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Abstract. Description logics, also calledterminological logics, are commonly used in knowledge-based systems
to describe objects and their relationships. We investigate the learnability of a typical description logic,Classic,
and show thatClassic sentences are learnable in polynomial time in the exact learning model using equivalence
queries and membership queries (which are in essence, “subsumption queries”—we show a prediction hardness
result for the more traditional membership queries that convey information about specific individuals).

We show that membership queries alone are insufficient for polynomial time learning ofClassic sentences.
Combined with earlier negative results (Cohen & Hirsh, 1994a) showing that, given standard complexity theoretic
assumptions, equivalence queries alone are insufficient (or random examples alone in the PAC setting are insuf-
ficient), this shows that both sources of information are necessary for efficient learning in that neither type alone
is sufficient. In addition, we show that a modification of the algorithm deals robustly with persistent malicious
two-sided classification noise in the membership queries with the probability of a misclassification bounded below
1/2. Other extensions are considered.
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1. Introduction

We address the problem of efficient knowledge acquisition from the vantage point of com-
putational learning theory. Traditionally, computational learning theory has focused on
propositional domains. We investigate learning in the first-order domain ofdescription
logicsor terminological logics. Specifically we consider the learnability of the description
logic known asClassic (Borgida et al., 1989). To the extent thatClassic is a typical
description logic, our results generalize to a variety of other such logics.

Description logics are more expressive than the propositional calculus. A description
logic statement is essentially a first-order predicate calculus formula in which all but one
variable is quantified. Therefore, the meaning of a statement in a description logic, instead
of being either true or false for a given interpretation, is the subset of the universe satis-
fying the statement. For example, suppose that the universe is a set of dogs,brown (x)
asserts thatx is brown, andsmaller (x,y) asserts thaty is smaller thanx. If it happens
to be the case thatRex is the only shaggy dog andFido is the only brown dog, then
(∀y) brown (x) ∧ smaller (x, y) is a well-formed description logic statement denoting
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the set{Fido } providedFido is the largest dog in the universe; otherwise the empty set is
denoted. Likewisebrown (x) ∧ shaggy (x) denotes the empty set. Neither statement is a
closed formula in the predicate calculus and neither statement has an associated truth value.
Thus, description logics have a different flavor than the predicate calculus. Description
logics comprise natural classes of formulas; not only are they the subject of theoretical
investigation within the field of knowledge representation, but they also find use in practical
knowledge-based systems (Beck et al., 1989; Borgida, 1992; Borgida & Patel-Schneider,
1992; Brachman et al., 1983; Cohen & Hirsh, 1994b; Devanbu et al., 1991; Mays et al.,
1987; Patel-Schneider, 1989).

1.1. Classic

Classic permits constructing certain quantified descriptions that distinguish a particular
subset of a domainI of individuals. Classic descriptions containprimitive symbols
which get mapped to arbitrary subsets ofI, disjoint primitive symbolswhich get mapped
to mutually disjoint subsets ofI, roles which get mapped to binary relations onI, and
attributeswhich are roles that happen to be functions. Further,Classic sentences contain
constructors which manipulate these primitives, disjoint primitives, roles, and attributes, in
order to permit the denotation of complicated subsets ofI. The following synopsis and
semantics ofClassic is excerpted from a variety of sources (Borgida & Patel-Schneider,
1992; Cohen et al., 1992; Cohen & Hirsh, 1994a).

(SAME-AS (r1,1 . . . r1,k1 ) (r2,1 . . . r2,k2 )) denotes the set of individuals
{x : r1,k1(· · · (r1,2(r1,1(x)))) = r2,k2(· · · (r2,2(r2,1(x))))}
for which composing the first chain of attributes is the same as composing the second
chain of attributes.

(ALL r D) denotes the set{x : ∀y [r(x, y)→ D(y)]} of individuals for whichall of the
r-related individuals satisfyClassic descriptionD.

(AND D1 . . . Dn) denotes the set{x : D1(x) ∧ · · · ∧ Dn(x)} of individuals that satisfy
eachClassic descriptionD1, . . . , Dn.

(AT-LEAST n r) denotes the set{x : |{y : r(x, y)}| ≥ n} of individuals having at least
n r-related individuals.

(AT-MOST n r) denotes the set{x : |{y : r(x, y)}| ≤ n} of individuals having at mostn
r-related individuals.

(PRIM pi) denotes the subset of individuals denoted by the primitive symbolpi (provided
by the interpretation). (In our illustrations we omit this formalism and use descriptions
such asbrown to denote the primitive set of things which are brown.)

(FILLS r p1 . . . pn) denotes the set{x : ∃yi ∈ pi such thatr(x, y1) ∧ · · · ∧ r(x, yn)},
where thepi are disjoint primitive symbols.

(ONE-OF p1 . . . pn) denotes the set∪ni=1pi, where thepi are disjoint primitive symbols.
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Descriptions are built from the individuals, primitives, and other descriptions. For exam-
ple if our set of individuals is the set of all dogs and breeds1 and we have at our disposal
the primitive conceptbrown for the set of brown dogs, the rolesmaller for comparing
dog sizes, the attributebreed for denoting breeds, the attributefather for associating a
dog with its father, the attributemother for associating a dog with its mother, and the role
classmate denoting the obedience school classmates, then if we wished to denote the set

{x : ∀y classmate (x, y) → [ brown (y)
∧ |{z : smaller (y, z)}| ≥ 20
∧ breed (mother (y))

= breed (father (father (y))) ] }

of dogsall of whose obedience school classmates were brown, larger than at least twenty
other dogs, and had mother and paternal grandfather of the same breed, we would write:

(ALL classmate (AND brown

(AT-LEAST 20 smaller )
(SAME-AS (mother breed ) (father father breed ))))

1.2. Classic Semantics and the Learning Problem

The meaning of a description logic statement depends on a particular interpretation. It
is a set selector: Given a choice of a universal set of individualsI, an assignment of the
primitive symbols to subsets ofI, an assignment of the roles to binary relations onI, and an
assignment of attributes to functions fromI to I, the statement denotes the set of elements
x in I that cause the corresponding first order expression to evaluate to true, given the
semantics above.

For example, a reasonable definition ofTired-peoplemight be the set of people who have
at least one child. InClassic we would write the sentenceS1 = (AT-LEAST 1 Child ),
whereChild is a role (binary relation). Now consider the interpretation described by the
relational database given in Figure 1.

The universeI of all individuals is understood to be the set of all individuals appearing
({person1,. . . , person6}) in any of the relations. The primitive subsets areBlonde and
Red-head , there is a single function symbol (attribute)Mother , indicating, for example,
that Mother (person1) = person2, and there is a single role that is not an attribute, the
relationChild , indicating, for example, that the children of person3 are exactly person2
and person5.

The denotation of the sentenceS1 above, given the interpretation of Figure 1, is exactly
the set of individuals{person2, person3, person5}.

TwoClassic sentences are said to be equivalent if they have the same denotation regard-
less of the interpretation (that is, if they pick out the same subset of the domain regardless
of what “world” we are in).

Now consider theClassic sentenceS2 = (ALL Mother Red-head ), which describes
the set of individualsx such that all mothers ofx (there is only one, sinceMother is a
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Blonde

person1
person2
person6

Red-head

person3
person4

Mother

person1 person2
person2 person3
person3 person4
person4 person6
person5 person3

Child

person2 person1
person3 person2
person3 person5
person5 person6

Figure 1. Relational database describing individuals. The database contains unary relationsBlonde andRed-

head , and binary relationsMother andChild .

function) happen to be a red-head. In short, this describes people with red-headed mothers.
For the interpretation given by Figure 1,S2 denotes exactly the set of individuals{person2,
person3, person5}. Thus,S1 andS2 have identical denotations for the particular interpre-
tation given in the figure, but in generalS1 andS2 are not logically equivalent, because it
is easy to construct an interpretation for which the set of people with red-headed mothers
is not the same as the set of people having at least one child.

The fact that inequivalentClassic sentences can have identical denotations when re-
stricted to particular interpretations suggests at least two possibilities for modeling the
learning ofClassic sentences:Learning from Individuals, andLearning General De-
scriptions.

Learning from Individuals: If we adopt the view that there is only one “world”, given by a
particular interpretation, then it should not matter to us whether two inequivalentClassic

sentences have the same denotation with respect to the (one and only) world. We should
be equally happy with the sentenceS2 = (ALL Mother Red-head ) to describe the set of
tired people, as with the intuitively more meaningful one given byS1. This view suggests
that any description that picks out the right set of individuals should suffice. Indeed, all
such descriptions are semantically indistinguishable unless we admit either the possibility
of other worlds/interpretations, or unless we assign them some additional meaning outside
of our formal system. From this vantage point, the particular subset of individuals embodies
exactly the concept to be learned.

In the various accepted models of inductive concept learning from examples (which
we will more properly introduce below), an unknowntarget conceptis to be inferred by a
learning agent. A concept is simply a subset of some domain, which cleaves the domain into
positive examples(those in the concept), andnegative examples(those not in the concept).
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Successful learning is typically defined to be that of identifying the target concept (or one
“close” to it), in a computationally efficient manner, given information about which domain
elements are positive examples and which are negative examples.

In light of the above discussion, a natural way to define the learning problem forClassic

descriptions would be as follows. A targetClassic description is chosen. There is also a
fixed, known interpretation. Positive examples are individuals in the domain of the inter-
pretation that are in the denotation of the target concept. Negative examples are individuals
that are not in the denotation. Successful inference requires not that a logically equivalent
(or “approximately logically equivalent”)Classic sentence be found, but rather that the
learning agent find anyClassic sentence that has the same denotation (or approximately
the same denotation)on the given interpretation.

One question that arises is exactly how the interpretation is given to the learning algorithm
as input. If the domain over which the interpretation is defined (i.e., the set of all possible
examples) is small (poly-sized), then the target concept can be inferred trivially by simply
saving all positive examples — an uninteresting learning problem results. On the other hand,
if the domain is large, then if the entire interpretation is given to the learning algorithm,
and the algorithm is allowed time that depends polynomially on the size of the database
describing the interpretation, then this would allow perhaps exponential time for the learning
task.

Alternatively, suppose that the interpretation, represented by an exponentially sized (num-
ber of tuples) database over some polynomially sized number of primitive symbols, relation
symbols, and function symbols, isnotgiven explicitly. Instead, with each (positive or nega-
tive) example individual, the learning algorithm is provided complete information about the
individual (i.e., all relations which the individual participates in, the value of all functions,
etc.) Because of the possibility of “function-chaining”, such complete information about
an individual might well necessitate providing the entire database. Indeed, since the target
concept will specify a set of individuals not only by the properties they possess, but also
by the relationships that they have with other individuals, if the learning algorithm did not
have at least potential access to the entire interpretation, then learning might be impossible.

It appears that the most reasonable alternative is to assume that a very large database
representing the world is available, but not explicitly input to the learner. The learner is
instead allowed to make database queries to determine relationships about various indi-
viduals. Positive (respectively, negative) examples are then just keys of individuals that
are denoted (respectively, not denoted), by the target concept. It is the task of the learn-
ing agent to use the database effectively in order to extract the common properties of the
positive-example-individuals that are not shared by the negative-example-individuals, and
to express this information in the form of aClassic sentence.

We will consider this approach in Section 6, in which we show that even fairly constrained
Classic sentences cannot be learned from individuals in this manner, given well-accepted
cryptographic assumptions.
Learning General Descriptions: One of the disadvantages of the model of learning from
individuals discussed above is the implicit assumption that all information about each
individual is available from the outset. It would appear that in the real world, we denote
individual objects by describing themsufficiently wellto distinguish them from others.



       

156 M. FRAZIER AND L. PITT

However, the threshold of what constitutes a sufficient discriminating description may well
change in different contexts, and may evolve to include more information as either our
need for more accurate discrimination changes, or as the changing environment renders
insufficient a previously adequate discriminator. As a simple example, a dog breeder may
find that “the black Labrador retriever” suffices to distinguish Fido from the rest of the
animals at the kennel. However, if a new black Labrador is born, the description of Fido
might change to “the adult black Labrador retriever”. Similarly, if another adult black
Labrador is acquired, then the description might be refined further.

Viewed this way, an individual is denoted by adescription itself, as opposed to some
unique key tied to a particular database. A description of an individual then really denotes
a set of possible individuals, where we assume that the description is sufficiently specific
so as to be unambiguous given the current environment and task at hand.

What language should be used to describe an individual? We employ the commonly used
“single representation trick” — wherein the description of an individual is itself aClassic

sentence. This approach is supported by the description logic community (Borgida, 1992;
Bobrow & Winograd, 1977; Dietterich et al., 1982), in which it is often convenient and
desirable to represent concepts and examples using the same language. In fact, Cohen and
Hirsh (1994a) note that in many implemented description logics, “it is possible to attach
an arbitrary description to an instance [example], hence the distinction between instances
[examples] and concepts is blurred.”

If individuals areClassic descriptions themselves, then for each interpretation they
denote a particular subset of the domain over which the interpretation is defined. Note
that a description, even though intended to be a description of an individual, will not
necessarily denote a unique domain element for every possible interpretation. Consequently,
the distinction between such descriptions, and arbitraryClassic descriptions is lost.

If we are given a targetClassic description, which otherClassic descriptions then
are positive examples, and which are negative examples? Again, following work in the
description logic community (Cohen & Hirsh, 1994a; Borgida, 1992; Bobrow & Winograd,
1977; Dietterich et al., 1982), we define a positive example to be anyClassic description
that denotes, for every possible interpretation, a subset of those individuals denoted by
the target description. Thus, each positive example has denotation that is a subset of
the denotation of the target concept, regardless of the interpretation. If sentenceC is a
positive example of sentenceC∗, then we say thatC∗ subsumesC, because it has a larger
denotation thanC. This and similar viewpoints are also supported by previous work in
inductive logic programming (D˘zeroski et al., 1992; Frazier & Page, 1993; Muggleton,
1991; Page & Frisch, 1992) and learning from entailment where positive examples of an
unknown formula are clauses or other formulas that are entailed by the unknown formula
(Angluin, 1988a; Angluin, 1988c; Frazier & Pitt, 1993).

Besides allowing for flexibility in representation of objects, this approach also has an-
other advantage over the approach of learning from individuals. We have noted that the
distinction between inequivalentClassic sentences can be lost when restricted to a single
interpretation. A perhaps more interesting view is that there is some general knowledge that
we would like to acquire, not about one particular domain or interpretation, but about every
possible one, and that this knowledge is realized by an unknownClassic description. The
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coincidental knowledge that people with at least one child all happen to have red-haired
mothers in the world described by Figure 1 is not likely to be transportable to other envi-
ronments. If, from the practical perspective, we view interpretations as particular databases
representing real-world information, then it seems appropriate to demand that the general
descriptions we learn should be applicable to all such interpretations. The approach of
learning general descriptions demands that aClassic description be found that classifies
examples as positive or negative in the same way that the targetClassic sentence does.
Because examples areClassic descriptions, and positive examples must be subsumed by
the target description, it follows that the learned description must be equivalent (have the
same denotation for all possible interpretations) to the target description. Our main focus
is this latter viewpoint of learning general descriptions. Below we summarize our results,
and describe the learning protocols used.

1.3. Learning Protocols

We will employ two standard learning protocols: that of exactly learning from equivalence
and membership queries (Angluin, 1988b), and that of PAC learning (Valiant, 1984; Blumer
et al., 1989) with membership queries.

In both protocols, the learning algorithm may pose amembership query, which is an
examplex. In response, the learner is told whether or notx is a positive or negative
example of the concept to be learned. Keeping in mind that in our setting, examples are
themselvesClassic descriptions, a membership query is aClassic sentenceC, and the
response is “yes” exactly when the target sentenceC∗ subsumesC. Our algorithm will
take (perhaps unfair) advantage of the fact that such queriesC may be arbitrary concepts,
so perhaps it is more appropriate to call these subsumption queries, or even subset queries.
As mentioned earlier, such distinctions are lost given the use of the single representation
trick.

Because the subsumption relation forClassic sentences is computable in polynomial
time (Cohen et al., 1992; Cohen & Hirsh, 1994a), membership queries are efficiently
computable by a teacher. Consequently, if membership queries model a type of active
learning by asking questions of a teacher or domain expert, then such queries here should
not prove to be computationally difficult for a reasonable teacher.
Exact learning with equivalence and membership queries:In addition to membership
queries, in the exact learning model the algorithm may also conjecture anyClassic de-
scriptionH, and is told in response whether or notH is equivalent to the target description
C∗. If H is not equivalent toC∗, then the algorithm receives a counterexample, which
is a positive example of one ofH andC∗, but not both. (I.e., a descriptionC ′ that is
subsumed by one but not the other.) We note that equivalence queries can also be answered
in polynomial time by a teacher:C∗ is equivalent toH if and only if each subsumes the
other. If this is not the case, then the (at least) one that is not subsumed by the other is a
counterexample, as it is trivially subsumed by itself, hence is a positive example of itself,
but not of the other.

Because the size of counterexamples may vary, and are not under the direct control of
the learning algorithm, there are technical subtleties in defining the appropriate model for
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exact learning in polynomial time (Angluin, 1987). We follow the standard convention and
require that for efficient learning, at any point during the run of our algorithm, the time used
up to that point must be polynomial in the longest counterexample seenso far. Henceforth,
we will simply say “in time polynomial in the longest counterexample” to mean this stronger
statement.

A learning algorithm is said to learnClassic from equivalence and membership queries if
for any unknown target descriptionC∗, the algorithm, after time polynomial in the length of
the descriptionC∗, and in the length of the longest counterexample, using only equivalence
and membership queries, outputs aClassic sentenceH such thatH andC∗ are equivalent.

Standard transformations may be employed to obtain an algorithm that learns in the “PAC”
learning model (Valiant, 1984) augmented with membership queries (described below), or
in the on-line mistake bounded learning model (Angluin, 1988b; Littlestone, 1988) with
membership queries.

PAC learning from random examples and membership queries:The model of PAC
(“probably approximately correct”) learning assumes that there is an arbitrary, fixed, un-
known probability distribution defined over the set of positive and negative examples of
size at mostn. A learning algorithm draws random examples according to the distribu-
tion, with each example labeled as positive or negative according to an unknown target
conceptC∗. PAC learning requires that a learning algorithm output in polynomial time a
conceptH that, with probability at least1 − δ, has error at mostε in classifying random
examples as the targetC∗ does, where the error is measured with respect to the unknown
distribution (Valiant, 1984).

We consider the PAC learning model where the algorithm may ask membership queries in
addition to receiving randomly generated examples. More formally, a learning algorithmA
is said to PAC-learnClassic in polynomial time from random examples and membership
queries if the following holds:

1. A receives as input parametersn, s, ε, andδ.

2. A outputs aClassic sentenceH within time polynomial inn, s, 1
ε ,

1
δ .

3. A may make membership queries, or obtain upon request an example generated ac-
cording to a fixed distributionD on exampleClassic sentences of length at mostn,
and labeled according to some unknown targetClassic sentenceC∗ of representation
length at mosts.

4. For every possiblen, distributionD, target conceptC∗, upper bounds on |C∗|, and
parametersε, andδ, the output sentenceH of A satisfies Prob[D(C∗4H) > ε] < δ,
where “4” denotes symmetric difference.

A slightly relaxed model of PAC learning is that of polynomialPAC-prediction, where
no syntactic requirements are placed on the hypothesis output by the learning algorithm
(e.g., that it be aClassic description), other than that it be a polynomial-time executable
program that classifies examples well (Haussler et al., 1994; see also Pitt & Warmuth,
1990). In particular, we say thatClassic is PAC-predictable if conditions 1 through 4
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hold above, but with condition 2 modified to read “A outputs a polynomial time program
H within...” That this is called “prediction”, as opposed to “learning” rests on the fact that
the model is equivalent to one in which the algorithm need make no hypothesis whatsoever,
but instead simply reach a state from which it can classify randomly generated unlabeled
examples within some specified accuracy boundε.

1.4. Summary of Results

We obtain both positive and negative results. On the positive side, we show thatClassic

sentences can be learned with equivalence and membership queries, that they can be learned
even in the presence of a high malicious misclassification noise rate in the membership query
responses, and that a simple type of “weak” union ofClassic sentences can be learned.
On the negative side, we show that predictingClassic sentences from individuals is as
hard as predicting arbitrary polynomial-sized circuits, and that membership queries alone
do not suffice for learningClassic.

The rest of this paper is organized as follows. After reviewing related work in Section 1.5,
we show in Sections 2-4 thatClassic is exactly learnable in time polynomial in the size
of the target description and the length of the longest counterexample, using membership
(subsumption) and equivalence queries.

In Section 5 we argue that any algorithm using membership (subsumption) queries alone
requires a number of queries that is exponential in the size of the target concept. Thus the
positive result does not come solely from the membership queries. Cohen and Hirsh (1994a)
showed thatClassic is not learnable in polynomial time (without membership queries) in
the PAC model (assuming RP6= NP), henceClassic cannot be learned from equivalence
queries alone given the same assumption. Thus, neither membership nor equivalence queries
are dispensable – they form a minimal set of learning queries forClassic.

Section 6 addresses the problem of learningClassic descriptions from individuals as
described above. We show that ifClassic is PAC-predictable from individuals, then
arbitrary Boolean circuits are PAC-predictable. Similarly, ifClassic can be PAC-predicted
from individuals, by an algorithm that may also make membership queries (from a fixed
database of possible examples), then Boolean circuits are PAC-predictable by an algorithm
that also uses membership queries. It follows that, assuming the existence of one-way
functions,Classic cannot be learned from individuals, with or without (a certain type of)
membership query.

In Section 7, we show that for one of two possible definitions of the semantics of a
union ofClassic sentences, such unions can be learned exactly in polynomial time using
equivalence and membership queries.

Finally, in Section 8, we consider a modification of our algorithm which demonstrates that
Classic remains learnable in polynomial time in the PAC learning model with membership
queries, even when each membership query may be answered incorrectly by a malicious
adversary with probability12−

1
r , wherer is any polynomial function of the size of the target

concept. (The errors arepersistent, so that the algorithm may not benefit from repeatedly
asking the same question.) To our knowledge, this is the first algorithm for any concept
class capable of coping robustly with such errors.
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1.5. Comparison to Previous Results

Automating propositional concept discovery has been well studied (Angluin, 1992). In
comparison, efficient first-order learnability has been less well studied. Even so, some
results are known. Cohen (1993b) gives a PAC learning algorithm for function-free, two
clause, closed, linearly recursive,ij-determinant logic programs; he also shows (Cohen,
1993a) that when the condition of linear recursiveness is relaxed, the learning problem
becomes cryptographically hard. Page and Frisch (1992) show that constrained atoms (a
typed logic) are efficiently learnable. Frazier and Page (1993) provide a learning algorithm
for a syntactically restricted subclass of first-order Horn formulas D˘zeroski et al. (1992)
provide a learning algorithm for a different restriction of first-order Horn formulas. A small
number of other results, especially those related to Inductive Logic Programming, can be
found in the survey by Cohen and Page (1994).

Haussler (1989) investigated existentially quantified conjunctive concepts and described
a graph representation for those concepts. He showed that learning some very simple scene
descriptions is difficult. Specifically, he showed that even restricted to unary atoms, such
concepts are not learnable from random examples unlessRP = NP, but did give a learning
algorithm for settings where the algorithm may use a richer vocabulary than that from which
the target was chosen. Indeed, positive first-order learning results appear to be quite rare for
“natural” classes of first-order formulas. It would seem that the difficulty of the learning task
he faced revolved around the ambiguity admitted by the graphical representation required
to capture existential quantification in the concept class he investigated; our concept class
does not permit existential quantification. It will be seen that the graphs we use suffer no
such ambiguity, thus we are able to avoid the difficulty he faced.

The work most closely related is that of Cohen and Hirsh (1994a) who employ a graphical
representation developed by Borgida and Patel-Schneider (1992) forClassic concepts. To
explain their results, and present ours, we briefly explain the notion of alabeled equivalence
graph(called aconcept graphin related work of Borgida and Patel-Schneider (1992), Cohen
et al. (1992), and Cohen and Hirsh (1994a).

at-least 1 brother

at-most 2 sister

best friend

attorney

dogs {shaggy, brown}

at-least 20 child

{brown}

Figure 2. A labeled equivalence graph.

Consider the graph in Figure 2. This is a graphical depiction of theClassic description
of the set of individuals who have at least one brother and at most two sisters, whose best
friend has brown hair, who are their best friend’s attorney, and whose best friend only has
brown, shaggy dogs that have at least twenty puppies. The cycle in the graph also asserts
infinitely many other SAME-AS conditions – for example, conditions about the best friend’s
attorney’s best friend.
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Formally defined in Section 2, a labeled equivalence graph is a rooted, directed, vertex-
and edge-labeled graph. Further, no vertex has two identically labeled outgoing edges.
The edge labels represent binary relations over the universe of individuals, and an edge
demands that all individuals in the image of the relation satisfy the constraints asserted
by the vertex to which the edge leads. Those labeled equivalence graphs that correspond
to Classic descriptions also satisfy the following additional property: Any pair of edge-
disjoint directed paths between a pair of vertices involve only binary relations which are
in fact functions – this pair asserts that the individual selected along one path must be
the same as the individual selected along the other path. This restriction is apparently a
necessary one in order to allow for tractable subsumption. We associate a subset of the set
of individualsI with each vertex in the graph — the subset of individuals satisfying every
constraint (whether vertex label, edge label, or assertion of equivalence at some reachable
vertex) asserted by the graph. The set of individuals denoted by the graph is exactly the
set of individuals associated with the root. Note that the presence of directed cycles in
the graph, and in particular, those involving the root, implies that the root concept is being
defined in terms of other concepts,. . . , which are in turn being defined in terms of the root.
Thus, cycles allow co-referential definitions.

Polynomial-time algorithms exist for transforming any equivalence graph satisfying the
above properties into aClassic sentence, and vice-versa (Cohen et al., 1992; Borgida
& Patel-Schneider, 1992; Cohen & Hirsh, 1994a). Thus, the question of learnability of
Classic sentences reduces to that of learning a subclass of equivalence graphs. What
would a positive example of an equivalence graph look like? It is another graph which
satisfies all of the constraints (and perhaps more) represented by the first. The subsumption
algorithm forClassic essentially verifies that the vertex label reached by a path in the
first graph is less restrictive than the label of the corresponding vertex (which must exist)
in the second graph, and that if in the first graph the two paths labeled by stringsw1 and
w2 lead to the same vertex, then this occurs in the second graph as well. For example, if
we add new edges and/or vertices to the graph in Figure 2, we obtain a positive example of
the original graph, because it satisfies all of the original constraints, and more. Similarly,
if we delete some edge, it becomes a negative example of the original graph. It turns out
that the hard part of the learning problem is to determine the structure of the graph and the
edge labels, not to determine the vertex labels. Thus, most of the constructors from the
Classic language are not problematic; the main challenge is presented by the SAME-AS
conditions (each represented by a distinct pair of paths between two vertices), and the role
and attributes (which are edge labels). Initially we assume that all the vertex labels are
irrelevant; in Section 3 we show how the algorithm is modified when this is not the case.

A natural first attempt to learn such graphs would be to simply intersect the graphs which
represent positive examples, thereby extracting the set of common vertices and edges. This
approach does not work, as positive examples need not contain all of the edges of the target
graph. For example, consider the “universal” positive example graph (Figure 3) consisting
of a single vertex, and for each possible edge label, a self-looping edge with that label.
For every possible stringw, there is a path in this graph labeled withw, and further, for
every pair of stringsw1 andw2, the vertex reached by both is the same (unique) vertex.
Hence,every possibleconstraint is satisfied, and this example is a positive example of every
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Σ

Figure 3. The universally positive example for equivalence graphs.Σ indicates that every possible edge label
σ ∈ Σ appears on a directed edge from the root vertex back to itself.

possible target graph. But the structure of the target is hidden; the target graph isnot a
subgraph of this positive example graph. Thus, simply intersecting the graphs will not be
enough. What does succeed is a variant of the “cross-product of DFAs” construction for
regular language intersection. This cross-product will produce a graph corresponding to a
Classic description which is maximally specific, and which covers both of the positive
examples whose cross-product was taken. By repeatedly taking the cross-product of positive
examples, a (one-sided) learning algorithm is obtained. The inadequacy of this approach
is easily demonstrated – the cross-product of two equivalence graphs can be as large as the
product of their sizes, so the repeated cross-product necessary to implement this approach
may yield exponentially sized hypotheses.

Cohen and Hirsh (1994a) circumvent this problem by restricting the number of distinct
paths through the graphical representation of aClassic concept. Given a constantk
they consider graphsG having at most|G|k distinct paths (hence their graphs are acyclic).
Denote this classk-Classic. They show that the intersection approach above yields an
O(mk+1) mistake-bounded one-sided learning algorithm fork-Classic, assuming all
counterexamples have size at mostm. Negatively, they show that in the PAC learning
model, assuming that RP6= NP, Classic is not learnable from random examples alone,
even if either of the following constraints hold: (i) the primitive class alphabet is singleton,
the role alphabet is doubleton, and the equivalence graph of every example is acyclic, or
(ii) the primitive class alphabet is singleton, and the equivalence graph of every example
contains only two vertices.

2. Learning Unlabeled Equivalence Graphs

As discussed above, the learning problem forClassic sentences is closely related to that
of learning labeled equivalence graphs. We first consider the learning of equivalence graphs
without vertex labels, and then indicate how the algorithm is modified to the more general
case in Section 3. Later, in Section 4, we modify the algorithm again in order to learn
Classic.

Definition 1 Let Σ be a finite alphabet. A rooted, directed, edge-labeled graphG is an
equivalence graph overΣ if each vertexv in G is reachable from the root and for every
symbolσ in Σ, v has at most one outgoing edge labeledσ. Thesize|G| of an equivalence
graph is the sum of the number of edges and vertices inG.
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For the moment, this definition does not recognize any semantic content of the edge labels.
However, by representing functions and relations, these edge labels will acquire semantic
content when we use equivalence graphs to learnClassic. At that point this definition
is to be taken to include the condition that the label of each edge appearing in any pair of
edge-disjoint paths between a pair of vertices represents a function.

Simply stated, our algorithm employs the one-sided approach of graph cross-product
discussed above, but uses membership queries to bound the intermediate hypothesis size.
Figures 4 and 5 give the learning algorithm.

The cross-productG×H of labeled equivalence graphsG andH is described below, as is
the argument that the algorithm efficiently learns. At first glance, equivalence graphs seem
DFA-like, but their semantics are quite different, so well-known DFA learning algorithms
(Angluin, 1987; Rivest & Schapire, 1993) do not apply. While the algorithm is quite simple,
the proof is somewhat subtle. The technical details follow.

Learn

1 LetH be the universally positive example

2 H := Prune(H)

3 WhileEQUIVALENT (H) provides counterexampleG

4 G := Prune(G)

5 H := Prune(G×H)

6 ReturnH

Figure 4. Equivalence graphs learning algorithm.

Prune(G)

G is a positive example.

1 For each edgee in G

2 If MEMBER (G\e)2 is “yes”, then removee fromG

3 ReturnG.

Figure 5. Algorithm using membership queries to remove excess graph elements from a positive example.

A stringw of Σ∗ is G-supportedif w is the concatenation of symbols on the edges of
a rooted, directed path inG. G defines an equivalence relation≡G on strings ofΣ∗ as
follows: w1 ≡G w2 iff both w1 andw2 areG-supported, and their paths terminate at the
same vertex. Thus, aG-unsupported string is notG-equivalent to any other string. The
set of all stringsG-equivalent to a stringw is denoted[w]G, and, by an abuse of notation,
the set of all strings that terminate at a vertexv of G is denoted[v]G. It is easily verified
that for any equivalence graphG, ≡G is a right-invariant equivalence relation on strings,
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and that ifw isG-supported then so is every prefix ofw. We now define a partial order on
equivalence graphs based on which strings are supported and which strings are equivalent:

Definition 2 G1 subsumesG2 if everyG1-supported string isG2-supported and every
pair ofG1-equivalent strings areG2-equivalent.

It is known (Cohen & Hirsh, 1994a) that aClassic description subsumes a second
Classic description iff the equivalence graph of the first subsumes that of the second.
Examples will be labeled according to their relationship to the target under this partial
ordering. Positive examples of an equivalence graphG will be exactly those graphsG′

which are subsumed byG.

Definition 3 (Cohen & Hirsh, 1994a) LetG1 = (V1, E1) andG2 = (V2, E2) be two
equivalence graphs. Thecross-productof G1andG2, denotedG1 ×G2, is defined as
follows. Letp1, p2, . . . , p|V1| denote the vertices ofG1 with p1 denoting the root, and let
q1, q2, . . . , q|V2| denote the vertices ofG2 with q1 denoting the root. IfG1 or G2 is empty,
thenG1 ×G2 is empty. Otherwise, the vertex set ofG1 ×G2 (a subset ofV1×V2) and the
edge set ofG1 ×G2 are defined recursively:

• The graphG1 ×G2 has a root denoted(p1, q1).

• The graphG1 ×G2 has a vertex denoted(pi2 , qj2) and edge(pi1 , qj1)
σ−→ (pi2 , qj2)

iff G1 × G2 has the vertex denoted(pi1 , qj1), G1 has edgepi1
σ−→ pi2 , andG2 has

edgeqj1
σ−→ qj2 .

Note thatG1 ×G2 is an equivalence graph whenever bothG1 andG2 are equivalence
graphs. The following properties ofG1 ×G2 are either easily verified, or follow from
Cohen et al. (1992) and Cohen & Hirsh (1994a).

Property 1 LetG1 andG2 be two equivalence graphs. Then

1. A stringw is (G1 ×G2)-supported iffw is bothG1-supported andG2-supported.

2. For any stringss andt, s ≡G1 ×G2 t iff boths ≡G1 t ands ≡G2 t.

3. G1 ×G2 is the most specific generalization (least upper bound) ofG1 andG2 with
respect to the subsumption ordering. That is, ifG1,G2, andG are equivalence graphs,
then ifG subsumes bothG1 andG2, thenG subsumesG1 ×G2.

Definition 4 An equivalence graphG is pruned with respect toan equivalence graphG∗
if G∗ subsumesG, but does not subsume any proper subgraph ofG.

The following is a useful property of pruned graphs.

Property 2 LetG andG∗ be two equivalence graphs such thatG is pruned with respect
toG∗. Then for every vertexv in G and every outgoing edge labelσ fromv, [v]G contains
some (G∗-supported) strings such thatsσ isG∗-supported.
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Proof: Suppose to the contrary thatG contains a vertexv with outgoing edge labelσ such
that[v]G contains no strings such thatsσ isG∗-supported. But then deletingv’s outgoing
edge labeledσ produces a proper subgraph ofG that supports everyG∗-supported string
and leaves equivalent every pair ofG∗-equivalent strings. This contradicts the hypothesis
thatG is pruned.

Lemma 1 Let G1, G2, andG∗ be equivalence graphs such that bothG1 andG2 are
pruned with respect toG∗. If there exists a vertexv of G1 ×G2 such that[v]G1 ×G2

contains onlyG∗-unsupported strings, then there are twoG∗-supported strings that are
G1-equivalent but not (G1 ×G2)-equivalent.

Proof: First observe that ifG∗ supports no strings at all – not even the empty string – then
G∗,G1, andG2 must each be the empty graph. In this case the lemma holds trivially. The
rest of the proof assumes that at least the empty string is supported byG∗ and therefore
also byG1 andG2 by Property 1 item 1. The proof assumes the existence of a vertexv
ofG1 ×G2 such that[v]G1 ×G2

contains onlyG∗-unsupported strings and then constructs
twoG∗-supported stringss ands′ that areG1-equivalent but (G1 ×G2)-inequivalent.

Let v be a vertex ofG1 ×G2 such that[v]G1 ×G2
contains onlyG∗-unsupported strings,

and letw be any string in[v]G1 ×G2
. Now, since theG1 ×G2 equivalence class containing

the empty string contains aG∗-supported string (the empty string itself) and since noG∗-
supported strings are contained in[w]G1 ×G2

, there exists a prefixwp of w and an edge
labelσ such that

• wpσ is a prefix ofw,

• [wp]G1 ×G2
contains aG∗-supported string, and

• [wpσ]G1 ×G2
contains noG∗-supported string.

Let s be anyG∗-supported string in[wp]G1 ×G2
. Now observe that sincew is (G1 ×G2)-

supported so are bothwpσ andwp. Also observe that sincewpσ is (G1 ×G2)-supported
wpσ must beG1-supported by Property 1(1). But by Property 2 sinceG1 is pruned with
respect toG∗, [wp]G1

must contain aG∗-supported strings′ such thats′σ is alsoG∗-
supported. Thus we have twoG∗-supported stringss ands′ such thats ≡G1 ×G2 wp
(which by Property 1(2) implies thats ≡G1 wp) ands′ ≡G1 wp, and sos ≡G1 s

′. Since
s′σ isG∗-supported, ifs ≡G1 ×G2 s

′ thens′ ≡G1 ×G2 wp so that[wpσ]G1 ×G2
contains

s′σ, aG∗-supported string, contradicting the choice ofwp andσ. Thus,s 6≡G1 ×G2 s
′, and

s ands′ areG∗-supported strings that areG1-equivalent but not (G1 ×G2)-equivalent.

The proof that the learning algorithm is correct and efficient (Theorem 1) will follow
easily from Lemma 2, which asserts that progress is made with each new hypothesis of
the algorithm. The proof of the lemma follows the proof of Theorem 1. We first need the
following definition:

Definition 5 LetG be an equivalence graph thatG∗ subsumes. Then≡G∗G is the equiva-
lence relation≡G restricted toG∗-supported strings.
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Lemma 2 LetG = Prune(G1 ×G2), withG1 andG2 both pruned with respect toG∗.
Further suppose thatG1 does not subsumeG2. Then≡G∗G is a proper refinement of≡G∗G1

.

Theorem 1 LetG∗ be the target equivalence graph to be learned. The algorithmLearn
finds an equivalence graph equivalent toG∗, and at no point during execution does the
running time exceed a polynomial in|Σ|, |G∗|, and the size of the largest counterexample
seen so far.

Proof: The initial hypothesis has one equivalence class. A simple inductive proof shows
that each timeEQUIVALENT (H) is called,H is a positive example, so by Lemma 2, each
counterexample causes the number of equivalence classes over supported strings to increase
by at least one. Thus, to show that the number of equivalence queries is bounded above by
|G∗|, it suffices to show that the number of equivalence classes in the hypothesis is bounded
above by the number of equivalence classes ofG∗. To see this, note that if some vertex of
the hypothesis contained noG∗-supported string, that vertex would have been pruned. On
the other hand, if the number of vertices in the hypothesis containingG∗-supported strings
is greater than the number of vertices inG∗, then the hypothesis is a negative example
because some pair ofG∗-equivalent strings are inequivalent in the hypothesis.

To bound the running time of the algorithm, we show that at each step, ifG̃ is the
counterexample with the greatest number of vertices seen so far, the algorithm has made
at most|G∗|2 · |G̃| · |Σ| membership queries, and has run for at most a number of steps
that is polynomial in|G∗|, |G̃|, and|Σ|. This follows from the fact that at each step, if
G̃ is the counterexample having the greatest number of vertices seen so far, the number
of membership queries used byPrune on H × G̃ is at mostO(|Σ| · nH · nG̃), where
nH andnG̃ are the number of vertices inH andG̃, respectively. SincenH is bounded
above bynG∗ and since|H| < |G∗| (for every edge ofH that could not be deleted by
Prune, there is some equivalence class, i.e., vertex, ofG∗ to which that edge can be
associated — thus, the number of edges ofH is at most the number of edges inG∗,
so |H| < |G∗|) the number of membership queries used by a single call toPrune is
O(|Σ| · |G∗| · |G̃|), whereG̃ is the largest counterexample yet witnessed by the algorithm.

Proof of Lemma 2: It is sufficient to show that≡G∗G1 ×G2
is a proper refinement of≡G∗G1

because≡G∗G is a proper refinement of≡G∗G1 ×G2
(noting thatG is obtained by pruning from

G1 ×G2, and no edges or vertices are added — only deleted.)
Now,≡G1 ×G2 is a refinement of≡G1 (Property 1(2)). Further, since both are subsumed

byG∗, they both support everyG∗-supported string. Hence,≡G∗G1 ×G2
is a refinement of

≡G∗G1
. If the number of equivalence classes of≡G∗G1 ×G2

exceeds the number of equivalence

classes of≡G∗G1
, then the lemma is proved. Otherwise, since≡G∗G1 ×G2

is a refinement of

≡G∗G1
, the number of equivalence classes must be the same, and the classes must be identical.

We show that this leads to a contradiction, thus proving the lemma.
By Property 1(2), for any stringsx andy, x ≡G1 ×G2 y iff x ≡G1 y andx ≡G2 y, and

since all three support allG∗-supported strings, we have that for anyG∗-supported strings
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x andy, x ≡G∗G1 ×G2
y iff x ≡G∗G1

y andx ≡G∗G2
y. This, together with our assumption that

the relations≡G∗G1 ×G2
and≡G∗G1

are identical, implies that the relations≡G∗G1
and≡G∗G2

are
identical.

By the hypothesis of this lemma,G1 does not subsumeG2, hence there exist strings
t1 andt2 such thatt1 ≡G1 t2, but t1 6≡G2 t2. (Otherwise,G1 supports somet thatG2

does not; but thent isG1-equivalent to someG∗-supportedw (by Property 2, sinceG1 is
pruned). Butt is notG2-equivalent tow, sincet is not supported inG2. In this case, let
t1 = t andt2 = w.)

Clearly, botht1 andt2 are supported inG1.

Case 1:botht1 andt2 are supported inG2. Since botht1 andt2 are supported in both
G1 andG2, they are both supported inG1 ×G2. Since they are not equivalent inG2, they
are not equivalent inG1 ×G2. Let v be the vertex thatt1 andt2 both go to inG1, and let
v1 andv2 (v1 6= v2) be the vertices thatt1 andt2 go to, respectively, inG1 ×G2. Since
G1 is pruned with respect toG∗, there exists aG∗-supported stringw that goes tov in G1

(Property 2). If there do not existG∗-supported stringsw1 andw2 such thatw1 andw2

go tov1 andv2 in G1 ×G2, respectively, then Lemma 1 applies, and we conclude thatG1

andG1 ×G2 are not equivalent onG∗-supported strings, a contradiction. Sincet1 andw1

are equivalent inG1 ×G2, and sincet2 andw2 are equivalent inG1 ×G2, we must have
the same equivalences inG1 (noting thatG1 supports all four strings). Butt1 andt2 are
equivalent inG1, hencew1 andw2 are equivalent inG1, transitively. Butw1 andw2 are
not equivalent inG1 ×G2, contradicting our assumption thatG1 ×G2 andG1 define the
same relation onG∗-supported strings.

Case 2:at least one oft1 andt2 is not supported inG2. Without loss of generality, assume
t1 is not supported byG2. Let tσ be the shortest prefix oft1 such thatt isG2-supported,
but tσ is notG2-supported. (Such a prefix exists, since the empty string is supported.)

BothG1 andG2 supportt, so consider the two paths thatt induces in these two graphs;
we claim that the≡G∗G1

equivalence class containingt is the same as the≡G∗G2
equiva-

lence class containingt. Suppose by way of contradiction that this is not the case. Now
t = σ1σ2 · · ·σ|t|, so look at the firsti such thatσ1σ2 · · ·σi is contained in non-identical
equivalence classes of≡G∗G1

and≡G∗G2
. SinceG1 andG2 are pruned, the equivalence class

containingσ1σ2 · · ·σi−1 must contain someG∗-supported (possibly empty) stringw such
thatwσi is alsoG∗-supported. Now since the equivalence classes of≡G∗G1

and≡G∗G2
are

identical, the≡G∗G1
and≡G∗G2

equivalence classes containingwσi must be identical by right
invariance. Butwσi is bothG1- andG2-equivalent toσ1σ2 · · ·σi, contradicting the as-
sumption thatσi is the firsti whereσ1σ2 · · ·σ|t| reaches non-identical equivalence classes
in ≡G∗G1

and≡G∗G2
. Hencet is in identical≡G∗G1

and≡G∗G2
equivalence classes, completing

the proof of the claim. Now, since[t]G2
contained no outgoing edge labeledσ, for no

G∗-supported stringw in [t]G2
iswσ G∗-supported. But then the outgoing edge from[t]G1

labeledσ can be deleted fromG1, contradicting our assumption thatG1 was pruned with
respect toG∗, and completing the proof of Lemma 2.
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3. Learning Labeled Equivalence Graphs

We consider extending the class of equivalence graphs to allow for labeled vertices. The set
of vertex labels is required to possess enough structure to allow computing what will be the
unique most specific generalization (least upper bound) between any pair of vertex labels.
Specifically, the structure we require is a lattice of finite depth. The following definition
supplies the notion we adopt.

Definition 6 Let Σ be an alphabet, and letL = 〈Γ, ⊥, ¹, t〉 be a lattice of finite depth
(i.e., no infinite chains), with partial order¹ over elements of the setΓ, having (unique)
minimum element⊥, and having the binary join operatort that returns the unique least
upper bound of its two operands. Then anL-labeled equivalence graphoverΣ is a graph
G that is an equivalence graph overΣ in which each vertexv ofG has been labeled with
someγ ∈ Γ.

Observation:. If {Li}mi=1 is a collection of lattices of finite depthsd1, d2, . . . , dm, re-
spectively, then the tuples{〈γ1, . . . , γm〉 : γi ∈ Γi} form a lattice of depth

∑m
i=1 di, with

minimum element〈⊥1, . . . ,⊥m〉, and with partial ordering defined by〈γ1, . . . , γm〉 ¹
〈γ′1, . . . , γ′m〉 exactly whenγi ¹i γ′i for eachi. We will use this observation later when we
return to our discussion ofClassic.

For any labeled equivalence graphG and any stringw that isG-supported, let̀G(w)
denote the label of the vertex reached byw. The earlier subsumption-induced partial order
for equivalence graphs is modified to account also for vertex labels:

Definition 7 LetG1 andG2 be twoL-labeled equivalence graphs. ThenG1 subsumes
G2 if the conditions of Definition 2 hold, and if in addition,`G2(w) ¹ `G1(w) for every
G1-supported stringw.

It is shown in (Cohen & Hirsh, 1994a) that aClassic description subsumes a second
Classic description iff the labeled equivalence graph of the first subsumes that of the
second. Thus, positive examples of a labeled equivalence graphG will be graphsG′ which
are subsumed byG.

The cross-product operation on equivalence graphs given in Definition 3 is easily modified
to incorporate vertex labels from a partial order (Cohen & Hirsh, 1994a). The cross-product
of two labeled equivalence graphs is just as in Definition 3, but in addition, the label of any
vertex(pi, qi) that appears inG1 ×G2 is just the label̀G1(pi) t `G2(qi).

Again, the central challenge for learning these graphs is in discovering the structure of
the graph, not in determining the vertex labels. In the previous section we presented an
algorithm for learning the structure of a graph assuming the vertex labels were unimportant.
It is a simple matter to fold the computation of the vertex labels into computing theG1 ×G2

fromG1 andG2 – the vertex label for vertexv of G1 ×G2 is the least upper bound of the
label of vertexv1 ofG1 and the label of vertexv2 ofG2, wherev1 andv2 were the vertices
that “combined” to producev.
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Theorem 2 Let⊥ be the minimum element of a latticeL having maximum chain length
d and having polynomial time computable join operatort, and letΣ be a set of edge labels.
Then the algorithm composed of figures 4 and 5 learnsL-labeled equivalence graphs over
Σ from membership and equivalence queries in time polynomial in|Σ|, d, the longest
counterexample received, and the size of the target concept.

Proof: The algorithm is modified only in that the sole vertex of the initial hypothesis
is labeled by⊥ and the cross-product operator for labeled equivalence graphs is used;
specifically,Prune does not change – only edge deletions are attempted.

Observe that a counterexampleG toH must be of one of the following (not necessarily
mutually exclusive) types

• Some stringw supported by bothH andG has`H(w) ≺ `G(w),

• SomeH-supported string is notG-supported, or

• Some pair ofH-equivalent strings areG-inequivalent.

If the counterexampleG was of either of the latter two types, thenG is a counterexample
toH based solely on their underlying (non-vertex-labeled) equivalence graphs. Therefore,
Lemma 2 applies to show that≡G∗Prune(H×G) is a proper refinement of≡G∗H . This can happen
at most as many times as there are vertices inG∗.

If the counterexample is only of the first type, then the underlying (non-vertex-labeled)
equivalence graphs ofH andG (and therefore,Prune(H ×G)) are isomorphic. As such,
some vertex label ofH was generalized. Thus, this first type of counterexample can happen
at mostdnH < d · |H| < d · |G∗| times between occurrences of a counterexample of the
second or third type, wherenH is the number of vertices inH.

A naı̈ve analysis assumes that in the worst case the label on every vertex must be updated
d times between changes to the equivalence classes of the hypothesis. This produces a
bound ofO(dn2

G∗
) on the number of counterexamples received, wherenG∗ is the number

of vertices inG∗.
A more careful analysis recognizes that, until a collection of target equivalence classes

were split, generalizing the vertex label for one of the equivalence classes generalized
the label foreverytarget equivalence class in the collection; thus every target equivalence
class need only be isolated once and have its vertex label changed at mostd times overall.
This bounds the number of counterexamples byO(dnG∗). Thus the algorithm witnesses
O(d · |G∗|) counterexamples to its equivalence queries.

As in the case of (non-vertex-labeled) equivalence graphs, the number of membership
queries used byPrune onH × G is at mostO(|Σ| · nH · nG), wherenH andnG are the
number of vertices inH andG, respectively, so that the number of membership queries
used by a single call toPrune isO(|Σ| · |G∗| · |G̃|), whereG̃ is the largest counterexample
yet witnessed by the algorithm.

Finally, sincet can be applied in polynomial time, and since|H| < |G∗| for each
hypothesisH, the class of labeled equivalence graphs are polynomial time learnable using
membership and equivalence queries.
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4. Application to Classic

The graphical representation ofClassic (Borgida & Patel-Schneider, 1992; Cohen et al.,
1992; Cohen & Hirsh, 1994a) forms the structure of the graph from the AND, ALL, and
SAME-AS constraints and annotates the vertices of the graph with the AT-LEAST, AT-
MOST, FILLS, ONE-OF, and PRIM constraints. These latter constraints naturally corre-
spond to the vertex labels discussed in the previous section. Moreover, these different kinds
of annotating constraints also combine naturally into tuples that can serve as the actual ver-
tex label latticeL, because ordering tuples〈s1, . . . , sk〉 ¹ 〈t1, . . . , tk〉 exactly when every
si ¹ ti is in accordance with the notion of subsumption forClassic (Cohen et al., 1992).

We would like to exploit this similarity to labeled equivalence graphs by employing a
prediction preserving reduction (Angluin & Kharitonov, 1995, Pitt & Warmuth, 1990) using
the labeled equivalence graph learning algorithm developed in the previous section. The
reduction would use known polynomial time transformations betweenClassic descrip-
tions and their graphical representations to turn theClassic description examples into a
form suitable forLearn and to turn the graphical representations queried and hypothesized
by Learn into Classic descriptions suitable for examination outside ofLearn. Unfortu-
nately, the semantics imposed on the graphical representation ofClassic dissuade us from
this black box approach; we will employ the known transformations only after modifying
Learn.

4.1. Dealing with mismatches betweenClassic and equivalence graphs

As cautioned earlier, when we use equivalence graphs to learnClassic, the labels ap-
pearing in the graphs acquire semantic content requiring us to restrict to attributes those
labels appearing on edge-disjoint paths between any pair of vertices. In order to apply
the equivalence-graph learning algorithm to the problem of learningClassic descriptions,
we must ensure that every hypothesis entertained by the algorithm corresponds to a valid
Classic description. In particular, the universal positive example, used initially byLearn,
does not satisfy the edge label constraint. In lieu of a universally positive example that
satisfies every constraint of the target, we rely on the semantics of the AT-LEAST and AT-
MOST constructors to build aClassicdescription that always denotes the empty set, which
is guaranteed to be a subset (and therefore a positive example) of any target description.
Concretely, letr be any role. Then

(AND
(AT-LEAST 1 r)
(AT-MOST 0 r))

always denotes the empty set; such a concept is said to beinconsistent. (A number of
description logics, including more recent versions ofClassic, include special descriptions
NOTHING and EVERYTHING, to denote the empty set, and the set of all individuals,
respectively). Making an equivalence query on the graph of this concept will provide the
learner with a positive counterexample,G0, that satisfies all the constraints of the target.
The graphG0 serves the purpose of the initial universal positive exampleH used as the
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initial hypothesis byLearn. A simple inductive proof shows that all subsequent hypotheses
of Learn are in fact labeled equivalence graphs whose edge labels adhere to this restriction
on equivalent strings over the role alphabet.

Because the AND, ALL, and SAME-AS constraints of the targetClassic sentence
determine only the structure of the target equivalence graph (and are independent of the
vertex labels), Theorem 1 applies directly to show thatClassic sentences containing only
AND, SAME-AS, and ALL statements can be efficiently learned with equivalence and
membership queries. In order to apply Theorem 2 to learn arbitraryClassic sentences,
we need only argue that the vertex labels arising from theClassic statements{PRIM, AT-
LEAST, AT-MOST, FILLS, ONE-OF} has semantics consistent with Definition 6. More
specifically, we’ll show that the set of vertex labels to be learned at any vertex is an element
of a finite-depth lattice whose join operation exactly captures the semantics of subsumption
for the label type. In fact, due to our earlierObservationregarding the melding of several
lattices into a single one, we may treat each of these vertex-label types separately. We will
show that in each case, the label sought is either an element of a finite-depth lattice, or
else we can apply standard techniques from learning theory to bound the infinite chains of
the lattice to only a finite-depth sublattice which contains the label to be learned (and the
learning algorithm can easily identify the sublattice to be searched). We proceed with the
details.

PRIM: The PRIM statements have the most straightforward structure: Consider the labeled
equivalence graphG associated with a givenClassic sentenceS, and consider a given
vertexv. For any particular primitive symbolp, eitherv contains the constraint (PRIMp),
or it does not. Let〈no-constraint 〉 denote the absence of such a PRIM constraint for
p. Then (PRIMp) ¹ 〈no-constraint 〉, and each vertex can be thought of as having a
label taken from this depth-two chain with minimum element (PRIMp). Intuitively, this
just says nothing more than the following: Ifv1 ∈ G1 andv2 ∈ G2, then the vertex〈v1, v2〉
in the cross-product will have label (PRIMp) if and only if bothv1 andv2 do; otherwise it
will have “label” 〈no-constraint 〉.

It should be noted that althoughClassic may allow for an infinite number of different
primitive symbols, the learning algorithm need only ever concern itself with those primitive
symbolsp for which the constraint (PRIMp) actually appears in some vertex of the first
counterexampleG0. (Call this set of primitive symbolsP0.) By the semantics of PRIM
and subsumption, any primitive not inP0 cannot appear in the targetG∗. Thus, the PRIM
constraint results ind0 = |P0| independent depth-2 chains that will get combined as de-
scribed in theObservation.

AT-LEAST: For any non-negative integersn andm, and for any roler, (AT-LEAST n r)
¹ (AT-LEAST m r) if and only if n ≥ m. Consequently, there is no minimum (least gen-
eral) such constraint. However, the first counterexampleG0 obtained is a positive example
that does not denote the empty set, and any AT-LEAST constraint appearing inG0 finitely
bounds the AT-LEAST lattice as follows. Letd1 = max{x : for some roler and vertex
v in G0, vertexv has the constraint (AT-LEASTx r)}. Then the minimum (least general)
element for any vertex and any role appearing in the targetG∗ can be assumed to be no
more specific than (AT-LEASTd1 r). Thus, for each roler the AT-LEAST constraints
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are elements of a lattice (in fact, a chain), with join operator given by (AT-LEASTn r) t
(AT-LEAST m r) = (AT-LEAST min{n,m} r). The minimum element is (AT-LEASTd1

r), and the maximum (most general) element is (AT-LEAST0 r), which is equivalent to
the null constraint〈no-constraint 〉. The depth of the chain isd1 + 1.

AT-MOST: For any non-negative integersn andm, and for any roler, (AT-MOST n r)
¹ (AT-MOSTm r) if and only if n ≤ m. Further, for any value ofk, (AT-MOST k r) ¹
〈no-constraint 〉. Thus, the partial order induced by the semantics of AT-MOST yields a
structure corresponding to the ordinalω+ 1: an infinite chain with minimum element (AT-
MOST 0r), together with a single maximum element that corresponds to the absence of any
AT-MOST constraint. While we have no need to useG0 to obtain a minimum element as in
the case of AT-LEAST, we have a slightly different problem: The most general AT-MOST
constraint is the absence of an AT-MOST constraint, which is not an AT-MOST constraint
at all. Consequently, a sequence of (positive) counterexamples of the form (AT-MOSTi
r), for i = 1, 2, 3, . . . , forces an algorithm doing simple most-specific-generalizations to
hypothesize exactly each counterexample (AT-MOSTi r) after it is received. No positive
example ever provides reason to eliminate the AT-MOST constraint. Thus, if the targetG∗
had no AT-MOST constraint for a particular vertex and role, then this fact would never be
discovered.

To overcome this difficulty, we employ a technique in which the learning algorithm cor-
rectly “guesses” the value of some unknown parameter. (We discuss later how to handle this
efficiently in a deterministic setting.) In particular, letd2 be the value of the largest integer
appearing in any AT-MOST constraint in any vertex of the target graphG∗, for any roler.
Armed with this knowledge, a finite chain is induced for each roler—we may eliminate
all constraints of the form (AT-MOSTn r) for n > d2, but we keep the maximum element
〈no-constraint 〉. Thus, the learning algorithm assumes for every roler and every vertex
v, that either there is a constraint (AT-MOSTn r) atv for n between 0 andd2, or else there
is no such AT-MOST constraint forr. In other words, the constraint is a member of the
chain of depthd2 + 2 of the form (AT-MOST 0r) ¹ (AT-MOST 1 r) ¹ (AT-MOST 2 r)
¹ · · · ¹ (AT-MOST d2 r)¹ 〈no-constraint 〉, with join operator defined by (AT-MOST
n r)t (AT-MOSTmr) = (AT-MOSTmax{n,m} r) if n,m ≤ d2, or =〈no-constraint 〉
otherwise. Note that a finite chain is also induced by any upper boundd′2 > d2, so thatif
the “guess” ofd2 is too large, the search will still succeed.

FILLS: By definition of the semantics of FILLS, for any roler and disjoint primitives
p1, p2, . . . , pn andq1, q2, . . . , qm, (FILLS r p1, p2, . . . , pn) ¹ (FILLS r q1, q2, . . . , qm) if
and only if{q1, q2, . . . , qm} ⊆ {p1, p2, . . . , pn}. Moreover, it is easily argued that the most
specific generalization of (FILLSr p1, p2, . . . , pn) and (FILLSr s1, s2, . . . , sm) is (FILLS
r t1, t2, . . . , tk), where{t1, . . . , tk} = {p1, . . . , pn} ∩ {s1, . . . , sm}. Consequently, we
may again use the initial counterexampleG0 to obtain an initial set of possible disjoint
primitives for each role that may appear in the target concept at any vertex. In particular,
for each roler, let Fr denote the set of all primitive symbols that appear in any FILLS
constraint involvingr at any vertex ofG0. Then every FILLS constraint involvingr in the
targetG∗ is of the form (FILLSr q1, q2, . . . , qn), where eachqi ∈ Fr. Thus, after the first
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counterexampleG0 is obtained, we have a finite lattice for each roler constraint (FILLS
r . . .) that appears in the target. The depth isd3 + 1, whered3 = |Fr|. The join operation
for the lattice is set intersection, and the minimum element is (FILLSr 〈empty − list〉)
which corresponds to〈no-constraint 〉.

ONE-OF: If p1, p2, . . . , pn andq1, q2, . . . , qm are disjoint primitives, then, by the se-
mantics of ONE-OF, (ONE-OFp1, p2, . . . , pn) ¹ (ONE-OF q1, q2, . . . , qm) if and only
if {p1, p2, . . . , pn} ⊆ {q1, q2, . . . , qm}. Moreover, the most specific generalization of
(ONE-OF p1, p2, . . . , pn) and (ONE-OFs1, s2, . . . , sm) is easily seen to be (ONE-OF
t1, t2, . . . , tk), where{t1, . . . , tk} = {p1, . . . , pn}∪{s1, . . . , sm}. Thus, a lattice is formed
with the join operation being that of set union, and we may choose as initial vertex labels
those ONE-OF constraints appearing in the first counterexampleG0. However, a problem
similar to that arising in the case of AT-MOST occurs in bounding the maximum depth
of the lattice. The nonconvergent infinite sequence of hypotheses (ONE-OFp1), (ONE-
OF p1, p2), (ONE-OFp1, p2, p3), . . . , of Learn may be obtained from the corresponding
infinite sequence of counterexamples (ONE-OFp1), (ONE-OFp2), (ONE-OFp3), . . . .
Further, each of these is less general than the lack of any constraint〈no-constraint 〉.

We deal with the problem in the same way that AT-MOST was handled. In particular,
let d4 be the maximum cardinality of any set of disjoint primitives appearing in a single
ONE-OF constraint in any vertex of the target graphG∗, for any roler. Given knowledge of
d4, we may assume that every ONE-OF constraint contains at mostd4 disjoint primitives.
Since proper generalization via the join operation (union, in this case) must increase the
cardinality of the disjoint primitive symbols appearing in a ONE-OF constraint, and any
proper generalization of the constraint (ONE-OFr p1, . . . , pd4 ) yields〈no-constraint 〉,
it follows that the lattice corresponding to ONE-OF constraints has depthd4 +1. Note that
a finite lattice is also induced by any upper boundd′4 > d4.

4.2. Putting it all together

We are now ready to apply Theorem 2 toClassic. We actually obtain a pseudo-polynomial
time algorithm, which we strengthen below.

Theorem 3 Classic is learnable from membership and equivalence queries in time
polynomial ins, t, andm, wheres is the number of symbols needed to write the target
Classic description,t is the number of symbols needed to write the longest counterexample
description, andm is the largest integer appearing in any AT-LEAST or AT-MOST constraint
in the target description or the first counterexample.

Proof: Let d1, d2, d3, andd4 be as described in the preceding section, reproduced here
for convenience:
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d0 = |P0|, whereP0 = primitives appearing inG0.
d1 = maximum AT-LEAST number appearing in any vertex ofG0.
d2 = maximum AT-MOST number appearing in any vertex ofG∗.
d3 = |Fr|, Fr = disjoint primitives appearing in FILLS constraints inG0.
d4 = maximum cardinality of any set of disjoint primitives appearing in

a single ONE-OF constraint inG∗.

Consider an algorithm that obtainsG0, and by inspection determinesd0, d1, and d3.
Assume that the algorithm is given the values ofd2 andd4. Suppose thatV is the total
number of vertices inG∗ andG0 together, and thatR is the total number of role symbols
appearing inG∗ or G0. We count the number of distinct vertex-label lattices with which
the learning algorithm must cope, together with the depths of those lattices. Note first that
each ofV vertices ofG0 or targetG∗ may contributed0 lattices of depth 2 corresponding
to PRIM constraints. Next, since there are at mostV R vertex-role pairs in bothG∗ andG0,
it is easily seen that there are at mostV R lattices of depthd1 + 1 (respectively, of depths
d2 +2, d3 +1, d4 +1) arising from the AT-LEAST (respectively, AT-MOST, FILLS, ONE-
OF) constraints. It follows from our earlierObservationthat the vertex labels combine
into a single lattice of vertex labels formed from tuples of PRIM, AT-LEAST, AT-MOST,
FILLS, and ONE-OF labels, with depth at most2d0V + V R(d1 + d2 + d3 + d4 + 5), and
with ordering on the tuples in accordance with theClassic subsumption relation, so that
Theorem 2 applies. The total time taken is a polynomial in the above expression, which
satisfies the statement of Theorem 3 becauses is bounded below byd0 andd3, t is bounded
below byd4, s+ t is Θ(V R), andm is bounded below byd1 andd2.

To complete the proof it remains to show that without loss of generality, the algorithm
described above does not need to be given valuesd2 andd4. The trick is a standard one:
The algorithm “guesses” an upper boundm for the maximum ofd2 andd4. Initially, m is
set to 1. Under the assumption thatm indeed is an upper bound ond2 andd4, the algorithm
should correctly learn the target concept within a known time-bound (the exact computation
of which is left as an exercise for the reader). If this time bound is exceeded, the algorithm
begins again, but doubling the value ofm. After at mostO(log max{d2, d4}) restarts, the
assumed upper bound will be sufficient and will be at most twice the minimum sufficient
value. This “guessing” produces at most a factor ofO(logm) slowdown over having known
m from the outset.

Theorem 3 proves only a pseudo-polynomial time algorithm for learningClassic, since
the time and number of examples depends polynomially on thevalueof the largest inte-
germ appearing in an AT-LEAST or AT-MOST constraint, and not on the lengthlogm
needed to write the number. There are three methods for strengthening the result: We
can incorporate intoPrune a binary search procedure, using membership queries, to min-
imize the values in the AT-LEAST constraints, and maximize the values in the AT-MOST
constraints, while still retaining a positive example. It can be shown that such a proce-
dure results in a fully polynomial-time algorithm for learningClassic with equivalence
and membership queries. However, for reasons that will become apparent in Section 8,
we would like to avoid asking membership queries involving only changed vertex labels,
so we do not present this approach here. As a second alternative, application of clever
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techniques (Chen & Maass, 1994)3 would probably allow the same binary search on the
AT-LEAST and AT-MOST constraint values to be performed, but without relying on mem-
bership queries. We leave the details as an exercise for the truly motivated reader.

Instead, for simplicity, we relax the model and argue that a fully polynomial time PAC
algorithm (with membership queries) exists for learningClassic. Because the resulting
algorithm will not make any membership queries other than those already made byPrune,
we will be able to apply a general lemma in Section 8 which allows a very noise-tolerant
variation.

Recall that PAC learning requires that for any example lengthn, for any arbitrary unknown
probability distribution on examples of length at mostn of the target conceptG∗, and for
anyε, δ > 0, the learning algorithm outputs a conceptG that, with probability at least1−δ,
has error at mostε in classifying random examples asG∗ does, where the error is measured
with respect to the unknown distribution. The time taken by the learning algorithm, and
the number of randomly generated labeled examples that it obtains, are required to be
bounded by a polynomial inn, |G∗|, 1

ε , and1
δ . We consider the PAC learning model where

the algorithm may ask membership queries in addition to receiving randomly generated
examples.

Consider the standard transformation (Angluin, 1988b) ofLearn into a PAC algorithm:
Each equivalence query is replaced by random sampling; each hypothesis is tested to
see if it is probably approximately correct. If so, the hypothesis is kept and the algorithm
terminates. Otherwise, a counterexample is obtained. The bound on the number of possible
equivalence query counterexamples for the originalLearn translates into a bound on the
number of random examples needed for its PAC version. This transformation, together with
Theorem 3, gives a fully polynomial time PAC algorithm (with membership queries) for
learningClassic descriptionswithout AT-LEAST and AT-MOST constraints. Call this
algorithmLearnp.

Now, to learnClassic withAT-LEAST and AT-MOST constraints, first runLearnp with
appropriate parameters, so as to obtain an hypothesisH that with probability at least1−δ/2
has error at mostε/2 if we ignore any misclassification error due solely to AT-LEAST or
AT-MOST constraints. IfH containsk such constraints (k is at most2 · |Σ| · |G∗|), then
take a sample of2kε ln 2k

δ additional examples. For a given AT-LEAST constraint (AT-
MOST similar), letm0 be the minimum number observed in a positive example for that
constraint. Now consider the error induced by using (AT-LEASTm0 r) instead of using
(AT-LEAST m∗ r), wherem∗ ≤ m0 is the actual number appearing in the corresponding
AT-LEAST constraint of the target. The probability that this error exceedsε/2k is (1 −

1
ε/2k )

δ
2k ln ε

2k ≤ δ/2k. Summing over all such constraints, we find that the total error
attributable to insufficiently general AT-LEAST or AT-MOST constraints is bounded above
by ε/2 with probability at least1− δ/2.

These observations, together with the correctness of Theorem 3, prove the following.

Theorem 4 Classic is learnable in the PAC model with membership queries in time
polynomial in|G∗|, 1

ε
1
δ , andn, the upper bound on example size.
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5. The Insufficiency of Membership Queries

We show in this section that efficient learnability cannot be achieved solely through member-
ship queries. Coupled with the result of Cohen and Hirsh (1994a) showing that equivalence
queries alone are insufficient assuming P6= NP (or random examples are insufficient in the
PAC setting assuming RP6= NP), this shows that membership and equivalence queries (or
random examples, in the PAC model) form a minimal set of queries with whichClassic

can be efficiently learned.

S1 S2

Figure 6. A target schema requiring exponentially many membership queries.

Theorem 5 Any algorithm using membership queries alone to learnClassic requires

1. Ω(2|Σ|) membership queries even when the target sentence has an acyclic equivalence
graph with only three vertices, and when all roles are attributes, and

2. Ω(2n) membership queries even when the target sentence has only two roles which are
in fact attributes (|Σ| = 2) and when the corresponding equivalence graph is acyclic
withO(n) vertices.

Proof: For part (1), considerClassic descriptions whose equivalence graphs have the
simple form shown in Figure 6. There areO(2|Σ|) such concepts, each determined by a
partitioning of edge labels4 of Σ into (disjoint but exhaustive) setsS1 andS2. Now, any
membership query supporting all strings with a single equivalence class is a positive example
– no information is obtained by asking such a query. Second,anymembership query that
does not support some edge label from the root is a negative example because a target-
supported string is unsupported – membership queries of this form provide no information.
Third, any membership query that partitions the set of edge labels emanating from the
root into more than two sets is a negative example because some pair of target-equivalent
strings are inequivalent – membership queries such as these provide no information in
distinguishing among the possible targets.

Thus, only membership queries that partition the set of length 1 strings into two supported
equivalence classes can provide any information. Any query that does not partition the
edge labels into exactly the same sets as the target is a negative example. There are2|Σ|−1

such partitions. The adversary simply answers any such query “no” until all but one of
the partitionings have been exhausted. Notice that if the learner outputs some conjecture
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before exhausting all possible partitions, the teacher simply asserts that the conjecture is
incorrect by choosing as the target any unexplored partitioning.

For part (2), we simulate a setΣ′ of edge labels with|Σ′| = n = 2k by using the
labels ofΣ as a binary code to label a depthk − 1 binary tree so that all lengthk − 1
strings are supported and every string of lengthk − 1 or less is in its own equivalence
class. Now construct two more equivalence classes such that every string of lengthk is
in one of these equivalence classes. (See figure 7). These last two equivalence classes
simulate the non-root equivalence classes of the target in part (1), so that learning this target
requires2n−1 − 1 membership queries, but the target has only

∑k−1
i=0 2i = O(n) vertices.

σ1 σ2

σ2σ1 σ1 σ2

.
.

.

Figure 7. This schema requires exponentially many membership queries even thoughΣ is known to be the set
{σ1, σ2}.

Having shown that the set of queries we use to achieve our positive learnability result is
minimal, the next sections explore extensions to that result.

6. Learning from Individuals

We consider the learning model discussed in Section 1.2, where a relational databaseK
is available that explicitly describes all possible examples. We assume each example in-
dividual has a name that is a key, and that the relations of the database are available for
inspection by the learning algorithm. Some names are designated as picking out positive
examples, and others as negative examples. We are interested in the situation where the
database is sufficiently large so as to preclude the strategy of learning by simply collecting
positive examples.

In the exact learning model, the goal of the learner is to find aClassic sentence whose
denotation onK coincides with exactly the positive examples ofK. Any equivalence
query on a descriptionH that does not have this property is answered by the name of some
individual ofK that is classified incorrectly byH. Similarly, in the PAC learning model,
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we assume that an arbitrary probability distributionD on (names of) individuals ofK is
chosen, and the learning algorithm must find, after sampling fromD and being told which
were positive examples, a descriptionH whose denotation onK has error at mostε with
probability at least1− δ.

In an experimental setting, Cohen and Hirsh (1994b) consider a similar type of learning
from individuals, although their notion of “individual” may have some additional informa-
tion attached in the form of aClassic assertion. They adapt a result on learningClassic

sentences without the SAME-AS construct, to the context of learning from individuals. The
main idea used is to construct, from each individual example, aClassic sentence that ab-
stracts the individual and is as restrictive as possible among all suchClassic descriptions.
ThisClassic description is then passed to the learning algorithm as an example. Because
the search for the “most restrictive abstraction” of an individual could be combinatorially
expensive, they restrict their search to thoseClassic sentences for which the maximum
nesting of ALL constraints is bounded by some constantk. This places a bound on a type
of chaining—it embodies the assumption that the data about an individual that is relevant
for describing that individual can be obtained by looking at other individuals who are at
most some fixed distancek away via relation and function applications.

Indeed, one of the problems in learning from individuals is that via function or relation
chaining, each individual can be related toeveryother in the database. The targetClassic

sentence can specify that an example is a positive example only if some condition holds for
individuals that are related by a very long chain of relations from the given example. We
exploit just this possibility in proving the negative results in this section, showing that the
chaining depth restrictions imposed by Cohen and Hirsh are apparently necessary.

We show that just predicting the classification ofClassic sentences on random unseen
examples in the PAC setting is as hard as predicting polynomially-sized circuits, and hence
is intractable given standard cryptographic assumptions, such as the existence of one-
way functions or of cryptographically secure bit generators. (See the work of Angluin &
Kharitonov (1995), Kearns & Valiant (1994), Pitt & Warmuth (1990), and Valiant (1984),
for nonlearnability results arising from hard cryptographic problems. Moreover, because
Boolean circuits are “prediction-complete” for P (Pitt & Warmuth, 1990), if a polynomial-
time algorithm existed that could, after seeing a polynomial number of random example
individuals of someClassic sentence, labeled as positive or negative, achieve classification
accuracy12 +ε (only slightly greater than a half), then this algorithm could be used (with the
appropriate polynomial-time reductions) to achieve accuracy arbitrarily close to 1 forany
concept class for which the membership problem5 is decidable in polynomial-time (Pitt &
Warmuth, 1990; Schapire, 1990). . Since most reasonable concept learning problems have a
polynomial-time membership problem, in some sense then, learningClassic descriptions
from individuals is “universal”, and is as hard as any reasonable concept learning problem.
This negative result holds even when the targetClassic description does not contain any
SAME-AS conditions.

Whether or not learning from individuals is tractable when membership queries are al-
lowed also, depends on the definition of a membership query in this setting. If such queries
simply specify the name of an individualx in the databaseK, and the response is whether
or notx is a positive or negative example of the target description, then our reduction still
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holds, and the problem of predictingClassic descriptions from individuals, using random
examples and membership queries, is as hard as predicting polynomially sized Boolean
circuits with the same information, and is intractable assuming the existence of one-way
functions (Angluin & Kharitonov, 1995). On the other hand, if a membership query is
allowed to construct a “new individual”, one that is not currently in the database, then we
leave open the question of whether learning is possible. Which model of membership query
on individuals is appropriate, or more natural, depends on our view of whether the database
reflects all possible ground instances that are meaningful or relevant.

6.1. Constructing a Database andClassic Sentence from a Circuit

We proceed with the technical details. We will show how to encode the behavior of an
arbitrary Boolean circuit as a collection of individuals in a database. Being able to predict
which entries are positive examples, and which are negative examples will be exactly the
problem of determining the input-output behavior of the circuit.

LetB be a Boolean circuit withm gates, where the firstn of these gates are input ports.
Let the gates be numberedg1, g2, . . . , gm, where the indexing is without loss of generality
consistent with a topological sort of the gates. Thusgm is the output gate, giving the value
of the circuit for a given setting of the firstn (input) gates, and for eachk > n, gk is either
an AND or OR gate with inputsgi andgj for i, j < k, or else it is a NOT gate with input
gi with i < k.

Consider the step-by-step process of evaluatingB on a given Boolean input vector
of length n, as dictated by the topological sort. Initially,g1, . . . , gn are defined, and
gn+1, . . . .gm are undefined. Then, at stagek, gn+k obtains a value determined by the
(already-defined) values of the at most two gatesgi, gj (with i, j < n + k) that feed into
gn+k.

We can represent the partial evaluation ofB by a lengthm string, where the firstn
characters take the value 0 or 1, reflecting the original input setting, and the remaining
m− n characters take the value 0, 1, or “?”, indicating that the value of the corresponding
gate has been computed to be either 0, 1, or not yet defined, respectively. There are
2n3m−n such strings. Each such string will be the name of a unique individual over which
the relations of the database are defined. Let this set of domain individuals be denotedI.
In what follows, if s ∈ I and we writes = xy; this is to be taken as an indication that
x consists of the firstn bits of s (corresponding to the input bits), andy is the remaining
m− n characters ofs (corresponding to the (perhaps partially) evaluated gates). Also, for
s ∈ I andi in the range{1, . . . ,m}, s[i] denotes theith character ofs.

The database contains the following relations onI.

• INPUT-VECTOR is a unary predicate onI such that INPUT-VECTOR(s) is true if and
only if s = xy, wherex ∈ {0, 1}n, andy =?m−n. Thus, INPUT-VECTOR consists
only of those individuals that denote a completely-unevaluated circuit with a particular
input vectorx.
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• EVAL-TO-1 is a unary predicate onI such that EVAL-TO-1(s) is true if and only if
s ∈ {0, 1}m ands[m] = 1. Thus,s is a completely evaluated circuit whose last bit
(i.e., the output bit) is “1”.

• For each choice of distinct valuesi andj in the range{1, . . . ,m − 1} and for each
choice ofk in the range{max{n, i, j} + 1, . . . ,m}, ANDi,j,k (respectively, ORi,j,k)
is a binary relation onI (more specifically, a function fromI to I) defined as follows:
Let s1 ands2 both be elements ofI. Then(s1, s2) ∈ ANDi,j,k (respectively, ORi,j,k)
if and only if

1. s1[i] ands1[j] are in{0,1} (i.e., theith andjth gates of the partially evaluated
circuit thats1 represents are defined (not equal to “?”));

2. s1[k] =“?” (i.e., thekth gate of the partially evaluated circuit represented bys1
has not yet been defined);

3. For every numberb in the range{1, . . . ,m}, if b = k thens2[b] = s1[i] ∧ s1[j]
(respectively,= s1[i]∨s1[j]), otherwises2[b] = s1[b]. Thus,s2 represents virtually
the same partially evaluated circuit ass1, except thats2 denotes exactly one further
step of evaluation: the values of the gates numberedi andj have been conjoined
(respectively, disjoined) to obtain the value of thekth gate.

• For each choice ofi in the range{1, . . . ,m − 1} and for each choice ofk such that
i < k ≤ m, NOTi,k is a binary relation onI (more specifically, a function fromI to
I) defined as follows: Lets1 ands2 both be elements ofI. Then(s1, s2) ∈ NOTi,k if
and only if

1. s1[i] ∈ {0, 1} (i.e., theith gate of the partially evaluated circuit thats1 represents
is defined (not equal to “?”));

2. s1[k] =“?” (i.e., thekth gate of the partially evaluated circuit represented bys1
has not yet been defined);

3. For every numberb in the range{1, . . . ,m}, if b = k then s2[b] = ¬(s1[i]),
otherwises2[b] = s1[b]. Thus,s2 represents virtually the same partially evaluated
circuit ass1, except thats2 denotes exactly one further step of evaluation: the value
of the gates numberedi has been negated to obtain the value of thekth gate.

This completes the description of the databaseK containing all individualsI, and relations
INPUT-VECTOR, EVAL-TO-1, ANDi,j,k, ORi,j,k, and NOTi,k, for i, j, and k in the
specified ranges. As mentioned earlier, the number of individuals is|I| = 2n3m−n, one
entry for each strings as above. Note that each element of one of the relations is either
a pair of elements ofI (for the binary relations AND, OR, NOT), or a single element of
I (for the predicates INPUT-VECTOR and EVAL-TO-1), so that each tuple of any of the
relations has a description that is of size polynomial in the size of the circuit.

We now specify, given a Boolean circuitB ofm gates (the firstn of which are inputs, and
the last of which is output), aClassic description whose denotation onK corresponds
exactly to the elementss ∈ I such that



            

CLASSIC LEARNING 181

(1) The keys corresponds to an input vector ofB, without any partial circuit evaluation
completed. That is,s = xy, wherex is a bit string of lengthn representing a circuit
input, andy is a string ofm− n “?”’s.

(2) B(x) = 1.

While reading the following description, the reader may find it helpful to refer to Sec-
tion 6.2, which provides a concrete example of the reduction. TheClassic description
will classify an entry with keys as a positive example if and only if the two conditions (1)
and (2) are satisfied. Clearly, aClassic sentenceS1 asserting that the entrys has the form
(1) above is just the sentenceS1 given by

S1 = (INPUT-VECTOR).

To assert the second condition, consider the step-by-step evaluation of the function com-
puted byB via computing at each step, the output of the next gategk in the topologi-
cal ordering. This is achieved by starting in the database with entrys = xy for which
INPUT-VECTOR(s) holds, successively following pointers as given by the function fields
ANDi,j,k, ORi,j,k, and NOTi,j , to chain through all them − n entries representing the
circuit’s partially evaluated values until a final values = xy′ is reached, wherey′ rep-
resents the outputs of all gates ifx is the input toB. In particular, the function string
fm(fm−1(. . . (fn+3(fn+2(fn+1(s)))))) will reach the appropriate entryxy′ exactly when
the functionfk (with m ≥ k ≥ n + 1) is chosen to be ANDi,j,k (respectively, ORi,j,k or
NOTi,k) if gategk computes the AND of gatesgi andgj , (respectively OR ofgi andgj , or
NOT of gi).

Thens = xy is a positive example if the namexy′ of this last individual reached, which
represents the completely evaluated circuit, happens to have a 1 in itslast position. By
construction, this occurs exactly whenxy′ satisfies the unary predicate EVAL-TO-1(xy′).

Consequently, the condition (2) above can be satisfied by theClassic sentenceS2 given
by

S2 =(ALL fn+1 (ALL fn+2 (ALL . . . (ALL fm−1 (ALL fm EVAL-TO-1)))))

where eachfi is chosen to correspond, as discussed above, to the function computed by the
corresponding gate ofB.

Finally, theClassic sentenceS that realizes the entire construction is simply

S = (AND S1 S2).

It is immediate from the construction that the denotation ofS (the positive examples) on
the databaseK consists exactly of those individuals inI with name of the formxy, where
x is ann-bit Boolean vector such thatB(x) = 1, and wherey is a string ofm− n “?”’s.

6.2. An Example

Suppose the Boolean circuitB has 8 gates, and computes the functionx3∧(x1∨x2)∨¬x2,
as shown in Figure 8. Then individuals will be indexed by strings of length 8, where the
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Figure 8. Example circuit and the straight-line program that computes it. Gateg8 is the output.

first four bits are either 0 or 1, and the last four bits are either 0, 1, or ?. The value of the
circuit can be computed by the following function composition:

(EVAL-TO-1 (OR6,7,8 (NOT2,7 (AND3,5,6 (OR1,2,5(x))))))

For example, to see how this evaluates on input 0111, we’ll look at the partial values as
the functions are applied from innermost to outermost.

(EVAL-TO-1 (OR6,7,8 (NOT2,7 (AND3,5,6 (OR1,2,5 (0111????))))))
= (EVAL-TO-1 (OR6,7,8 (NOT2,7 (AND3,5,6 (01111???)))))
= (EVAL-TO-1 (OR6,7,8 (NOT2,7 (011111??))))
= (EVAL-TO-1 (OR6,7,8 (0111110?)))
= (EVAL-TO-1 (01111101))
= 1

The last four bits give the values of all of the gates when the input is 0111. Thus, if
we consider the individual named 0111????, and chain through the database following the
appropriate function fields as given by the sequence

OR6,7,8(NOT2,7(AND3,5,6(OR1,2,5())))

then we end up at the individual named 01111101. Because the last bit of this is a 1, EVAL-
TO-1(01111101) = 1. Hence 0111???? is a positive example of theClassic sentence

(AND (INPUT-VECTOR)
(ALL OR1,2,5 (ALL AND3,5,6 (ALL NOT2,7 (ALL OR6,7,8 (EVAL-TO-1))))))
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6.3. Learning from Individuals Implies Circuit Prediction

We have shown that for any circuitB there exists a databaseK of individuals and relations
among individuals, and aClassic sentenceS, such that the denotation ofS onK is exactly
the entries ofK that have names that “correspond” to inputs for whichB outputs 1.

We use these constructions to sketch how an algorithm that learnsClassic descriptions
can be used to predict, according to the PAC requirements, the values of a hidden target
circuitB given only random examples, and membership queries on input vectors toB.

Let L be a learning-from-individuals algorithm forClassic sentences. SupposeB is
an unknown target circuit ofn inputs andm − n gates to be predicted. (Without loss of
generality, we assume that for the circuit learning problem, we know the number of gates
in the target.) We describe a learning algorithmL′ that usesL for predictingB’s behavior.

A minor problem which does not appear with standard “learning reductions” is that
the learning algorithmL assumes the existence of an exponentially-sized database from
which examples are drawn, and from which it can extract information. The (efficient)
reduction that we now describe cannot afford to entirely construct the exponentially large
databaseK corresponding toB. Instead, we imagineK existing only in principle, and the
reduction answers each query about entries ofK made by the algorithmL without actually
constructingK. We assume thatL can make only the following types of database queries:

“Retrieve F (s, ?)”, whereF is one of the binary relations (functions) of type ANDi,j,k,
ORi,j,k, or NOTi,k as described above. This returns the values′ such that(s, s′) ∈ F ,
that is, the individuals′ that denotes the slightly-more-evaluated circuit obtained by
applying functionF to s. If there is no suchs′ (for example, ifF = ANDi,j,k, but
eithers[i] or s[j] is “?”, or s[k] 6= “?”, or k is not in the required range), then the value
NIL is returned.

“Retrieve F (?, s′)”, whereF is one of the binary relations (functions) of type ANDi,j,k,
ORi,j,k, or NOTi,k as described above. This returns the individuals such that(s, s′) ∈
F , that is, the individuals that denotes the slightly-less-evaluated circuit which, when
F is applied, yields the slightly-more-evaluated circuits′. (If there is no suchs, then
the value NIL is returned. Note that for a particular choice ofF ands′, there is at most
ones such that(s, s′) ∈ F , so the query has an unambiguous answer.)

“F (s)”, whereF is one of the unary predicates EVAL-TO-1 or INPUT-VECTOR. This
query returns TRUE ifs satisfies the predicate, otherwise it returns NIL.

“Member s”, wheres ∈ I is the name of an individual in the database. This is a standard
membership query, which returns true if and only ifs is a positive example of the
targetClassic sentence. Here we note again that in this model we do not allow the
construction of a hypothetical individual to be used in a membership query.

Note that the answers to each of the queries (except Member) can be computed efficiently
from the description ofK given above, and without requiring an explicit representation of
all of the relations inK. Further note that the answers to these queries (except Member)
are independent of the particular circuitB, hence can be answered without knowledge of
B.



          

184 M. FRAZIER AND L. PITT

Allowing significantly more complicated queries can result in questions that are not
answerable efficiently, so even if the database were available in its entirety,L could not easily
obtain the answers. For example, consider a query that involves finding the projection based
on a condition of a composition of function values, as in the request to find alls for which
EVAL-TO-1((f1(f2(. . . (fm−n(s)))))) holds. Since the functionsfi available correspond
to all possible AND, OR, and NOT functions, the search for thoses’s which satisfy the
condition is exactly the question of whether some corresponding circuit is satisfiable—an
NP-hard problem.

Now, to learn the circuitB, L′ begins running the learning algorithmL. If L requests a
labeled random example,L′ requests a labeled random examplex ofB, and from it creates
the corresponding individuals ∈ I such thats = xy wherey is a string of “?” symbols of
lengthm− n. L′ gives this example toL labeled asx was labeled byB.

If Lmakes a query of the form “RetrieveF (s, ?)” (respectively, “RetrieveF (?, s′)”) then
L′ simply determines whether or nots (respectively,s′) is of the right form with respect
to the indices specified byF , and if so, returns toL the unique slightly-more-evaluateds′

(respectively, slightly-less-evaluateds) as dictated byF and the bits ofs (respectively,s′).
As noted above, this can be computed without knowledge ofB, as the functionF explicitly
states the simple relationship that must exist betweens ands′. If s (respectively,s′) is not
of the correct form, thenL′ returns NIL as an answer to the query ofL.

Similarly, if L makes a query of the form “F (s)” whereF is one of the unary predi-
cates EVAL-TO-1 or INPUT-VECTOR, thenL′ simply replies TRUE or NIL, depending
on whether or nots satisfies the predicate specified. This can be determined by simple
inspection ofs.

Finally, suppose thatL makes a membership query on the individuals = xy, wherex
has lengthn andy has lengthm− n. Then, ify 6= ?n (i.e., if y does not consist entirely of
“?”’s), thenL′ responds thats is a negative example. Otherwise,L′ poses a membership
query ofx to the Boolean circuit membership oracle. Ifx is a positive example ofB, thenL′

responds toL thats = xy is a positive example, otherwiseL′ responds thats is a negative
example.

Because all information thatL′ provides toL is consistent with information thatLwould
have obtained had it run with actual databaseK and targetClassic sentenceS that
corresponds toB, it must in time polynomial in relevant parameters, and with probability
at least1− δ, output some polynomial-time programH whose error on random unlabeled
examples fromI is at mostε,

Now, to predict the valueB(x) of a randomly chosen Boolean vectorx, L′ forms the
corresponding element ofI with names = x?m−n, and evaluatesH(s) to predict whether
or nots is a positive example of the classic sentenceS. It immediately follows that with
probability at least1− δ, the error ofL′ on random unlabeled examples ofB is at mostε.

Note thatL′ asks membership queries if and only ifL does, hence learning (predicting)
Classic sentences without membership queries from random individuals is as hard as the
prediction problem for Boolean circuits without membership queries, and if membership
queries are additionally allowed, the problem remains as hard as the corresponding prob-
lem for Boolean circuits with membership queries allowed. Both of these problems are
intractable given the existence of 1-way functions (Angluin & Kharitonov, 1995).
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7. Unions ofClassic Concepts

Classic lacks an OR construct. As such, let us comment briefly on a target consisting
of a union ofClassic concepts. Here we consider a positive example any concept that
is subsumed by the union of the concepts in the target. Care must be taken, however, in
defining what subsumption means in the presence of a union of concepts. Two possibilities
present themselves.

The first possible subsumption definition stems from the definition of subsumption for
a singleClassic concept, which considers the set of individuals selected under an inter-
pretation. We formalize this definition and leave the question of learnability under this
definition open.

The second possible definition of subsumption, which is interesting in its own right,
possesses a property calledstrong compactness(Page, 1993) in other logical systems. This
strong compactness property leads immediately to two positive learning results.

7.1. First Definition

Recall that for singleClassic conceptsc1 andc2, c1 subsumesc2 if the set of individuals
denoted byc2 is a subset of the individuals denoted byc1 regardless of the interpretation.
Reasoning analogously, the first (and perhaps more compelling) definition of subsumption
for a unionT of Classic concepts states that a conceptc is subsumed byT if for every
interpretation, the set of individuals denoted byc is a subset of the union of the sets of
individuals denoted by the members ofT . Note that this definition of subsumption permits
interesting interaction between the concepts inT . For example, under any interpretation,
the union

(AND brown (AT-LEAST 3 spots )) ∪ (AND brown (AT-MOST 10spots ))

denotes the set of all brown individuals, regardless of the number of spots. Thus the union
subsumes the conceptbrown even though neither member of the union subsumesbrown

on its own. Hence, a positive example of the union of two concepts is not necessarily a
positive example of either one of them — a phenomenon that does not occur in propositional
settings. Reasoning about the possibility of such interaction makes the problem of learning
in this situation challenging. We leave open the question of learnability under this definition
of union.

7.2. Second Definition

Our second definition of subsumption, which is of interest in its own right, is that a set
T of Classic concepts subsumes exactly the union of the sets of positive examples of
the concepts inT . Thus, an example is positive (i.e., follows fromT ) if and only if it
is a positive example of (i.e., follows from) one of the concepts inT . This is the strong
compactness property. To distinguish this definition of union from that given above, we
will refer to this as theweak union.
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This kind of non-interaction is not new. In order to make reasoning in certain first order
logic systems tractable, Dalal and Etherington (1992) consider various restrictions to the
interaction permitted among the elements of a set of logical sentences. In the propositional
setting, Blum and Chalasani (1992) considerswitching concepts. Here there is actually a
set of targets, and the “current” target switches from time to time from one element of the
set to another. An example is classified as positive or negative according to the “current”
target. Thus no interaction occurs among the elements in the set of targets. Frazier et al.
(1994) define aconsistently ignorant teacher, that models, among other things, a concept
defined by the agreement of a set of target concepts: This is a teacher that has a set of targets
and classifies examples as positive (negative) if all elements in the set of targets classify the
example as positive (negative); in the event that some targets classify the example as positive
and others classify it as negative, the teacher is ignorant about the correct classification and
says “I don’t know.”

We sketch an argument that the weak union ofClassic concepts is learnable. The idea
of learning a (weak) union ofClassic sentences using this method was suggested by Rob
Schapire (private communication), and is reminiscent of other approaches (Page, 1993;
Angluin et al., 1992). LetT be the set of concepts constituting the target. We maintain a
setU of concepts as our hypothesis by replacing any oneu ∈ U with Prune(c× u) where
c × u is a positive example andc is a (necessarily positive) counterexample toU . If no
u ∈ U satisfies this property, thenPrune(c) is added to the setU . Initially, U contains only
the universally positive example.

To see that this works, inductively suppose our current hypothesisU is a set{u1, . . . , uk}
of concepts which are each positive examples ofT such that not in T subsumes bothui and
uj 6=i. Let c be a (necessarily positive) counterexample toU . There are two possibilities to
consider – eitherPrune(c) is added toU or someui is replaced byPrune(c× ui).

For any conceptt, t subsumesc×ui if and only if t subsumesc andt subsumesui. Thus,
if Prune(c) is added toU then noc × ui is a positive example, hence for noui is there
a t ∈ T such thatt subsumesui andt subsumesc (and hencePrune(c)). The inductive
hypothesis is preserved.

On the other hand, suppose there is someui ∈ U such thatc× ui is a positive example,
so thatPrune(c× ui) replacesui in U . For this to occur, it must be thatt subsumesui and
t subsumesc for somet ∈ T . Consider the resulting hypothesis. Inductively, there is no
t ∈ T anduj 6=i ∈ U such thatt subsumes bothui anduj . But then, sincePrune(c × ui)
subsumesui, there exists not ∈ T such thatt subsumes bothuj andPrune(c × ui). The
inductive hypothesis is again preserved.

WhetherPrune(c) is added toU or Prune(c × ui) replacesui in U , progress is made
toward some member ofT without undermining the progress made by other members ofU
toward other members ofT . The moral of the story is that a definition of union that possesses
the strong compactness property admits a learning algorithm that identifies each item in
the target simply by updating any item in its current hypothesis when it can, and when no
update to an existing item can be made it must be the case that the new counterexample is a
suitable representative for some member of the target for which we have no representative.
In either case, we essentially learn in parallel the different members ofT , and the total time
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taken is at most the sum of the running times ofLearnp on each member ofT . We conclude
that the weak union ofClassic concepts under this definition is efficiently learnable:

Theorem 6 The weak union ofClassic concepts is learnable in the PAC model with
membership queries in time polynomial in|T |, 1

ε
1
δ , andn, the upper bound on example

size, where|T | denotes the sum of the lengths of theClassic descriptions comprising the
union.

Given this result, let us reconsider the consistently ignorant teacher mentioned above.
Such a teacher will classify a description as positive if each element of its set of targets clas-
sifies it as positive, will classify a description as negative if each element of its set of targets
classifies it as negative, and will say “I don’t know” if there is no agreement of classification
among the elements of the target set. We wish to apply Theorem 7 of (Frazier et al., 1994),
which states that if the set of concepts defined by unions of concepts from a classC is learn-
able, and the set of concepts defined by intersections of concepts fromC is learnable, then
the set of agreements of concepts inC is learnable andC is learnable from a consistently
ignorant teacher. Taking the union ofClassic sentences to be the weak union, we have just
demonstrated that the union is learnable. On the other hand, the intersection ofClassic

sentences is simply the AND of sentences and so is itself aClassic sentence whose size
is simply the sum of sizes of the individualClassic sentences – so the intersection is also
learnable. We thus obtain the following corollary.

Corollary 1 Classic is learnable from a consistently ignorant teacher.

8. Membership Query Response Errors

We have shown that we need membership queries, but how much do we depend on them?
What if the classification of examples is unreliable? Such questions arise from the desire
to model inaccurate advice from a teacher or expert.

In particular, we consider a setting in which an adversary is permitted, with a given
probability, to foul the classification of an example. It is assumed that the classification we
witness for a particular example persists so that we cannot exploit the adversary’s probability
constraint by asking repeatedly about that example and thereby statistically determine its
correct classification. This notion is known aspersistent malicious misclassification noise.
A number of authors have investigated this and related models (Angluin & Laird, 1988;
Sloan, 1988; Shackelford & Volper, 1988; Auer, 1993; Decatur, 1993; Kearns & Li, 1993;
Ron & Rubinfeld, 1993; Angluin & Slonim, 1994; Angluin, 1994; Angluin & Kri¸kis, 1994;
Sloan & Turán, 1994; Frazier et al., 1994) ).

The graphs we have been manipulating admit the random construction of a number of
related, but distinct, graphs having the property that either all of them are positive examples
or all of them are negative examples. Exploiting this property, this section gives a general
test for verifying the answer to a membership query in the presence of even a significant
amount of persistent malicious misclassification noise, showing that this type of difficulty
can be robustly tolerated in learningClassic.
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For technical reasons, we consider onlyreducedlabeled equivalence graphs – labeled
equivalence graphs in which every vertex having “degenerate” labels (which express the
null constraint) and having out degree zero also has in degree at least two – this forces
the vertex to express some non-trivial restriction in theClassic description. Prohibiting
vertices with degenerate labels, which have indegree 1 and outdegree 0 does not change the
ability of labeled equivalence graphs to representClassic descriptions concisely, because
anyClassic sentence whose equivalence graph contains such a vertex is also representable
more concisely by the equivalence graph with the vertex removed. However, permitting such
vertices does illuminate a slight difference between the semantics of labeled equivalence
graphs and the semantics ofClassic. A given labeled equivalence graph may be a negative
example of the target due to the fact that some target supported string is unsupported even
if the vertex reached by this supported string imposes no other semantic constraint in terms
of the equivalence of strings or the vertex label – inClassic such a graph would have
arisen from some subexpression stating, “All individuals in the relationr to individuals in
this set are individuals in the universe.” Clearly such a statement is true for every roler
and every individual in the universe; eliminating such a subexpression does not change the
semantics of aClassic description, but the two labeled equivalence graphs representing
these descriptions would be semantically different.

We now introduce our model ofpersistent malicious membership query responses. Let
r(·) be any polynomial, and letG be any equivalence graph. The first time a membership
query is made on a particularG, the teacher (adversary) flips a coin that with probability
1
2 −

1

r(|G∗|) landsheads . If the coin lands heads, the adversary is permitted to answer

the query incorrectly if he chooses; however, if the coin landstails the adversary must
correctly answer the query. Thereafter, the answer to a membership query onG will
be the same answer as was first given, preventing the learning algorithm from obtaining
information by asking the same question more than once. Our defense against such noise
resides in the following lemma:

Lemma 3 LetG∗ be the target (equivalence graph). Then there is an algorithmdetermine-
label that on input of any equivalence graphG, any edgee ofG, and anyδ > 0, using a
membership oracle with persistent malicious misclassification noise rate1

2 −
1

r(|G∗|) , halts

in timeO( r(|G∗|)
2

2 ln 1
δ ), and with probability at least1− δ determines the correct label of

the graphG\e with respect toG∗.

Proof: The algorithmdetermine-labeluses the following simple idea: It is possible to
create many variants ofG\e that all have the same true classification asG\e. By taking
a majority vote of the classifications, we can with high probability determine the true
classification ofG\e.6

LetnG∗ be the number of vertices inG∗. Consider any strings = s1s2 . . . sk−1 overΣ of
lengthk ≥ nG∗ + 1. Now construct a simple path consisting ofk new vertices,v1, . . . , vk,
with directed edge labeledsi from vi to vi+1 for i < k, Leavev1, . . . , vk−1 unlabeled,
but makevk the root of the graph of an arbitrarily chosen (but not inconsistent)Classic

concept. Now redirect the terminus ofe in G to vertexv1.
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If e was deletable, then this new graph is a positive example. Ife was not deletable, then
either it must be used to capture some SAME-AS constraint expressed in the target or it
must be used in a path that reaches some vertex label constraint expressed in the target.7

In either case such a constraint must occur along a path of length at mostnG∗ within the
target, as that is the number of vertices inG∗. However, the firstnG∗ vertices of this new
path express no constraint of any kind, so that redirectinge must cause some constraint of
G∗ to be violated. Thus, ife is not deletable, this new graph is a negative example.

Let r abbreviater(|G∗|). Form a test setT by constructingm = r2

2 ln 1
δ such graphs,

each with a new path based on a distinct strings as above. (Even if|Σ| = 1, the size of the
largest such graph needed will be at mostO(nG∗ +m).) By the observations above, every
graph inT is a positive example ife is deletable (i.e., ifG\e is a positive example) and every
graph inT is a negative example ife is not deletable (i.e., ifG\e is a negative example).
The algorithmdetermine-labelasks a (noisy) membership query for every element of the
test setT . Each independently has probability at least1

2 + 1
r of being answered correctly.

By Hoeffding’s inequality (Hoeffding, 1963), the probability that fewer than half of the
queries for graphs inT are answered correctly is at moste−2m/r2 , which by choice ofm
is at mostδ. Thus, if the majority response is output, the probability thatdetermine-label
misclassifiesG\e is at mostδ.

We now have our most general result:

Theorem 7 AlgorithmLearnp, augmented with algorithmdetermine-label, can be used
to PAC-learnClassic sentences, using random examples, and using membership queries
with malicious persistent classification noise rate1/2− 1/r(|G∗|). The algorithm runs in
time polynomial in|G∗|, r(|G∗|)2, 1

δ , 1
ε , and the lengthn of counterexamples, and outputs

a Classic sentence that has error with respect toG∗ at mostε, with probability at least
1− δ.

Proof: RunLearnp with parametersε andδ/2, noting that membership queries are used
only in thePrune procedure of Figure 5, and that each such query concerns a graphG with
edgee to be removed. Instead of asking a single membership query onG\e to the noisy
membership oracle, run algorithmdetermine-labelwith inputsG, e, and δ

2s , wheres is the
total number of membership queries thatLearnp would make with noise-free membership
queries. The probability thatanyof the invocations of this procedure is incorrect totals at
mostδ/2. The probability that the hypothesis produced byLearnp has error exceeding
ε is at mostδ, which includes the event of probability at mostδ/2 that some response of
determine-label is inaccurate.

Note that if an algorithmdetermine-labelcould be constructed for arbitrary queries (and
not just those resulting from deleting an edge from someG), then we could employ a
variant ofLearnp in the PAC setting with all examples maliciously mislabeled: we could
simply ignore the labels of examples, and instead applydetermine-label to obtain the
correct classification. There are subtle technical reasons why this cannot be done in any
obvious way, although a variety of techniques similar to the one used bydetermine-label
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are available. We leave open the question of whether an algorithm exists for determining
the label of arbitrary examples.

9. Summary

We have demonstrated a positive polynomial time learnability result using membership and
equivalence queries for labeled equivalence graphs with vertex labels chosen from a finite
lattice, and we adapted this algorithm to obtain a polynomial time algorithm for the natural
first-order concept classClassic. We then showed that the learnability did not rest solely
on the power of the membership queries by giving a non-learnability result for membership
query only algorithms. An alternative model of learning from individuals was investigated,
and shown to be as hard as learning arbitrary Boolean circuits, hence intractable assuming
the existence of one-way functions.

We concluded by examining extensions to the positive result by considering two different
kinds of unreliability – a non-omniscient teacher and a malicious adversary. Learnability
in the former setting followed easily from a particular possible definition of the mean-
ing of a union ofClassic concepts. In the latter, robust learnability in the presence of
random unreliable responses to membership queries was presented in the PAC learning
model. Surprisingly, it was shown that even highly unreliable membership queries are not
dispensable.

Our work ended leaving the following questions open. Is there an algorithm to correctly
determine the labeling of arbitrary concepts using membership queries answered with a
high misclassification noise rate? Our results relied on the ability to determine the correct
labeling only of concepts whose equivalence graphs are missing at least one edge. Extending
the result to arbitrary equivalence graphs would allow a result thatClassic is learnable in
the PAC setting fromunlabeledexamples, provided that a (highly noisy) membership query
oracle is available. Is the union ofClassic concepts learnable under the more compelling
definition of the meaning of the union?

More generally, what other types of knowledge representations are efficiently learnable,
and what types of queries are necessary? Are fairly general, and practical, knowledge rep-
resentations learnable using natural queries to an expert? Can we help open the “knowledge
acquisition” bottleneck in expert system design?

Acknowledgments

We thank William Cohen and Haym Hirsh for invaluable discussions and clarifications
regardingClassic. Any correct statement aboutClassic found in this paper is surely the
consequence of their patience. Any incorrect statements are of our own design. William
also pointed out the application of the consistently ignorant teacher model to the problem of
Classic learning. The referees made a number of helpful comments which improved the
readability of the paper, and Tom Hancock, Tom Dietterich, and Karen Cullen at Kluwer
demonstrated patience that went far beyond the call of duty.



          

CLASSIC LEARNING 191

Notes

1. Keep in mind that these two different “types” of individuals are indistinguishable within a description logic
statement; it is the venue of the externally supplied meanings of the roles and primitives to preserve any
intuitive distinctions we may have concerning these different “types” of individuals.

2. Along withe remove any unreachable component.

3. They show how to exactly learn, with equivalence queries only, the cross-product oft intervals over[1..m] in
time polynomial int andlogm.

4. To adhere to the semantics ofClassic, consider a collection of roles all of which are attributes.

5. The membership problem for a concept classC is the following: Given (the description of) ac ∈ C, and an
examplex, determine whether or notx is a positive or negative example ofc.

6. The construction assumes the language contains a role symbol. If there are no role symbols, the graphs of the
concepts expressible consist of but a single vertex. Such a concept class is learnable without any membership
queries, by finding the upper bound of the vertex labeling of all positive examples in a sufficiently large (but
polynomially sized) random sample. This single vertex algorithm can be interleaved with the construction
about to be presented.

7. This makes use of the assumption that the equivalence graph is reduced.
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