers from the previous population.] For i ← 0 . . . S:

select q and r using the roulette selection probability vector so that Rq ≤ rand[0 . . . 1) <

Rq+1 and Rr ≤ rand[0 . . . 1) < Rr+1. If rand[0 . . . 1) < crossover rate, set c ←
�rand[0 . . . N )�, set P ′

i,0...c ← PRq,0...c, set P ′
i,c+1...N ← PRr,c+1...N ; otherwise set P ′

i ←
PRq .

5. [Introduce mutations.] For i ← 0 . . . S: for j ← 0 . . . N : if rand[0 . . . 1) < mutation
rate, set P ′

i, j ← �rand[0 . . . 1]�.
6. [Keep fittest organism for elitist selection strategy.] Select f so that T f ≥ T0...s , set

P ′
�rand[0...S)� ← Pf .

7. [Make new population the current population.] Set P ← P ′.
8. [Loop based on the population’s variance.] If

∑P
i=0 |T f − Ti | > minimum variance go

to step 2; otherwise the algorithm terminates with the optimal document discriminant in
Pf .
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The implementation of genetic algorithms can be tuned using a number of different
parameters. In our implementation we used the parameters that Grefenstette (1986) derived
using meta-search techniques namely:

• a population size S of 50,
• a crossover rate of 0.6,
• a mutation rate of 10−4,
• a generation gap of 1 (the entire population is replaced during each generation),
• no scaling window, and
• an elitist selection strategy (the organism with the best performance survives intact into

the next generation).

The random floating point numbers 0 < R < 1 used for selecting the crossover points, the
mutation rates, and the selection of organisms were produced using the subtractive method
algorithm (Knuth 1981, pp. 171–173).

In addition we used some domain-specific heuristics:

• we select candidate terms from a subset of the terms with the lowest frequencies across
the complete document collection,

• we bias a term’s selection according to its global frequency, and
• we ensure that the globally most frequently used terms are not used as candidates.

All the above heuristics are based on the premise that less frequently used terms are more
likely to be part of a unique document discriminant.

4. Prototype implementation

We implemented a set of programs that process a (presumably all-encompassing) set of
web pages, and calculate for each page a minimal set of search terms (words) that can
be used to uniquely identify that page within the set. To test our implementation we took
advantage of the data set provided during the 2002 Google search engine (Brin and Page
1998) programming contest. The package provided to the contest participants included a
programming framework for processing a pre-parsed document collection (the so called
ripper program) and a large collection of web documents. The breadth and architecture of
the ripper programming framework strongly indicate that applications based on it could
be easily ported to run on the actual Google infrastructure. The 5.9 GB data set we used
consists of 916,429 pre-parsed HTML documents containing about 28 · 106 terms.

4.1. Implementation overview

We calculate the discriminants in two steps:

1. We create an index of all documents where each term occurs; in actual practice a search
engine will always have this data structure at hand.
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2. For each document we use the genetic algorithm to try combinations of the terms it
contains until we find one that does not occur in another document. The processing
relies on the index calculated by the previous phase.

As usual the devil is in the details, especially when dealing with the 1 million documents
we processed and the 3 · 109 documents currently indexed by typical search engines.

Our application consists of tools for calculating unique discriminants on a single pro-
cessing node (useful for proving the concept, trying out the data subset, and experimenting
with the algorithms), and in an environment of multiple nodes (for processing the data set
of a commercial search engine). In addition, we implemented simple tools for querying the
results and obtaining the corresponding URLs.

4.2. Indexing

The index of a large text collection will not typically fit into a computer’s fast main memory,
while a disk-based structure will probably prove too slow for a realistic application scenario.
Some applications have dealt with the problem by compressing the data in-memory (Moffat
1992, Spinellis 1994), but this approach would still not accommodate our problem’s scope
and resource constraints.

We handled the problem by accumulating a term-to-document index in memory and
monitoring the memory subsystem’s performance. Once the system begins to persistently
page (indicating that the memory’s capacity has been reached and performance will rapidly
degrade due to thrashing), the index is flushed to disk as a sorted file. When all documents
have been processed, the partial results are merged into a single file (idxdata) contain-
ing terms and documents where each term occurs. An index file (idxdata.idx) allows
rapid serial access to individual terms without having to traverse a term’s document list.
In addition, a separate file (idxdata.hash) allows rapid hash-code based access to indi-
vidual terms. As the string hash function, we use the one recently proposed for very large
collections by Zobel (2001). The hash file is created after the merge phase and can thus
be optimally sized, using the Rabin-Miller prime number probabilistic algorithm (Schneier
1996, pp. 259–260), to minimize collisions.

4.3. Stand-alone operation

The data-flow diagram of our system’s stand-alone operation appears in figure 1. A new
handler of the Google ripper named index reads-in preparsed documents and creates (in
stages by merging intermediate results) an index of the documents where each term resides
(idxdata) and two files for accessing that index (idxdata.idx and idxdata.hash). A
fourth file, topnodes is set to contain the frequencies of the 100,000 most frequently used
terms; it is used as cache during the discriminant calculation phase.

The second phase is also implemented as a separate ripper handler named bookmark.
This reads the terms of each document, selects the least frequently used ones, and creates
the bookmarks file containing for each document its URL and the set of terms forming
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Figure 1. Data-flow diagram of the stand-alone operation.
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its unique discriminant. The bookmark.idx file created allows the location of a given
document URL and discriminant based on the corresponding document identifier.

Two query programs we wrote, cgi query and cmd query, will search the term index
against the conjunction of a set of specified words and display as search results the matching
document URLs and the corresponding unique discriminants. The CGI application presents
the discriminants as a URL; the end-user can bookmark this URL and thus visit our search
engine to locate the document in the future. The HTML results also contain a link to a
Google search with the same discriminant as a search expression. This search will not in
general provide unique results since Google’s indexed collection is three orders of magnitude
larger than the one we processed. One of the discriminants we tried did however identify
and correctly locate one page that was moved (renamed): a Google search for the page
http://www.umass.edu/research/ogca/new.htm uniquely identified through the discriminant
“ogca fy02” now yields http://www.umass.edu/research/ogca/news/oldnews.htm.

4.4. Distributed operation

As is apparent from figure 2, the system’s distributed operation is a lot more complicated
than the stand-alone case. It does however provide a framework for creating discriminants
for orders of magnitude larger collections using a large number of commodity processing
nodes. The work distribution strategy is based on two premises:

1. Documents are uniformly distributed across all processing nodes. Each node calculates
and serves the discriminants for its documents.

2. Each node is assigned a consecutive subset of terms (e.g. barometer–beholding). It is
responsible for serving queries (documents that contain a given term) for the terms it is
assigned.

To divide the term load across the nodes, we run a stand-alone instance of ripper–index
on a small representative subset of documents. A separate text file contains a list of all
processing nodes. The program divide:

• examines the term index and divides it uniformly across processing nodes,
• assigns a separate numeric initial document-id to each node, and
• copies the generated files to all nodes.

On each node we then run an instance of ripper–index to process the node-specific pre-
processed pages. The program scatter is then run on each node to split and copy the
resulting term index according to the terms assigned to each node. Each node will thus
receive its share of terms as indexed by all other nodes. The make index program merges
the node-specific terms generated by all nodes into a single unified index file for the given
node. This file is accessed by the node’s index server program to provide term document
occurrences to other nodes. The ripper distr program run on each node communicates
with the index server responsible for a given term to obtain the global list of a term’s
documents. To reduce network communication overhead initial term frequencies (our algo-
rithm uses a subset of a document’s least frequently occurring terms for selecting the unique
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Figure 2. Data-flow diagram of the distributed operation.
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discriminant) are obtained from the local term file; we assume that the local term frequency
distribution corresponds to the global one. The generated unique document discriminants
can then be accessed by the distributed versions of the query programs by using a document’s
identification number for locating the node where the respective discriminant is used.

5. Evaluation

Important aspects of algorithms expected to process the global web include, apart from the
quality of the results, their requirements on processing time and space, and their scalability.

5.1. Discriminant performance

After processing the Google sample document collection we found that we needed an aver-
age of 1.47 terms to uniquely identify a document. The average length of each discriminant
(figure 3) was 10.77 characters which, as a document identifier, compares extremely favor-
ably with the 43.9 characters of the collection’s average document URL length (excluding
the initial http://. The number of terms for each document’s discriminant was distributed
as shown in Table 1. The algorithm failed to identify a discriminant for less than 1% of the
documents processed.

The property of the calculated discriminants to uniquely identify a document, while not
absolute, was we believe acceptable for its intended uses. About 50% of the discriminants our
system calculated will locate a single document, while another 10% identify two documents.
In total 76% of the discriminants will locate less than 10 documents in the sample document
collection (figure 4). These figures can be further improved by tuning various GA parameters
such as the number of terms of the candidate set, the number of common terms to eliminate,
and the size of the organism pool. Many of the pages for which a unique identifier was
not calculated contain very little textual material. As an example our system’s spectacular
failure to create a unique identifier for the page http://humanities.uchicago.edu/depts/maph/

Figure 3. Discriminant term length distribution.
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Table 1. Discriminant term number distribution.

Number of terms # No. of documents Document %age

0 (no discriminant found) 5,107 0.56
1 531,713 58.02

2 331,638 36.19

3 41,132 4.49

4 5,956 0.65

5 783 0.08

6 80 0.01

7 16 0.00

8 3 0.00

Figure 4. Distribution of document matches across the calculated discriminants.

(it was identified by the term ‘humanities’, which also matches another 29,497 pages) can
be easily explained by the fact that this home page consisted entirely of text and pictures
presented in graphical hypertext form using image maps.

5.2. Algorithm performance

On average the GA was run for 10.6 generations to calculate each discriminant. However, the
distribution of the GA generations that were required was highly skewed: the corresponding
mode was 2, median 5, and the standard deviation 16.5. To evaluate the performance of
the GA over the heuristic selection of words, we calculated discriminants for a subset of
13,000 documents using a procedure that followed the selection traits of the GA, but not
its evolutionary strategy. Specifically, for every document we created S = 50 organisms
and let those mutate G times, where G was the number of generations the GA had run for
that document. The initial organism was not random, but as was the case for the GA, was
created using the allele probability selection vector. The results from this quasi-random
selection were 34% worse than those obtained from the GA operation. In 58% of the cases
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the two methods yielded the same result. Although the advantage offered by the GA may
not seem impressive, we believe that (a) only the GA will scale to handle the three orders
of magnitude larger collection of the global web, and, (b) the GA can be easily adapted to
work with more demanding objective functions, whereas the heuristic techniques can not.

5.3. Time requirements

We indexed the sample document collection (916,429 documents 3,152,415 unique low-
ercased terms) on a 733 MHz, Celeron CPU, 128 MB RAM, 40 GB IDE disk machine in
18,605 real, 7,064 user, and 1,533 system seconds, at a throughput of 29.26 documents/s.
The process used 18 intermediate indexed files each of about 75 MB in size (the first one
was 190 MB) with an intermediate file being dumped every six minutes. The hashed term
database performed adequately, but not spectacularly with 2,111,778 total term name col-
lisions (resulting on an average of 1.49 disk index accesses per term) and 173 maximum
term name collisions.

The time to perform the unique discriminant calculations varied, because we split the
workload among 20 different machines. The time required on 733 MHz, Celeron CPU,
IDE disk machine for processing the file pprepos.00 (16,564 documents) was 58,721
real, 184,054 user, and 9,604 system seconds giving a processing time of 3.54 s/document.
Systems with a SCSI disk subsystem performed better.

We unfortunately lacked appropriate resources (a large farm of networked processing
nodes of similar technical characteristics) to perform rigorous experiments on the distributed
implementation of our system. We were however able to obtain a lower bound of the expected
performance by running the programs on a small number of workstations. By extrapolating
from our results, we calculated the expected distributed operation time T ′ given a standalone
time of T as T ′ ≥ T × 2.2.

5.4. Space requirements

The indexing operation utilizes the maximum amount of main memory available, but is
constrained by design to stop its memory usage growth once thrashing occurs. In our case,
it processed without a problem the complete sample data set on machines with 128 MB
RAM. The off-line space requirements are comprised of the space needed to store the term
index and its hash file; this was for the sample document collection 826,504,382 bytes for
the index and 50,438,784 bytes for the hash file, giving an overhead of approximately 957
bytes per document.

The space requirements of the discriminant calculation phase are more difficult to judge.
When performing calculations over the sample collection we observed a maximum resident
set size 62,140 KB. This number is likely to grow with a larger document set, but not by
much, since it reflects the space needed to store the document instances of a document’s
least frequent terms. Given that prior to the candidate set selection, only term frequencies
are stored in memory, the term selection process can be easily adjusted to dynamically
select terms that will load in the main memory a fixed number of document occurrences,
thereby providing a concrete bound to the memory usage.
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5.5. Scalability

Will our approach gracefully scale to cover a search engine’s complete page collection?
We consider as a test case Google’s 2 · 109 page collection and for our estimates we use a
number of 8,000 processing nodes reported in the technical press as comprising Google’s
infrastructure (Wagner, 2001).

Computing the term index will therefore require:

2 · 109 × 0.02

8,000
s = 83 minutes

The communications overhead will be roughly equivalent to that of copying the index files
across the network; given an index file size of

11,000 × 2 · 109

8,000
= 2.75 · 109 bytes

this will add an overhead of 8 minutes using a switched 100 Mbit network with a 50%
utilization rate. Merging the intermediate files is unlikely to present a problem; at one point
an error in our thrash monitoring code resulted in 1,700 intermediate files which were
merged without a problem.

The time to compute the discriminants will be larger. At 3.54 s/document the calculation
of all discriminants will require

3.54 × 2 · 109

8,000
= 885,000 s = 10 days

One should keep in mind that this process will be required to run very infrequently for
the entire document collection and can then be run incrementally as new documents are
added (the entire point of the unique discriminants is that they remain valid with a very high
probability even as the structure of the web changes).

Note that all our time figures are based on the results we obtained using low-end 733 MHz
Celeron PCs with IDE hard disks. In addition, the indexing phase can be omitted and the
discriminant calculation phase can be easily adjusted to use a search engine’s existing term
index structure. The discriminant calculation algorithm only needs access to an oracle that
answers the question of how many documents are matched by a given term combination. We
assume that a search engine’s infrastructure is engineered and tuned to efficiently answer
the above query and should therefore preferably be used by our algorithm.

6. Conclusions and further work

In the previous sections we outlined how our application utilizes search engine technologies
to address an important shortcoming of today’s web in a scalable, and efficient manner. The
alternative document identifiers we calculate are not only resilient to URL changes, but also
almost a fourth of the size of conventional URLs.
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However, the document identifiers we provide are not suitable as universal replacements
for the URLs currently employed. In document retrieval terms their use involves a trade-off
of noise over silence. Our calculation method is not perfect and there are cases where our
algorithms will either fail to calculate a discriminant for a web page (e.g. when the page
does not contain any text), or will calculate a discriminant that will match multiple pages.
In addition, changes to the web contents and a search engine’s coverage can make identi-
fiers that were calculated to be unique match additional documents. Although we have not
studied the temporal behavior of the discriminants we calculate, an obvious pathological
case involves documents cloned from a given source document through small additions
or changes. This cloning is a common operation and is related to the scale-free topology
of the web (Barabási et al. 2000). Cloned documents will very probably match the dis-
criminant calculated for their original ancestor. Based on the above, we believe that unique
discriminants are most suited for situations where a human can make an informed choice
for using them and remains in the loop during their use. As an example, personal book-
marks are particularly well suited for being stored using unique discriminants (or include
unique discriminants as a fail over mechanism). Bookmarks are highly prone to aging since
they are typically not formally maintained; in addition, once a bookmark matching several
documents is followed, the user can intelligently choose between the different pages.

During our work, we noted a number of improvements that could be employed for
optimizing the algorithm’s performance and for further increasing the usefulness of the
obtained results. These include:

• Optimize the GA, tuning its configuration by replacing the generic parameters we used
with parameters selected for the given problem and the properties of the web. In an
examination of the discriminants we calculated, we found some instances of duplicate
discriminants and multiple documents identified by the same discriminant that could have
been easily avoided.

• Experiment with different stochastic algorithms such as simulated annealing (Cerny 1985,
Van Laarhoven and Aarts 1987, Koulamas et al. 1994) and tabu search techniques (Glover
1990).

• Explore the possibility of using our results for locating duplicate documents. Since our
algorithm tries very hard to find unique discriminants, failure to find unique discrimi-
nants could signify the existence of virtually duplicate documents. This technique can
be strengthened by resetting the random number generator seed values before processing
each document.

• Investigate the impact of cloning and modification on the temporal effectiveness of dis-
criminants, experimenting with different objective functions based on the notion of sim-
ilarity and search engine ranking.

• Study and improve the distributed algorithm operation on a large network of hosts.
• Associate with each URL and discriminant a unique multi-byte hash code that will

accurately identify the precise location of pages that have not moved.

We end our description, by noting how the realization of the application we outlined was
made possible only through the combination of multiple computer science disciplines:
information retrieval was the domain where our problem was formulated, algorithms and
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data structures provided the framework to obtain the solution, operating system concepts
allowed us to bound the indexing memory requirements, complexity theory gave us the
theoretical background for searching for algorithmic solutions, stochastic approaches were
used for sidestepping the problem’s NPC characteristics, and networking and distributed
systems technology provided the framework for developing the distributed implementation.
Increasingly, the immense scale of the web is necessitating the use of multidisciplinary
approaches to tackle information retrieval problems.
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