Skip to main content
Log in

Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The timing of flag leaf senescence (FLS) is an important determinant of yield under stress and optimal environments. A doubled haploid population derived from crossing the photo period-sensitive variety Beaver,with the photo period-insensitive variety Soissons, varied significantly for this trait, measured as the percent green flag leaf area remaining at 14 days and 35 days after anthesis. This trait also showed a significantly positive correlation with yield under variable environmental regimes. QTL analysis based on a genetic map derived from 48 doubled haploid lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers, revealed the genetic control of this trait. The coincidence of QTL for senescence on chromosomes 2B and 2D under drought-stressed and optimal environments, respectively, indicate a complex genetic mechanism of this trait involving the re-mobilisation of resources from the source to the sink during senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, R.J. & E. Spackman, 1996. A model for estimating soil moisture changes as an aid to irrigation scheduling and crop water-use studies: I. Operational details and description. Soil Use & Manag 12: 122-128.

    Google Scholar 

  • Baenziger, M., G.O. Edmeades & H.R. Lafitte, 1999. Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci 39: 1035-1040.

    Article  Google Scholar 

  • Beavis, W.D., O.S. Smith, D. Grant & R. Fincher, 1994. Identification of quantitative trait loci using a small sample of top-crossed and F4 progeny from maize. Crop Sci 34: 882-896.

    Article  Google Scholar 

  • Benbella, M. & G.M. Paulsen, 1998. Efficacy of treatments for delaying senescence of wheat leaves: II. Senescence and grain yield under field conditions. Agron J 90: 332-338.

    Article  Google Scholar 

  • Bertin, P. & A. Gallais, 2001. Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines II-QTL detection and coincidences. Maydica 46: 53-68.

    Google Scholar 

  • Borrell, A.K., G.L. Hammer & A.C.L. Douglas, 2000a. Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci 40: 1026-1037.

    Article  Google Scholar 

  • Borrell, A.K., G.L. Hammer & R.G. Henzell, 2000b. Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40: 1037-1048.

    Article  Google Scholar 

  • Bryan, G.J., A.J. Collins, P. Stephenson, A. Orry, J.B. Smith & M.D. Gale, 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94: 557-563.

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston, V., 1997. The molecular biology of leaf senescence. J Exp Bot 48: 181-199.

    Google Scholar 

  • Chandler, J.M., 2001. Current molecular understanding of the genetically programmed process of leaf senescence. Physiologia Plantarum 113: 1-8.

    Article  Google Scholar 

  • Crasta, O.R., W.W. Xu, D.T. Rosenow, J. Mullet & H.T. Nguyen, 1999. Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol & General Genet 262: 579-588.

    Article  CAS  Google Scholar 

  • Egli, D.B., 1998. Seed Biology and the Yield of Grain Crops. CAB International, Wallingford, U.K.

    Google Scholar 

  • Evans, L.T., 1993. Crop Evolution, Adaptation and Yield. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Foulkes, M.J., J.H. Spink, R.K. Scott & R.W. Clare, 1998. Varietal typing trials and NIAB additional character assessments. Home-Grown Cereals Authority Final Project Report. Home-Grown Cereals Authority, London, pp. 1-174.

    Google Scholar 

  • Foulkes, M.J., R.K. Scott & R. Sylvester-Bradley, 2002. The ability of wheat cultivars to withstand drought in UK conditions: formation of grain yield. J Agri Sci 138: 153-169

    Article  Google Scholar 

  • Gale, M.D. & K.M. Devos, 1998. Plant comparative genetics after 10 years. Science 282: 656-659.

    Article  PubMed  CAS  Google Scholar 

  • Genstat committee, 1993. Genstat 5 Reference Manual. Clarendon Press Oxford, UK.

    Google Scholar 

  • Hafsi, M., W. Mechmeche, L. Bouamama, A. Djekoune, M. Zaharieva & P. Monneveux, 2000. Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J Agron & Crop Sci 185: 275-280.

    Article  Google Scholar 

  • Hirel, B., P. Bertin, I. Quillere, W. Bourdoncle, C. Attagnant, C. Dellay, A. Gouy, S. Cadiou, C. Retailliau, M. Falque & A. Gallais, 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125: 1258-1270.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, R.C. & P. Stam, 1994. High-resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447-1455.

    PubMed  CAS  Google Scholar 

  • Kearsey, M.J. & V. Hyne, 1994. QTL analysis-a simple marker-regression approach. Theor App Genet 89: 698-702.

    Google Scholar 

  • Kebede, H., P.K. Subudhi, D.T. Rosenow & H.T. Nguyen, 2001. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor App Genet 103: 266-276.

    Article  CAS  Google Scholar 

  • Kosambi, D., 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172-175.

    Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.

    PubMed  CAS  Google Scholar 

  • Monsi, M. & T. Saeki, 1953. Uber der lichtfactor in den pflanzengesellschaften und seine bedeutung fur die stoffproduktion. Jap J Bot 14: 22-52.

    Google Scholar 

  • Nooden, L.D., J.J. Guiamet & I. John, 1997. Senescence mechanisms. Physiologia Plantarum 101: 746-753.

    Article  CAS  Google Scholar 

  • Roeder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007-2023.

    Google Scholar 

  • Saghi-Maroof M.A., K.M. Soliman, R.A. Jorgenson & R.W. Allard, 1984. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81: 8014-8018.

    Article  Google Scholar 

  • Simon, M.R., 1999. Inheritance of flag-leaf angle, flag-leaf area and flag leaf area duration in four wheat crosses. Theor Appl Genet 98: 310-314.

    Article  Google Scholar 

  • Spiertz, J.H.J., 1977. The influence of temperature and light intensity on grain growth in relation to the carbohydrate and nitrogen economy of wheat plant. Netherlands J Agri Sci 25: 182-197.

    CAS  Google Scholar 

  • Stam, P., 1993. Construction of integrated genetic-linkage maps by means of a new computer package-Joinmap. Plant J 3: 739-744.

    Article  CAS  Google Scholar 

  • Sylvester-Bradley, R., R.K. Scott & C.E. Wright, 1990. Physiology in the production and improvement of cereals. Home-grown Cereals Authority Research Review 18. HGCA, London.

    Google Scholar 

  • Thomas, H. & C.M. Smart, 1993. Crops that stay green. Ann Appl Biol 123: 193-219.

    Google Scholar 

  • Tottman, D.R., 1987. The decimal code for the growth-stages of cereals, with illustrations. Ann Appl Biol 110: 441-454.

    Article  Google Scholar 

  • Tuinstra, M.R., E.M. Grote, P.B. Goldsbrough & G. Ejeta, 1997. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3: 439-448.

    Article  CAS  Google Scholar 

  • Van Ooijen, J.W. & C. Maliepaard, 1996. MapQTL version 3.0: Software for the calculation of QTL positions on genetic maps. Plant Genome IV Conference Abstracts http://www.intl-pag.org/4/abstracts/p316.html

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Vandelee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP-a new technique for DNA-fingerprinting. Nucleic Acids Res 23: 4407-4414.

    PubMed  CAS  Google Scholar 

  • Xu, W.W., P.K. Subudhi, O.R. Crasta, D.T. Rosenow, J.E. Mullet & H.T. Nguyen, 2000. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43: 461-469.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.W. Snape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, V., Foulkes, M., Worland, A. et al. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135, 255–263 (2004). https://doi.org/10.1023/B:EUPH.0000013255.31618.14

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EUPH.0000013255.31618.14

Navigation