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Abstract. The retrieval of documents that originate from digitized and OCR-converted paper documents is an
important task for modern retrieval systems. The problems that OCR errors cause for the retrieval process have
been subject to research for several years now. We approach the problem from a theoretical point of view and
model OCR conversion as a random experiment. Our theoretical results, which are supported by experiments, show
clearly that information retrieval can cope even with many errors. It is, however, important that the documents are
not too short and that recognition errors are distributed appropriately among words and documents. These results
disclose that an expensive manual or automatic post-processing of OCR-converted documents usually does not
make sense, but that scanning and OCR must be performed in an appropriate way and with care.
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1. Introduction

There has been in recent years a growing need for the conversion of large paper and au-
dio archives into electronic form so that these archives may be made accessible through
electronic retrieval systems. Current generation optical character recognition and automatic
speech recognition systems, the core technologies of this conversion process, are still prone
to many recognition errors however. It is therefore important to establish the extent to which
errors (data corruption) introduced in the conversion of paper and audio archives affect the
performance of electronic retrieval systems used in accessing these archives.

The well-known redundancy in texts and the ability of modern information-retrieval (IR)
systems to cope with uncertainty (e.g., Fuhr 1992) let us hope for a certain robustness of
retrieval systems against errors. This robustness is indeed one of the early results of exper-
iments on corrupted data in information retrieval (Smith and Stanfill 1988, Glavitsch et al.
1994, Sch¨auble and Glavitsch 1994, Croft et al. 1993). However, there are a lot of questions
left open by experiments performed on corrupted data, e.g.: Why is information retrieval,
to a surprisingly high degree, robust against data corruption? Under what circumstances is
retrieval effectiveness decreased? What steps can be taken to improve retrieval on corrupted
data? In this paper, we shall concentrate on answering these questions for the retrieval on
data that contains errors because it was produced by optical character recognition (OCR).

There have been several attempts to assess the influence of data corruption on retrieval
by a process of experimentation. These experiments have been expensive to develop and
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have often produced non-intuitive results; results which have not always been successfully
interpreted by the researchers involved. Information retrieval experiments without data
corruption are difficult to interpret on their own; combines with data-corruption effects it is
even more difficult to assess whether an observed pattern is incidental or represents a general
pattern. In contrast to these expensive experiments, difficult to understand, we have chosen
a new approach—a theoretical description of data corruption as a random experiment.

Though this work is based on a very theoretical analysis presented in Mittendorf and
Schäuble (1996) and Mittendorf (1998), we focus here on the practical implications of
this theory on projects that scan and convert document collections by OCR to make them
searchable. For this reason we refrain from proving theorems, rather make the theorems
plausible and refer to our earlier work. Practical implications are e.g.:

– The scanning of documents still demands a considerable amount of manual work and, thus,
has a great potential for saving money at the cost of scanning quality. It is, however, the
wrong step for saving money. The result of our work is that it is extremely important that
all documents are digitised with considerable care and good quality. No OCR system and
no intelligent retrieval system can compensate for what may be lost here.

– Fortunately, there is a potential to save money in the conversion process from pictures
to text. It is a waste of money to aim at an error-less automatic recognition or even
to manually type the documents. Good retrieval systems (based on feature-frequency
weighting, inverse document-frequency weighting, and document-length normalisation
other than cosine normalisation) are extremely robust against recognition errors.

– Optimisation criteria for OCR systems such as the minimal number of character er-
rors or word errors per page do not optimise retrieval effectiveness on OCR-converted
documents. The smallest degradation of retrieval effectiveness can be achieved if the
distribution of errors among different words, different fonts and paper qualities and thus
among different documents is as close to an equal distribution as possible.

This paper is structured as follows. In Section 2 we sketch the random model and the main
result of the theoretical analysis, i.e., themain theorem on robustness of retrieval ranking.
Section 4 analyses the model, derives statements about the behavior of collection statistics,
such as feature frequencies, and compares the statements with test collections. Section 5,
finally, derives answers to the questions concerning the influence of data corruption on
information retrieval from the theory. Consequences of this theoretical analysis for practical
digitisation projects are concluded in Section 6.

2. A probabilistic model for data corruption

Typically, relevance ranking in information retrieval consists of anindexingstep and a
retrieval function. The indexing step identifies the (indexing) featuresϕi —e.g., Porter-
reduced non-stopwords—within a document or a query. The set of all features is denoted
by8.

For describing data corruption by a probability model we have to deal with sets of
probability spaces on three levels of complexity: the feature level, the document level, and
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the document collection level. The probability distributions on feature level that are of
interest are the distributions for given tokenyk being recognized as a certain featureϕi ,
Pyk(ϕi ) = P(x(yk) = ϕi ). Such a distribution depends on the featureϕi that the token
represents and the document in which the token occurs (e.g., on the page quality, old and
yellowed paper or new and white paper), and may be it depends on the position of the token
within a document (e.g., if the scanner has the habit of distorting in particular the bottom
paragraph of a page).

Indexing represents a documents as a sequence of features. Thus, for our model it makes
sense to describe the probability space on document levelÄdj as the product space of the
corruption of its features. We assume that the features that representdj andX(dj ). If for the
documentdj = 〈y0, . . . , yl(dj )− 1〉, yi ∈ 8, the experimentX(dj ) can be described as con-
sisting of theindependentexperiments on feature levelX(dj ) = 〈x(y0), . . . , x(yl(dj )− 1)〉
thenPdj is the product distribution of the distributions of features that occur indj , i.e.,

Pdj = Py0 · · · Pyl(dj )−1.

This description implicitly assumes that features do not disappear, are not merged or split,
and do not emerge from, e.g., a stopword. We discuss some violations of this assumption
below.

To understand the influence of data corruption on document ranking the probability space
must describe all possible corruptions of a complete document collectionD, that is e.g., all
possible results of digitization and OCR conversion of a paper archive with a given scanner
and an appropriate OCR device. The random process of taking one possible corruption ofD
is denoted byX(D). Similarly to the product space for the document corruption, we define
the probability space onD, ÄD as the product space of the corruption of its documents
D := {d0, . . . ,dn−1}, i.e.,ÄD = Äd0 × · · · ×Ädn−1. A random experiment of taking one
possible corruption ofD is denoted byX(D), the random experiment of taking one possible
corruption of a documentdj ∈ D is denoted byX(dj). This probability model assumes that
documents do not vanish, are not split, and do not magically appear from nowhere. These
assumptions are realistic if the digitization is performed with appropriate care. That this
care is essential for a digitization project seems to be obvious and we shall emphasise this
later on.

In contrast to the corrupted documents and collections there are theperfect documentsand
perfect collections—which are the result of a process that converts the images or recordings
perfectly, e.g., the manual typing of the documents under the assumption that the typing is
performed without errors. We need perfect objects mainly as abstract concepts with which
we compare the corrupted objects.

An elementary probability of the probability distribution on feature level is therecognition
probability of a certain featureϕi within a certain documentdj , i.e.,pr (ϕi , dj). If a token
yk within the document is an instance on the featureϕi , thenpr (ϕi , dj) is the probability
that an occurrence ofϕi in the documentdj is recognized as an instance ofϕi . Note that
we assume dependence of the feature itself and of the document in which it occurs, but
independence of the particular position of the token. This granularity is sufficient since we
shall investigate the ranking of documents, it may not be sufficient if we try to understand,
e.g., passage retrieval.
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Important random functions on the document level for the description of documents are
the following

– Thenoisy feature frequencies

nff(ϕi , dj ) :8∗ → N,
nff(ϕi , dj ) := ff(ϕi , X(dj )),

(1)

where8∗ denotes the set of all possible strings over8. Note that the notation may be
misleading. For a given featureϕi and for a given documentdj the noisy feature frequency
is a random function on the probability spaceÄ = 8∗ and not a function on the set of
features and the set of documents.

– Thenoisy document length,

nl(dj) :8∗ → N,
nl(dj) := l(X(dj)),

(2)

measured e.g., in the number of tokens or the number of different features within a
document. Note that the well-known cosine length (Salton 1994) is not a random variable
on document level, if the feature weighting is based on idf(ϕ) weighting.

Important random functions on the documents collection level are the following functions:

– Thenoisy document frequency,

ndf(ϕi ) :ÄD → N,
ndf(ϕi ) := |{dj ∈ D | ff(ϕi , X(dj )) > 0}|, (3)

and thenoisy inverse document frequency,

nidf(ϕi ) :ÄD → R,

nidf(ϕi ) := 1− log(1+ ndf(ϕi ))

log(1+ n)
,

(4)

wheren := |D| is the number of documents in the collectionD. (Note that we assume
|D| = |X(D)|.)

– Based on a given formula for determining a retrieval status value (RSV), there is the
noisy retrieval status value,

nRSV(q, dj ) :ÄD → R,
nRSV(q, dj ) :=RSV(q, X(dj )).

(5)

Other interesting random functions on collection level are e.g., the noisy list, which describes
behavior of the ranking of documents after corruption, or the noisy average precision, which
describes the behavior of the performance measure average precision after corruption.
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Careful digitization: That documents do not disappear during scanning and OCR conversion
requires a careful digitization process. OCR errorscorrupt the information, which is not
desirable but information retrieval can cope with it. Careless scanning is, however respon-
sible for thelossof information. Since scanning is a part of the digitization that incurs high
cost, projects are inclined to save money with this step.

The loss of documents, however, incurs costs as well because the information need of users
cannot then be satisfied completely. Performing the capturing of documents with appropriate
care, such that the loss of documents is minimized, also incurs costs. The expenses caused
by an unsatisfied information need is recurring however, whereas the expense of capturing
is a one-time cost.

We illustrate the importance of careful digitization: Letx be the probability that an
arbitrary documentdi is lost. Further, letk be the number of documents that are relevant
to a given query. Without loss of generality assume thatd0, . . . ,dk−1 are relevant. If the
event of losing a given document and the event of being relevant are independent then the
probability that at least one relevant document is lost is

P(at least one relevant document is lost)

= P(d0 is lost∨d1 is lost∨ . . . ∨ dk−1 is lost)

= 1− P(d0 is not lost∧ . . . ∧ dk−1 is not lost)

= 1− (1− x)k. (6)

If, for example, only 1 document out of 1000 documents is lost thenx = 0.001 and if
there are 100 relevant documents then

P(at least one relevant document is lost)= 0.095. (7)

In a scenario of searches where users need “everything about a certain topic” (a typical
example are searches for patents) this equation means that there is almost a 10% chance
that a user’s information need cannot be satisfied fully. This might be bearable if a user needs
something about a topic, but not if he or she needs everything about a topic. Of course, in
cases where it is obvious that users usually query for “something about a topic” the quality
constraints for scanning may be relaxed.

Consider another scenario: Assume that a retrieval system has to serve about 100known-
item searchesper day, i.e., the user knows that there is a document in the collection and he
or she wants to find exactly this document. Assume that the 100 known-item searches ask
for 100 different documents. Then the probability that at least one of the relevant documents
(known items) is lost is, as in (7), 0.095, this number means that with almost a 10% chance
the system is not able to answer all searches per day. For example, in a patent information
system it can cause a lot of trouble if the patent that was searched for is present but the
system cannot find it. In this case the loss of 0.1% of the documents is too expensive.

3. Overtaking probabilities and the main theorem on robustness
of retrieval ranking

In information retrieval the recognition probabilities are only an intermediate piece of infor-
mation on the way to knowing how seriously rankings are permutated by data corruption.
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In particular for a highly ranked document we want to know how many lower ranked doc-
uments haveovertakenthem in the corrupted ranking. This point-of-view motivates the
definition ofovertaking probabilities.

Definition 1. Theovertaking probabilityfor the documentsdj anddk with RSV(q, dj )>

RSV(q, dk) is the probability

P(nRSV(q, dk) > nRSV(q, dj )). (8)

In this section we investigate the systematic effects of data corruption on the ranking by
inspecting the expected value E(nRSV(Q, dj )) and the variance Var(nRSV(q, dj )).

An important concept in this context is, whether or not we can expect the documents to
be ranked in the perfect order:

Definition 2. If for the pair (dj , dk) with RSV(q, dj ) > RSV(q, dk)

E(nRSV(q, dj )) > E(nRSV(q, dk)) (9)

holds we say thequality condition is met, if

E(nRSV(q, dj )) < E(nRSV(q, dk))

we say thequality condition is violated.

We denote the difference between a pair of retrieval status values by

δ jk(q) := RSV(q, dj )− RSV(q, dk). (10)

and we denote the difference between a pair of expected noisy retrieval status values by

1 jk(q) := E(nRSV(q, dj ))− E(nRSV(q, dk)). (11)

We are now able to describe the behavior of the overtaking probabilities in more detail
by bounding them. We report the bounds in the following theorem. The theorem is the basic
theoretical result for our analysis of the influence of data corruption; so that we consider
this theorem to be themain theorem on robustness of retrieval ranking.

Theorem 1. Assume thatnRSV(q, dj ) andnRSV(q, dk) are stochastically independent.
LetRSV(q, dj )>RSV(q, dk). If the quality condition is met then

P(nRSV(q, dk) > nRSV(q, dj )) ≤ Var(nRSV(q, dj ))+ Var(nRSV(q, dk))

(1 jk(q))2
. (12)
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If the quality condition is violated then

P(nRSV(q, dk) > nRSV(q, dj )) ≥ 1− Var(nRSV(q, dj ))+ Var(nRSV(q, dk))

(1 jk(q))2
.

(13)

The proof, basically an application of Chebychev’s inequality, is reported in the Appendix.

Interpretation of the main theorem: The statement of the main theorem is very abstract. We
interpret the theorem to further illustrate the abstract statement of Theorem 1. Obviously, if
the terms on the right side of Inequality (12) and (13) are greater than 1 or smaller than 0 then
Theorem 1 is useless. For other cases it leads to some interesting preliminary conclusions
about data corruption effects on information retrieval.

– Generally speaking, the smaller the variances of the noisy retrieval status values, the
higher is the probability that the ranking of the documents will be in accordance with the
expected noisy retrieval status values E(nRSV(q, dj )).

– The two inequalities (12) and (13) indicate that, for a sufficiently small variance of noisy
retrieval status values, the more pairs violate the quality condition, the more is the ranking
corrupted.

In other words, the essence of Theorem 1 is as follows: The ranking is less corrupted if
the quality condition is often met and the variance is small.

4. The behavior of collection statistics in theory and in reality

Modern retrieval functions are constructed from statistics that are computed on documents,
such as feature frequencies and document length, and from statistics that are computed
on collections, such as inverse document frequencies and average document length. In this
section we investigate behavior and values of recognition probabilities on our test collection
and also the behavior of the noisy feature frequencies. For the analysis, theoretically and
empirically, of other statistics, such as the noisy logarithmic feature frequencies, noisy
document lengths, noisy inverse document frequencies, etc. we refer to (Mittendorf 1998).

4.1. The test collection

Documents: We used the collection from the TREC-5 confusion track (Voorhees and
Kantor 1997), which is provided by the National Institute of Standards and Technologies
(NIST) as a test collection. It consists of three parallel collections; one perfect collection
D=FR94 and two different corrupted versions of FR94,X(D)=D5 andX(D)=D20. Note
that in our model these two collections are samples generated by two different probability
distributions. The collection FR94 consists of 250 Mbyte of data from the 1994 Federal
Register, that are in total 55340 documents of varying length. All documents are written in
American English.
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It is described in Voorhees and Kantor (1997) how the test collection has been produced.
The D5 collection is estimated to have a character recognition probability of 95% (a “de-
grade” of 5%, therefore the name D5). The D20 collection is estimated to have a character
recognition probability of 80% (a “degrade”of 20%, D20). The document boundaries have
been preserved. There were documents lost by the capturing process but we have excluded
them from the test collection.

The production of the test collection at NIST compromised between cost and authenticity.
There was no scanning involved, thus the test collection is realistic only to a certain extent.
Typical errors due to scanning (crinkled or dirty paper, paper skew, or even the loss of
documents) cannot be found in the corrupted collections. However, the errors in D5 and
D20 are more realistic than the errors in collections with simulated data corruption; most
importantly, the size of the test collection is more realistic than all parallel collections that
have been produced by manual corrections in previous experiments, which have generally
consisted of no more than a few thousand documents.

Queries and relevance information: The NIST has provided 49 known-item searches on
the FR94 collection, which are called CF1,. . . , CF50 (CF29 has been removed from the
query collection). For each query the set of relevant documents consists of exactly one
document,|Drel(q)| = 1. Known-item searches require a very specialized kind of queries,
since they are highly precision-oriented searches. The queries in the test collection thus
represent only a small subset of all possible queries.

Indexing: We chose a standard indexing procedure for English texts for feature extraction
(Ballerini et al. 1997). A feature class consists of all words of at least three consecutive
alphanumeric characters, from which the first character must be a letter (a–z or A–Z), that
are reduced to the same stem by Porter’s algorithm (Porter 1980) and that are not an element
of SMART’s stoplist (Salton 1971). The feature extraction is case insensitive. We refer to
these features asPorter-reduced non-stopwords.

The size of the queries, measured in the number of indexing features, is rather small.
The smallest queries consist of only one feature; the longest query consists of 14 features.
Altogether the 49 queries are made up of 250 features, which is an average of 5.1 features
per query.

4.2. Recognition probabilities

In this section we estimate collection-wide recognition probabilities on the OCR test col-
lection on a feature basis. We consider both the corruption of D5 and the corruption of D20
as random experiments. Note that from the model point of view in this experiments we have
only one realization for each of the two random experiments. Note that we denote a real-
ization in the same way as we denote the random variables themselves. We assume that the
recognition probabilities are constant across documents, i.e.,pr (ϕi , dj ) = pr (ϕi ), dj ∈ D,
so as to have enough samples for a reliable estimation.



INFORMATION RETRIEVAL 197

We count the collection frequency for each of the 250 featuresϕi that occur in the query
set of the test collection:

cf(ϕi ) :=
∑
dj∈D

ff(ϕi , dj ),

we similarly count the noisy collection frequency,

ncf(ϕi ) :=
∑
dj∈D

nff(ϕi , dj ) =
∑

X(dj )∈X(D)

ff(ϕi ,X(dj)),

for χ(D) = D5 and forχ(D) = D20. The ratio of cf(ϕi ) and ncf(ϕi ) is unfortunately
affected not only by the recognition probability but also by the false alarms. If we subtract
the noisy feature frequency nff(ϕi, dj) of those documentsdj where ff(ϕi , dj ) = 0 from the
noisy collection frequency, we eliminate a great portion of all false alarms. Thus, a rough
estimate of the recognition probability is given by:

p̂r (ϕi ) :=
ncf(ϕi )−

∑
dj ,ϕi /∈dj

nff(ϕi , dj )

cf(ϕi )
. (14)

Note that for featuresϕi with a small document frequency the estimate in (14) is not a good
estimate.

We eliminate features with zero collection frequency from the experiment and also ignore
the feature “late”, which happens to have extremely many false alarms.

Results and their interpretation: The values for the estimatêpr (ϕi ) on D5 and on D20 are
summarised in the histograms in figure 1. The histogram on the left and on the right show
the estimates of recognition probabilities on D5 and on D20, respectively.

The collection D5 is supposed to have a recognition probability of characters of 95%.
If the recognition errors are distributed equally across characters we expect word recogni-
tion probabilities of approximately 0.958= 0.66 (words with 8 characters) to 0.954= 0.81
(words with 4 characters). This is not represented in the the histogram for D5, which re-
flects a very skewed distribution. More than half of the query features have a recognition
probability of 0.97 and higher, other features are never recognised.

The D20 collection contains many more features that are never or almost never recog-
nized. Besides the unproportionally high number of features that are never recognized the
collection D20 represents an equal error distribution of most of the features: D20 is sup-
posed to have a character recognition probability of 80%. For words of 4 to 8 characters
we can expect to have word recognition probabilities between 0.88= 0.17 and 0.84= 0.41.
There are indeed many features with recognition probabilities between 0.2 and 0.4.

A closer look at the misrecognized features reveals the reason for the unequal distribu-
tion: All 33 features out of the 250 features in the test set that have recognition probability
p̂r (ϕi ) < 0.1 on D5 contain the letterj, the letterz, the letterk, or they occur exclusively in
capitalised form, such as the feature “indian”. In this experiment the OCR device system-
atically fails for these three letters and capital characters. This behavior of an OCR device
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Figure 1. Histogram of recognition probabilities on D5 and on D20. They-axis represents the feature count.
Note that the two histograms are scaled differently.
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is not uncommon and can be explained by the way these devices are trained. We shall see
in Section 5.4 that the skewed distribution of recognition probabilities causes problems for
retrieval and we briefly discuss the reason for the skew in Section 5.5.3.

4.3. Noisy feature frequencies

Feature frequencies are a very important component of effective retrieval functions. In
general, the higher the feature frequencies of query features in a document, the higher is
the probability that the document is relevant to the query (Robertson and Walker 1994).
We show (theoretically and empirically) that high feature frequencies cause high noisy
feature frequencies; they are indeed related proportionally with random deviations. Thus,
we claim that noisy feature frequencies as well as feature frequencies can be used as reliable
estimators for relevance probabilities.

We have provided a theoretical description of the random variables nff(ϕi , dj ), ϕi ∈
8, dj ∈ D in Mittendorf (1998) by rewriting noisy feature frequencies as a sum of Bernoulli
variables of feature recognitions. We report here the result: If the false alarms are negligible
then

E(nff(ϕi , dj )) = ff(ϕi , dj )pr (ϕi , dj ). (15)

and

Var(nff(ϕi , dj )) =
∑
yk=ϕi

Var(Yk)+
∑
yk 6=ϕi

Var(Yk)

= ff(ϕi , dj )pr (ϕi , dj )(1− pr (ϕi , dj )) (16)

These formulas indicate that noisy feature frequencies increase proportionally with feature
frequencies. The next section validates the formula on a collection-wide basis.

4.4. The analysis of the behavior of noisy feature frequencies on the test collection

To validate formula (15) we need many samples and thus must rely on features with recogni-
tion probabilities that are constant across documents, i.e.,pr (ϕi , dj )= pr (ϕi ) for all dj ∈ D.
We chose the featureϕi = “provid” on D20 for the following reasons: It occurs very of-
ten in the collection, 76546 times in 28946 documents, which promises reliable estimates.
It has an overall recognition probability ofpr (ϕi )= 0.41. Recall that 0.41 is exactly the
recognition probability of an eight-letter word (such as ‘provides’ or ‘provider’) if each
character has probability 0.8. and thus we can expect that the errors are equally distributed
among all occurrences of the feature in the collection. As most other features, the feature
“provid” has a negligible false alarm rate. In Mittendorf (1998) two more feature examples
have been analysed.

For the given featureϕi = “provid” we produce a set of tuples (ff(ϕi , dj ), nff(ϕi , dj )),
with dj ∈ FR94 andX(dj ) ∈ D20. A regression analysis ((Stahel 1995, p. 257) or (Venables
and Ripley 1994)) is performed on the set of tuples; in particular, a “simple linear analysis
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Figure 2. Contour plot and regression output for “provid” in D20, contour lines are spaced quadratically.

through the origin” for E(nff(ϕi , dj )) = β ff(ϕi , dj ) is performed, which estimatesβ by a
least square method.

Results: Figure 2 presents a contour plot of the histogram of the tuples (ff(ϕi , dj ), nff(ϕi , dj ))
for dj with ϕi ∈ dj or ϕi ∈ X(dj ). Note that (for efficiency reasons and reasons of proper
presentation) the tuples (0, 0) are not represented in the diagram. The contour lines are
spaced quadratically, i.e., (1, 4, 9,. . . ).

The graph contains a solid line and a dotted line. The solid line represents the prediction
of the theoretical model for the expected feature frequency according to (15). The dotted
line is the prediction of a simple linear regression through the origin. The output of the
regression is shown the tables in figure 2. In Stahel (1995, p. 261) it is explained in a
detailed way how the output of a regression can be interpreted, e.g., the valueR-squared
can be interpreted as the percentage of samples that can be explained by the estimated model.

Interpretation of the results for“provid” on D20: We recognise that for the feature “provid”
the model of linearly corrupted feature frequencies and the regression estimate are very
close (figure 2). A slope ofβ = 0.39 in the regression fit deviates only a little bit from
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the model parameter of 0.41. The hight-value and the small estimated standard error for
β, seβ , show a high reliability of the estimate. A high percentage of about 80% of the 28949
samples fit the regression model (R-squared).

In summary, the model presented in Section 2 and the theoretically-derived formula (15)
fit the OCR test data very well. We have not tried to show whether the formula for the
variance (16) is valid or not. The tendency of increasing variance with increasing feature
frequency, however, is traceable as shown in Mittendorf (1998).

5. The influence of data corruption on information retrieval effectiveness

5.1. Retrieval on corrupted data is feasible

It has been one of the first results in the field of analysing data-corruption effects on
information retrieval that retrieval on corrupted data is feasible. Researchers have even
been surprised at how well retrieval works on highly-corrupted data (Smith and Stanfill
1988, Sch¨auble and Glavitsch 1994, Croft et al. 1993, Glavitsch et al. 1994). There is
however a certain difference in the results that emerge from experiments with simulated
data corruption and from experiments on genuinely-corrupted data. Whereas in both sets of
experiments the main result is that retrieval is in general robust against data corruption, the
experiments on genuinely-corrupted data has shown that there are queries, for which the
retrieval effectiveness has suffered to a very high degree. However, this section explains
the high robustness; possible problems are discussed in the following sections.

Let us introduce a notation for a general retrieval function:

RSV(q, dj ) := 1

norm(dj )

∑
ϕi∈q

a(ff(ϕi , dj ))b(ff(ϕi ,q))w(ϕi ), (17)

wherea, b, norm, andw are non-negative real functions,a andb must not depend on any
collection-wide statistics such as document frequencies. Typicallya andb stand for the
identity function (linear feature frequency weighting) or for a logarithmic transformation
such as 1+ log(ff(ϕi , dj )). The weightw collects all components of a weighting function
that depend on collection-wide statistics for the featureϕi , a typical functionw is e.g.,
w(ϕi ) = idf(ϕi ). The function norm (dj ) stands for the factor that provides document length
normalisation. We shall present here a rather informal explanation why data corruption is
robust. For a formal proof on some retrieval functions refer to Mittendorf and Sch¨auble
(1996) and Mittendorf (1998).

Let the following assumptions hold:

– The recognition probability is constant across features and documentspr (ϕi , dj ) =
pr , ϕi ∈ 8, dj ∈ D.

– We can approximate E(a(nff(ϕi , dj ))) = Ca(ff(ϕi , dj )),C > 0. For linear feature-
frequency weighting this is a good model as shown in 4.3 and also for logarithmic
feature-frequency weighting it is an appropriate model (Mittendorf 1998).

– The normalization is robust against data corruption norm (X(dj ))= norm(dj ). We know
e.g., that length normalization based on the number of tokens is extremely robust, but
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cosine normalization is not, since the cosine length of a corrupted document is domi-
nated by misrecognized low-frequency words and thus high-inverse-document-frequency
words. This fact has been explained in Taghva et al. (1994).

– Theb(ff(ϕi , q)) is robust. In other words, the query is not corrupted.
– w(ϕi ) is robust. The inverse document frequency weightw(ϕi )= idf(ϕi ) is not robust,

but weights derived from a training collection are robust.

Then

E(nRSV(q, dj )) = CRSV(q, dj ),

and thus the quality condition (2) is always met, which means that overtaking probabilities
are low (Theorem 1) and the ranking is likely to be robust.

This behavior reveals that it does not make sense to aim at an error-less recognition
when digitizing for retrieval. It is more important to control the distribution of errors among
documents and words as will be shown in the Section 5.4.

5.2. The influence of the document length

Previous experiments of retrieval on corrupted data, in particular experiments in Croft
et al. (1993), have led to theconjecturethat for long documents retrieval is more robust
against data corruption than retrieval on short documents. Together with some intuitive
considerations—i.e., long documents are more redundant and thus are less prone to the loss
of feature occurrences—the conjecture became a conviction in the field of analyzing data
corruption effects on information retrieval. We do not have to rely on intuitive considerations
however, we haveprovedthe conjecture formally and specified it in Mittendorf (1998) in
theTheorem on Robustness and Document Length.

Theorem 2. Assume that there is an infinite sequence of pairs(
d(0)j , d

(0)
k

)
,
(
d(1)j , d

(1)
k

)
,
(
d(2)j , d

(2)
k

)
, . . .

which satisfy the following requirements.

1. The corresponding lengths l(h)
j and l(h)k and the normalization factors are unbounded,

i.e.,

lim
h→∞

norm
(
d(h)j

) = ∞ and lim
h→∞

norm
(
d(h)k

) = ∞. (18)

2. Assume that the quality condition is either met for all pairs in the sequence(d(h)j , d
(h)
k ), h∈

N, or that it is violated for all pairs. Furthermore, assume that there exists a positive
lower bound1 such that for all1(h)

jk := E(nRSV(q, d(h)j ))− E(nRSV(q, d(h)k ))∣∣1(h)
jk

∣∣ > 1. (19)



INFORMATION RETRIEVAL 203

3. Assume that there exists a K> 0 such that we have for all h∈ N and for allϕi ∈ q

Var
(
a
(
nff
(
ϕi , d

(h)
j

))) ≤ Knorm
(
d(h)j

)
,

Var
(
a
(
nff
(
ϕi , d

(h)
k

))) ≤ Knorm
(
d(h)j

)
.

(20)

Then we can conclude that, if for all (d(h)j , d
(h)
k ), h ∈ N, the quality condition is met,

P
(
nRSV

(
q, d(h)k

)
> nRSV

(
q, d(h)j

))→ 0 (21)

or, if for all (d(h)j , d
(h)
k ), h ∈ N, the quality condition is violated,

P
(
nRSV

(
q, d(h)k

)
> nRSV

(
q, d(h)j

))→ 1, (22)

as h→∞.

Theproof is a direct consequence of Theorem 1 and is similar to the proof of the law of
large numbers. It is worked out in detail in Mittendorf (1998).

This lengthy and somewhat formal theorem may be deterring, but the advantages of the
formalism are that the theorem reveals interesting facts more than just the influence of the
document length.

Interpretation:

– The main implication: The longer the documents in a collection the smaller is the prob-
ability that in the presence of errors the rankings are permutated (robustness).

– If documents become longer because they talk about many different topics (scope hy-
pothesis (Robertson and Walker 1994)) the difference between the RSV of different doc-
uments vanishes, in particular if the RSV are normalised by the document length. Thus,
Condition (19) is violated and we cannot imply the robustness. However, if documents
become longer because the authors are very verbose (verbosity hypothesis (Robertson
and Walker 1994)) upon one and the same topic the same features recur and with an
appropriate document normalization Condition (19) holds.

– We have elaborated in Mittendorf (1998) that the conditions of the theorem hold for
well-known retrieval functions such as proposed by Singhal et al. (1996) and Robertson
and Walker (1994). It is important that the document length normalization is based on
the number of features or the number of tokens in a document.

– The theorem does not state that any collection of long documents is superior to any
collection of short documents in terms of robustness against data corruption. It only
indicates a general tendency.

5.3. How can robustness be improved if your documents are short?

The Theorem on Robustness and Document Length suggests to digitize a complete docu-
ment and not only its summary if both are available. On the one hand the theorem indicates
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that wordy documents are easier to digitise than concise documents, unfortunately. On the
other hand, the theorem also helps us to improve digitization of short and concise documents
for retrieval purposes. We shall state some tricks to improve robustness. These tricks are in
a sense ways of decreasing the variance of the noisy retrieval status values.

1. A common approach in retrieval of corrupted data is the use of n-gram features instead
of feature classes containing words such as porter-reduced non-stopwords.

A token of a word-based feature is only recognized correctly if all of its characters
(except for some stemmer-dependent special cases) and thus all the constituting n-grams
are recognized correctly. Thus features based on n-grams have usually higher recognition
rates than word-based features. In addition to the positive effect of lower recognition
probabilities there are more n-gram tokens in a document than tokens of word-class
features. Thus, the documents are longer if length is measured in terms number of
tokens and thus we can expect the variance Var(nRSV(q, dj )) to be smaller.

However, n-gram retrieval has a lower retrieval effectiveness than standard word-based
retrieval on perfect data (Cavnar 1992, Teufel 1989, Wechsler and Sch¨auble 1995). Thus
there is a trade-off which has to be considered. In practice n-gram retrieval often pays
off for highly corrupted data.

2. A similar method is to use n-gram featuresandword-class features simultaneously, which
is reported to be successful for experiments with highly-corrupted data in Harding et al.
(1997). On perfect data however combining n-gram features with word-based features
results in less effective retrieval than word-based features only.

3. One can improve the estimates of the feature frequencies by applying several independent
recognition devices. The recognition quality can be improved by combining different
recognition methods, e.g., (Garzotto 1994, J¨ager 1996, Jones et al. 1996). However, as
mentioned before, a slight improvement of recognition probabilities hardly decreases
the ranking corruption.

We rather plead for using the different devices to improve the estimate of the RSV. In
terms of our probability model different devices yield different independent realizations
of the random functionX(dj ). Note that in case of paper documents, for example once
the documents are scanned, it is not too much of a problem to run a batch system
that employs several OCR systems. This approach is, however, very memory intensive.
Note that the OCR devices must be independent, that means, in particular, they must be
different.

4. Probabilistic matching methods such as described in Mittendorf et al. (1995) have been
developed to get better estimates of the perfect feature frequencies: Not only the exact
occurrences of features (as in our probability model) are included in the computation of
noisy feature frequencies but similar strings in the document are also taken into account
in order to improve the estimate of the noisy feature frequency.

Theorem 1 shows us that a small variance Var(nff(ϕi , dj )) must be a design criterion
for a good probabilistic-matching method that estimates feature frequencies, in particular
if we have to deal with short documents and small recognition probabilities because both
properties lead to high variance, Theorem 2 and Eq. (16). In these cases the additional
effort of an improved estimate is worthwhile.
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Unfortunately the effect of the document length cannot be validated with the test collection
because ranking corruption is dominated by other factors (as we will show in Section 5.4).
This effect has, however, been illustrated before by others (Croft 1993).

5.4. The influence of recognition probabilities that vary from document to document
or from feature to feature

This section explains two factors that degrade information retrieval performance signifi-
cantly. We first explain the reason for the degradation of retrieval performance and then
show on our test collection that indeed these two factors are the major reasons for retrieval
degradation under data corruption.

5.4.1. Variation from document to document.Let us first consider a case where the
recognition probabilities of all features within one and the same document are constant,
pr (ϕi , dj )= pr (dj ) for all ϕi ∈ dj . Consider a general RSV-function (17). As in Section 5.1
assume uncorrupted normalization (such as pivoted normalization based on the number of
tokens), uncorrupted feature weightingw(ϕi ) (such as inverse document frequency weight-
ing based on document frequencies from an uncorrupted training collection), and a linear
feature-frequency weighting. Then we have

E(nRSV(q, dj )) = 1

norm(dj )

∑
ϕi∈q

E(nff(ϕi , dj )) ff(ϕi ,q)w(ϕi )

= 1

norm(dj )

∑
ϕi∈q

pr (dj ) ff(ϕi , dj )) ff(ϕi ,q)w(ϕi )

= pr (dj )RSV(q, dj ). (23)

Note that a similar behavior of the corruption of E(nRSV(q, dj )) can be observed for other
weighting schemes, e.g., for logarithmic feature weighting (Mittendorf 1998).

Example. Figure 3 illustrates some overtaking scenarios. Two number axes are opposed
to each other in both of the two pictures in the figure. The left axis in each of the pictures
contains the documents ranked according to their RSV(q, dj ) and on the right axis in
each of the pictures the documents are placed according to their E(nRSV(q, dj )). The
representatives of the same document on the left and right axes are connected with lines.
The left picture (a) represents an example for which the recognition probabilities are almost
constant across documents, let e.g., 0.7 ≤ pr (dj ) ≤ 0.8 for all documents. In this case the
quality condition is always or almost always met; in the picture example the connecting lined
do never cross, and thus overtakings are not very likely, besides the moderate recognition
probabilities. The right picture (b) represents an example in which the probabilities vary
heavily. Let e.g.,pr (dj ) = 0.1 for documents out of a certain subset (in the picture example
for those document ranked 1st, 4th, and 5th by the perfect ranking)pr (dj ) = 0.9 for all
other documents (in the picture example the 2nd, 3rd, 5th, and 7th document on the perfect
ranking). For such recognition probabilities the quality condition of a document pair (dj , dk)
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Figure 3. Documents have similar (a) or varying (b) recognition probabilities.

with RSV(q, dj ) > RSV(q, dk), pr (dj ) = 0.1, andpr (dk) = 0.9 the quality condition is
violated if RSV(q, dj ) < 9 RSV(q, dk), which is usually the case for many such pairs and
thus overtakings are likely. In the picture example (b) the quality condition is violated for
six document pairs (six lines cross).

In summary, the more the recognition probability vary from document to document the
likelier are overtakings.

5.4.2. Experiments on the variation from document to document.The test collection
(Section 4.1) incidentally contains examples where the effect of recognition probabilities
that vary from document to document can be illustrated. We can find several documents in
which almost no features are recognized—neither in the version of the documents of D5 nor
in the version of D20. We have collected a few of those documents are in the following set,
S := {FR941230-0-00119, FR941230-0-00120, FR941230-0-00121, FR941202-2-00139,
FR0527-2-00135}. All features in the documents in setS have a recognition probability
pr (dj ) of almost zero in both versions, D5 and D20. (The reason is the capitalization
of almost all words in those documents and the problems that the OCR device has with
upper-case letters, Section 5.5.3.)

Incidentally, the particular documents of setShave been retrieved among the top-ranked
documents on the perfect lists for several queries, may be because they contain unpropor-
tionally many low-frequency words.

In our experiments, we ranked the documents according to the socalled Lnu.ltn weighting
scheme (Singhal et al. 1996) (logarithmic feature frequency weighting in documents and
queries, inverse document frequency weighting, pivoted document length normalization).
The perfect list L has been computed onD :=FR94 and the noisy list nL has been com-
puted onX(D) :=D5. Instead of noisy inverse document frequencies for the noisy list, the
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perfect document frequencies have been used to eliminate the effects due to noisy docu-
ment frequencies. For each of the 49 queries we then computed two measures of ranking
corruption. The squared rank difference of thetop-tendocuments of the perfect list rcSq10

and the overtaking cost rcCO, both are formally defined in Mittendorf (1998). For the mea-
sure overtaking cost the overtakings are penalized with a linear function of the rank of the
document in the perfect list.

We picture the results in the two graphs in figure 4. The queries have been ordered by
their two different ranking-corruption values: by rcSq(q) in the left graph and by rcCO(q)
in the right graph. (Note that we had to scale the ranking-corruption values for numerical
reasons and thus, the absolute values are not meaningful.)

Thex-axis represents the rank with respect to the particular ranking-corruption value and
they-axis represents the the ranking-corruption value itself. Instead of dots, the scatter plot
consists of numbers which represent the number of documents out of the setS that appear
in the perfect list among the top ten. (By the way, none of the documents out of the setS
appears among the top 500 in any of the corrupted lists and non of which is relevant to any
query). The query identification (CF1–CF50) is given at the top of the figure.

Obviously the more the highly-corrupted documents from setSare ranked among the top-
ten documents in a perfect ranking, the more the ranking itself is corrupted. This relationship
can be observed in particular for the measure that is based only on the top-ten documents.

5.5. Variation from feature to feature

Now assume the dual scenario: The recognition probability of a given featureϕi is constant
from document to document but may vary from feature to feature. We abbreviatepr (ϕi ) :=
pr (ϕi , dj ).

Again the quality condition is often violated: We assume that the false alarm probabilities
can be neglected and we introduce the notation

pmin(q) := min
ϕi∈q

pr (ϕi )

and

pmax(q) := max
ϕi∈q

pr (ϕi ).

Again, we assume that the document independent feature weightingw(ϕi ) and the nor-
malization factors norm (dj ) are not corrupted and that feature frequencies are weighted
linearly: It is

E(nRSV(q, dj )) = 1

norm(dj )

∑
ϕi∈q

ff(ϕi ,q)E(nff(ϕi , dj ))w(ϕi )

= 1

norm(dj )

∑
ϕi∈q

ff(ϕi ,q)pr (ϕi )ff(ϕi , dj ))w(ϕi ). (24)
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Figure 4. Documents with extremely low recognition probabilities and the influence on ranking corruption.
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Then because

pmin(q) ≤ pr (ϕi ) ≤ pmax(q),

for all ϕi ∈ q, the expected noisy retrieval status values are bounded by

pmin(q) RSV(q, dj ) ≤ E(nRSV(q, dj )) ≤ pmax(q) RSV(q, dj ),

pmin(q) ≤ aj (q) ≤ pmax(q). (25)

We have to assume that the boundspmin(q) andpmax(q) are inclusive because a document
may contain only those query features with recognition probabilitiespr (ϕi ) that are equal
to pmin, another document may contain only those query features withpr (ϕi ) = pmax. The
behaviour of the expected overtakings resembles the one in figure 3. Thus, again, we have
to expect a high ranking corruption. Note that in Mittendorf (1998) we have included other
weighting schemes into this analysis.

5.5.1. Experiments on the variation from feature to feature.It is not possible to separate
the different effects of document length, varying recognition probabilities across features,
and varying probabilities across documents. Thus it is not easy to confirm the theoretical
investigations by experiments. In a similar way to Section 5.4.1, we limit the experiments
to extreme cases where we have features with recognition probabilities close to zero. We
also limit our experiments to the D5 documents, because on D20 the degradation of query
features varies heavily for all queries. In particular, for all queries there is at least one feature
that has a recognition probability less than or equal to 0.15.

The following queries contain at least one feature with recognition probability on D5 less
than or equal to 0.15. The respective features are specified:

CF2 “risk” CF7 “mark” CF10 “network”
CF15 “truck” CF17 “truck”, “jackknife” CF18 “alaska”
CF21 “amazon” CF24 “size” CF25 “project”
CF27 “mhz” CF30 “alkali”, “character”, “milk” CF31 “zoo”
CF32 “subject” CF39 “jellyfish” CF40 “wicker”
CF41 “jade” CF42 “duck” CF43 “jazz”
CF46 “rock” CF48 “object” CF49 “smoke”
CF50 “alaska”

Figure 5 illustrates the influence of extremely varying recognition probabilities on rank-
ing corruption. The experiment and the applied measures for figure 5 are exactly the same
as for figure 4. The only difference between the scatter plots in the two figures is that the
numbers that represent the positions in the scatter plots indicate the number of features in
the query that belong to the set of features withpr (ϕi ) ≤ 0.15.

Results and interpretation: In general, the larger the ranking corruption in terms of the
measure rcSq10(q) (scatter plot at the top of figure 5) as well as in terms of overtaking cost
rcCO (q) (scatter plot at the bottom) the higher is the number of highly-corrupted features in
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Figure 5. Ranking corruption and number of features with low recognition probabilities.
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the scatter plot. Extreme variation of recognition probabilities from feature to feature harm
retrieval performance.

A close look at the four scatter plots in figures 4 and 5 reveals that for the collection
D5 high ranking corruption isalways due to a high variation in recognition probabilities,
either a variation from document to document or a variation from feature to feature.

5.5.2. Remarks on the use of post-processing systems.Post-processing systems are mainly
dictionary based spelling correction systems that aim at improving the recognition proba-
bilities of words by a dictionary look up of similar words. There is a strong belief in some
research groups that the automatic post-processing of texts is beneficial in OCR-based text
retrieval. This opinion is expressed e.g., in Taghva (1994), although in this research it could
not be shown that retrieval is significantly better on post-processed data than on the origi-
nally corrupted data. The experimental results showed an increase in precision but a decrease
in recall and it left the researchers wondering why the retrieval on the post-processed data
is good for some queries but is heavily degraded for other queries. The investigations of
Section 5.4 indeed explain the high query variation.

Wiedenhöfer et al. (1995) used an elaborate post-processing to improve the indexing
process for scanned German business letters. They mention a higher efficiency of indexing
and retrieval because of the smaller number of indexing features, but they mention also that
the use of the post-processing system leads to effectiveness problems. They realized
that the use of a dictionary boosts the recognition probability of some features and overrides
the recognition probability of others. Their effectiveness problems due to post-processing
systems coincide with our theoretical result.

A post-processing system might increase the overall recognition probability of characters
and words. The biggest problem, however, is that a dictionary is always of finite size.
After post-processing, features that are contained in the dictionary have high recognition
probabilities and higher false alarm rates, whereas the recognition probabilities of features
not contained in the dictionary remain low or even become zero if they have a high string
similarity to one of the elements of the dictionary. The recognition probability varies highly
from feature to feature and thus implies high ranking corruption. On the other hand, a
post-processing system decreases ranking corruption if all query features are elements of
the dictionary thereby giving higher recognition probabilities, (15) and (16). This explains
the high query variation in retrieval effectiveness found in Taghva (1994).

A fact that intensifies the negative effect of the use of post-processing is that the features
that are not contained in a dictionary usually are features with high inverse document
frequencies and thus—whenever contained in a query—make important contributions to
a good retrieval result. A post-processing system may be useful in a routing or filtering
environment where the indexing vocabulary can be limited to the features that occur in the
current query (profile) but is not useful for retrieval in general.

5.5.3. A word on the optimization of OCR systems.OCR systems are often trained by
maximising theoverall recognitionprobability or, equivalently, by minimizing the average
number of errors per page.
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Definition 3. Let A be the alphabet of all characters in a languageL then theoverall
character-recognition probabilityis defined as

poverall :=
∑
c∈A

P(c)P(x(c) = c), (26)

whereP(c) is the probability that the charactercoccurs in texts that are written in languageL.

Looking at this formula, we can see that it is more important to be able to recognize
frequent characters such ase (12.02%) ort (9.14%) than infrequent characters such asz
(0.09%) orj (0.14%). (The numbers in brackets indicate the occurrence probabilities of the
characters in the FR94 test collection in percent.)

Consider the following example: In the FR94 collection the occurrence probability of the
characteri is 0.079, whereas the occurrence probability of the characterj is 0.0014. These
two characters are easily confused by many OCR systems.

Assume that 5% of all charactersi are recognized asj. Then poverall is at least 0.079×
0.05 = 0.00395 smaller than for a system that perfectly distinguishes betweeni and j.
If you replace eachj by an i without regarding how confident or uncertain the system
is about its decision thenpoverall decreases at most by 0.0014 compared with a system
that perfectly distinguishes between the two characters. In cases of doubt one must decide
against infrequent and in favour of frequent characters to gain an optimal overall recognition
probability. In summary, optimisation of overall recognition probabilities is likely to cause an
unequal distribution of errors among characters. Optimizing the average number of errors
of, equivalently, the overall recognition probability is not optimal for retrieval purposes,
where we need an equal distribution of errors among words and documents.

5.6. How can robustness be improved in the presence of varying
recognition probabilities

The most important teaching of Section 5.4 is to aim at the avoidance of great variation
of recognition probabilities. If possible the variation must be prevented at the time of the
recognition process.

1. A first rule is,do not post-processthe document collection with a dictionary. This rule
has the positive side effect that an extensive and time-consuming step in the process of
data conversion can be omitted and thus capturing remains cheaper. Pre-processing can
be useful for search tasks where the queries are contained in a controlled vocabulary
(dictionary), such as a filtering task.

2. Watch the strategy for optimizing recognition probabilities: We learned that an OCR
system that works well for retrieval purposes is not necessarily optimized with measures
that are standard in the evaluation of OCR systems. The same holds for speech recognition
systems. However, most commercial OCR systems are trainable after purchase, speech
recognition system have to be made application specific anyway. Thus there is a chance
to outwit a wrong optimization strategy if the training strategy is revealed. For example, if
the overall recognition probability is optimized, the recognition device must be trained on
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material that consists of all types of recognizable units and all units should be distributed
more or less equally on the material.

If the recognition process can not be influenced or if even after a better optimization
there is a great feature variation, then we have to find ways and means to circumvent the
problems that are due to varying recognition probabilities.

1. Long queries or query expansion: If several features are lost due to very low recognition
probabilities then it may be possible to compensate for the loss of these feature by
formulating long queries or by using an intelligent query-expansion algorithm. Although
long queries or query expansion can compensate for the loss of a few features to a
certain extent (Frei and Qui 1993, Xu and Croft 1996, Efthimiadis 1996) the queries
must operate only with features that are well recognised by the system, and features
good for query expansion are not necessarily recognized well. However, it is for users
difficult to ask good, long queries and query expansion as well is neither an easy task
nor a computationally cheap task and even after the high expenditure of query expansion
the user has still to be satisfied with a suboptimal performance of the system.

There is another reason why users should be encourage to use long queries: Long
queries are beneficial in the presence of false alarms (Sanderson 1994). We have dis-
cussed this in detail in Mittendorf (1998).

2. Probabilistic matching: The algorithms that proceed from an exact feature matching to a
weaker kind of feature matching (e.g., (Mittendorf et al. 1995, Myka and G¨untzer 1995))
qualify themselves for the task of optimizing the retrieval results on corrupted data. The
knowledge that we gained about the influence of recognition variation gives a clear idea
how a good probabilistic matching algorithm must be designed: Equation 24 shows that
the matching should be relaxed more for features with low recognition probabilities and
still be tight for features with high recognition probabilities.

3. The noisy inverse document frequencyincreases in comparison to the perfect inverse
document frequencies whenever a features is badly recognized. This behavior can, to a
certain extent, compensate for the negative effects of varying feature-recognition prob-
abilities. It is thus better to count the document frequency on the corrupted collection
than on a perfect training collection. Besides, the corrupted document frequency count
is beneficial in the presence of false alarms (Mittendorf 1998).

4. The simultaneous use ofseveral independent OCR devicesto estimate feature frequencies
as already indicated to compensate for short documents Section 5.3 can also help to level
the feature recognition probabilities. For this purpose the independent devices must be
trained differently.

6. Summary

We applied probability theory to understand data corruption effects on information retrieval.
The theory has been validated on a test collection. Our analysis yields results that do not
only explain experimental results on information retrieval that could so far not be explained,
it also implies measures for the proper realization of digitization projects for information
retrieval purposes.
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We briefly summarize the most important consequences for digitization projects.

– Information retrieval on corrupted data is feasible even with only moderate recognition
probabilities. Although it is obvious that the less errors the more robust is the retrieval, it
is a waste of money to aim at an error-less recognition (Section 5.1). The scanning process
must however be performed with appropriate care (Section 2). and a solid retrieval system
must be applied that employs weighted retrieval (Section 5.1).

– One must be careful with the interpretation of experiments that are performed with
simulated data corruption, if they do not contain variations of recognition probabilities.
Variations are the cause of the most permutations in retrieval rankings (Section 5.4).

– If one has the choice of scanning full documents or only document extracts one should
scan the full documents to achieve more robustness against data corruption (Section 5.2).

– One must be careful with the use of post-processing systems (Section 5.5.2) and the
application of standard strategies for optimising the recognition because they favor the
variation of recognition probabilities (Section 5.5.3).

– Cosine normalization is harmful (Taghva 1994).
– Noisy inverse document frequency is better than inverse document frequencies estimated

on training collections, because noisy inverse document frequency compensates for sev-
eral negative effects of recognition probabilities (Section 5.6).

– There are some promising approaches to improve retrieval on corrupted data that are
advisable to employ, such as using several independent OCR devices, probabilistic feature
matching, and n-gram based retrieval (Sections 5.3 and 5.6).

Appendix A. Proof of the main theorem (Theorem 1)

For all pairs of documentsdj and queriesq with RSV(q, dj)> 0 there exists andegradation
value aj (q)

E(nRSV(q, dj )) = aj (q) RSV(q, dj ), (27)

with aj (q) > 0. Then

nRSV(q, dj ) = aj (q) RSV(q, dj )+ s(q, dj ), (28)

wheres(q, dj ) describes the variance

E(s(q, dj )) = 0,

Var(s(q, dj )) = Var(nRSV(q, dj )).

Using the description of the relation between retrieval status values and noisy retrieval status
values (28) and the abbreviations for the differences (10) and (11) we get:

P(nRSV(q, dk)>nRSV(q, dj ))

= P(ak(q) RSV(q, dk)+ s(q, dk) > aj (q) RSV(q, dj )+ s(q, dj ))
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= P(ak(q) RSV(q, dk)+ s(q, dk) > aj (q) RSV(q, dk)+ aj (q)δ jk + s(q, dj ))

= P(s(q, dk)− s(q, dj ) > 1 jk(q))

≤ P(|s(q, dk)− s(q, dj )| > 1 jk(q)).

Chebychev’s inequality, the independence of nRSV(q, dj ) and nRSV(q, dk), and the fact
that for two independent variablesX andY, E(XY)= 0 (Pythagoras’ theorem for stochastic
variables) yield

P(nRSV(q, dk) > nRSV(q, dj )) ≤ Var(s(q, dj )− s(q, dk))

(1 jk(q))2

= Var(nRSV(q, dj ))+ Var(nRSV(q, dk))

(1 jk(q))2
,

which proves Inequality (12).
Similarly with Chebychev’s inequality we show

P(nRSV(q, dj ) ≥ nRSV(q, dk)) ≤ Var(nRSV(q, dj ))+ Var(nRSV(q, dk))

(1k j (q))2
.

We have1 jk(q) = −1k j (q) and thus(1k j (q))2 = (1 jk(q))2, then

P(nRSV(q, dk) > nRSV(q, dj ))

= 1− P(nRSV(q, dj ) ≥ nRSV(q, dk))

≥ 1− 1

(1 jk(q))2
(Var(nRSV(q, dj ))+ Var(nRSV(q, dk))),

which proves Inequality (13).
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