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Abstract. Description logicsalso callederminological logicsare commonly used in knowledge-based systems

to describe objects and their relationships. We investigate the learnability of a typical descriptio@ togisic,

and show tha€1LAssic sentences are learnable in polynomial time in the exact learning model using equivalence
queries and membership queries (which are in essence, “subsumption queries"—we show a prediction hardness
result for the more traditional membership queries that convey information about specific individuals).

We show that membership queries alone are insufficient for polynomial time learnifigaskic sentences.
Combined with earlier negative results (Cohen & Hirsh, 1994a) showing that, given standard complexity theoretic
assumptions, equivalence queries alone are insufficient (or random examples alone in the PAC setting are insuf-
ficient), this shows that both sources of information are necessary for efficient learning in that neither type alone
is sufficient. In addition, we show that a modification of the algorithm deals robustly with persistent malicious
two-sided classification noise in the membership queries with the probability of a misclassification bounded below
1/2. Other extensions are considered.

Keywords: Description logic, polynomial-time learnin@iLAssic, subsumption, queries, knowledge acquisition

1. Introduction

We address the problem of efficient knowledge acquisition from the vantage point of com-
putational learning theory. Traditionally, computational learning theory has focused on
propositional domains. We investigate learning in the first-order domadesdription
logicsor terminological logics Specifically we consider the learnability of the description
logic known asCLassic (Borgida et al., 1989). To the extent th@LAssIC is a typical
description logic, our results generalize to a variety of other such logics.

Description logics are more expressive than the propositional calculus. A description
logic statement is essentially a first-order predicate calculus formula in which all but one
variable is quantified. Therefore, the meaning of a statement in a description logic, instead
of being either true or false for a given interpretation, is the subset of the universe satis-
fying the statement. For example, suppose that the universe is a set ofbdngs(x)
asserts that is brown, andsmaller (z,y) asserts thay is smaller thane. If it happens
to be the case thaex is the only shaggy dog anEido is the only brown dog, then
(Vy) brown (z) A smaller (x,y) is a well-formed description logic statement denoting
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the set{Fido } providedFido is the largest dog in the universe; otherwise the empty set is
denoted. Likewisdrown (x) A shaggy (z) denotes the empty set. Neither statement is a
closed formula in the predicate calculus and neither statement has an associated truth value.
Thus, description logics have a different flavor than the predicate calculus. Description
logics comprise natural classes of formulas; not only are they the subject of theoretical
investigation within the field of knowledge representation, but they also find use in practical
knowledge-based systems (Beck et al., 1989; Borgida, 1992; Borgida & Patel-Schneider,
1992; Brachman et al., 1983; Cohen & Hirsh, 1994b; Devanbu et al., 1991; Mays et al.,
1987; Patel-Schneider, 1989).

1.1. CLASSIC

CLASSIC permits constructing certain quantified descriptions that distinguish a particular
subset of a domaid of individuals CrLAssIC descriptions contaiprimitive symbols
which get mapped to arbitrary subsetsioflisjoint primitive symbolsvhich get mapped

to mutually disjoint subsets af, roles which get mapped to binary relations énand
attributeswhich are roles that happen to be functions. Furtbenssic sentences contain
constructors which manipulate these primitives, disjoint primitives, roles, and attributes, in
order to permit the denotation of complicated subsets. oThe following synopsis and
semantics ofCLAssIC is excerpted from a variety of sources (Borgida & Patel-Schneider,
1992; Cohen et al., 1992; Cohen & Hirsh, 1994a).

(SAME-AS (r1,1...71,%,) (r21...72,4,)) denotes the set of individuals
{2 o (o (r2(r,1(2)))) = rops (- (r2,2(r2,1(2)))) }

for which composing the first chain of attributes is the same as composing the second
chain of attributes.

(ALL r D) denotes the s€tr : Vy [r(x,y) — D(y)]} of individuals for whichall of the
r-related individuals satisf¢L.AssIC descriptionD.

(AND D ...D,) denotes the setr : Di(x) A --- A D,(x)} of individuals that satisfy
eachCrassic descriptionDy, ..., D,,.

(AT-LEAST n r) denotes the sdtr : |{y : r(x,y)}| > n} of individuals having at least
n r-related individuals.

(AT-MOST n r) denotesthe sdt: : |{y : r(x,y)}| < n} ofindividuals having at most
r-related individuals.

(PRIM p;) denotes the subset of individuals denoted by the primitive symk{provided
by the interpretation). (In our illustrations we omit this formalism and use descriptions
such asrown to denote the primitive set of things which are brown.)

(FILLS 7 p;...p,) denotes the setr : Jy; € p; such that(x,y1) A -+ A r(z,yn)},
where thep; are disjoint primitive symbols.

(ONE-OF p; ...p,) denotes the set ;p;, where thep; are disjoint primitive symbols.
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Descriptions are built from the individuals, primitives, and other descriptions. For exam-
ple if our set of individuals is the set of all dogs and bréeaisd we have at our disposal
the primitive concepbrown for the set of brown dogs, the rosealler for comparing
dog sizes, the attributereed for denoting breeds, the attribukgher for associating a
dog with its father, the attribut@other for associating a dog with its mother, and the role
classmate denoting the obedience school classmates, then if we wished to denote the set

{z: Vy classmate (x,y) — [brown (y)
A |{z : smaller (y,2)}| > 20
A breed (mother (y))
= breed (father (father (y))) ] }

of dogsall of whose obedience school classmates were brown, larger than at least twenty
other dogs, and had mother and paternal grandfather of the same breed, we would write:

(ALL classmate (AND brown
(AT-LEAST 20smaller )
(SAME-AS (mother breed ) (father father breed N)

1.2. Curassic Semantics and the Learning Problem

The meaning of a description logic statement depends on a particular interpretation. It
is a set selector: Given a choice of a universal set of individliaés assignment of the
primitive symbols to subsets éf an assignment of the roles to binary relationd pand an
assignment of attributes to functions frdnto 7, the statement denotes the set of elements

2 in I that cause the corresponding first order expression to evaluate to true, given the
semantics above.

For example, a reasonable definitiorT@ed-people might be the set of people who have
at least one child. l€LAssic we would write the sentenc®, = (AT-LEAST 1 Child ),
whereChild is a role (binary relation). Now consider the interpretation described by the
relational database given in Figure 1.

The universd of all individuals is understood to be the set of all individuals appearing
({personl, .., person) in any of the relations. The primitive subsets &tende and
Red-head , there is a single function symbol (attributépther , indicating, for example,
that Mother (personl) = person2, and there is a single role that is not an attribute, the
relationChild , indicating, for example, that the children of person3 are exactly person2
and personb.

The denotation of the senten§g above, given the interpretation of Figure 1, is exactly
the set of individualgperson2, person3, persdn5

Two CLASSIC sentences are said to be equivalent if they have the same denotation regard-
less of the interpretation (that is, if they pick out the same subset of the domain regardless
of what “world” we are in).

Now consider theCLAssIC sentenceS; = (ALL Mother Red-head ), which describes
the set of individuals: such that all mothers of (there is only one, sincBlother is a
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Eleornscj)enl Red-head
person2 person3
personé person4d
Mother Child

personl| person2
person2| person3
person3| person4
person4| person6
person5| person3

person2| personl
person3| person2
person3| person5
person5| person6

Figure 1. Relational database describing individuals. The database contains unary redatiates and Red-
head, and binary relationslother andChild .

function) happen to be a red-head. In short, this describes people with red-headed mothers.
For the interpretation given by Figure4; denotes exactly the set of individugliserson2,
person3, person5 Thus,S; and.S, have identical denotations for the particular interpre-
tation given in the figure, but in gener8] and.S; are not logically equivalent, because it

is easy to construct an interpretation for which the set of people with red-headed mothers
is not the same as the set of people having at least one child.

The fact that inequivalen@LAssiC sentences can have identical denotations when re-
stricted to particular interpretations suggests at least two possibilities for modeling the
learning of CLAssIC sentenceslearning from IndividualsandLearning General De-
scriptions

Learning from Individuals: If we adopt the view that there is only one “world”, given by a
particular interpretation, then it should not matter to us whether two inequiv@lendsic
sentences have the same denotation with respect to the (one and only) world. We should
be equally happy with the senten§g = (ALL Mother Red-head ) to describe the set of

tired people, as with the intuitively more meaningful one giverthy This view suggests

that any description that picks out the right set of individuals should suffice. Indeed, all
such descriptions are semantically indistinguishable unless we admit either the possibility
of other worlds/interpretations, or unless we assign them some additional meaning outside
of our formal system. From this vantage point, the particular subset of individuals embodies
exactly the concept to be learned.

In the various accepted models of inductive concept learning from examples (which
we will more properly introduce below), an unknowarget concepts to be inferred by a
learning agent. A conceptis simply a subset of some domain, which cleaves the domain into
positive example@hose in the concept), amgative examplgshose not in the concept).
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Successful learning is typically defined to be that of identifying the target concept (or one
“close” to it), in a computationally efficient manner, given information about which domain
elements are positive examples and which are negative examples.

In light of the above discussion, a natural way to define the learning problefLiggsic
descriptions would be as follows. A targét.Assic description is chosen. There is also a
fixed, known interpretation. Positive examples are individuals in the domain of the inter-
pretation that are in the denotation of the target concept. Negative examples are individuals
that are not in the denotation. Successful inference requires not that a logically equivalent
(or “approximately logically equivalent'CLAssic sentence be found, but rather that the
learning agent find an@LAssIC sentence that has the same denotation (or approximately
the same denotation the given interpretatian

One question that arises is exactly how the interpretation is given to the learning algorithm
as input. If the domain over which the interpretation is defined (i.e., the set of all possible
examples) is small (poly-sized), then the target concept can be inferred trivially by simply
saving all positive examples — an uninteresting learning problem results. Onthe other hand,
if the domain is large, then if the entire interpretation is given to the learning algorithm,
and the algorithm is allowed time that depends polynomially on the size of the database
describing the interpretation, then this would allow perhaps exponential time for the learning
task.

Alternatively, suppose that the interpretation, represented by an exponentially sized (num-
ber of tuples) database over some polynomially sized number of primitive symbols, relation
symbols, and function symbols,nstgiven explicitly. Instead, with each (positive or nega-
tive) example individual, the learning algorithm is provided complete information about the
individual (i.e., all relations which the individual participates in, the value of all functions,
etc.) Because of the possibility of “function-chaining”, such complete information about
an individual might well necessitate providing the entire database. Indeed, since the target
concept will specify a set of individuals not only by the properties they possess, but also
by the relationships that they have with other individuals, if the learning algorithm did not
have at least potential access to the entire interpretation, then learning might be impossible.

It appears that the most reasonable alternative is to assume that a very large database
representing the world is available, but not explicitly input to the learner. The learner is
instead allowed to make database queries to determine relationships about various indi-
viduals. Positive (respectively, negative) examples are then just keys of individuals that
are denoted (respectively, not denoted), by the target concept. It is the task of the learn-
ing agent to use the database effectively in order to extract the common properties of the
positive-example-individuals that are not shared by the negative-example-individuals, and
to express this information in the form of@.Assic sentence.

We will consider this approach in Section 6, in which we show that even fairly constrained
CLaAssIC sentences cannot be learned from individuals in this manner, given well-accepted
cryptographic assumptions.

Learning General Descriptions: One of the disadvantages of the model of learning from
individuals discussed above is the implicit assumption that all information about each
individual is available from the outset. It would appear that in the real world, we denote
individual objects by describing thesufficiently wellto distinguish them from others.
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However, the threshold of what constitutes a sufficient discriminating description may well
change in different contexts, and may evolve to include more information as either our
need for more accurate discrimination changes, or as the changing environment renders
insufficient a previously adequate discriminator. As a simple example, a dog breeder may
find that “the black Labrador retriever” suffices to distinguish Fido from the rest of the
animals at the kennel. However, if a new black Labrador is born, the description of Fido
might change to “the adult black Labrador retriever”. Similarly, if another adult black
Labrador is acquired, then the description might be refined further.

Viewed this way, an individual is denoted bydascription itself as opposed to some
unique key tied to a particular database. A description of an individual then really denotes
a set of possible individuals, where we assume that the description is sufficiently specific
so as to be unambiguous given the current environment and task at hand.

What language should be used to describe an individual? We employ the commonly used
“single representation trick” — wherein the description of an individual is its€lf.ass1c
sentence. This approach is supported by the description logic community (Borgida, 1992;
Bobrow & Winograd, 1977; Dietterich et al., 1982), in which it is often convenient and
desirable to represent concepts and examples using the same language. In fact, Cohen and
Hirsh (1994a) note that in many implemented description logics, “it is possible to attach
an arbitrary description to an instance [example], hence the distinction between instances
[examples] and concepts is blurred.”

If individuals areCrAssic descriptions themselves, then for each interpretation they
denote a particular subset of the domain over which the interpretation is defined. Note
that a description, even though intended to be a description of an individual, will not
necessarily denote a unique domain elementfor every possible interpretation. Consequently,
the distinction between such descriptions, and arbit€aryssic descriptions is lost.

If we are given a targe€LAssIc description, which othe€LaAssic descriptions then
are positive examples, and which are negative examples? Again, following work in the
description logic community (Cohen & Hirsh, 1994a; Borgida, 1992; Bobrow & Winograd,
1977; Dietterich et al., 1982), we define a positive example to b&amgsic description
that denotes, for every possible interpretation, a subset of those individuals denoted by
the target description. Thus, each positive example has denotation that is a subset of
the denotation of the target concept, regardless of the interpretation. If sedtance
positive example of sentencg,, then we say that’, subsumes§’, because it has a larger
denotation thar. This and similar viewpoints are also supported by previous work in
inductive logic programming (BEroski et al., 1992; Frazier & Page, 1993; Muggleton,
1991; Page & Frisch, 1992) and learning from entailment where positive examples of an
unknown formula are clauses or other formulas that are entailed by the unknown formula
(Angluin, 1988a; Angluin, 1988c; Frazier & Pitt, 1993).

Besides allowing for flexibility in representation of objects, this approach also has an-
other advantage over the approach of learning from individuals. We have noted that the
distinction between inequivalefitLAssic sentences can be lost when restricted to a single
interpretation. A perhaps more interesting view is that there is some general knowledge that
we would like to acquire, not about one particular domain or interpretation, but about every
possible one, and that this knowledge is realized by an unkiitnassic description. The
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coincidental knowledge that people with at least one child all happen to have red-haired
mothers in the world described by Figure 1 is not likely to be transportable to other envi-
ronments. If, from the practical perspective, we view interpretations as particular databases
representing real-world information, then it seems appropriate to demand that the general
descriptions we learn should be applicable to all such interpretations. The approach of
learning general descriptions demands th@tassic description be found that classifies
examples as positive or negative in the same way that the t@igetsic sentence does.
Because examples ata.Assic descriptions, and positive examples must be subsumed by
the target description, it follows that the learned description must be equivalent (have the
same denotation for all possible interpretations) to the target description. Our main focus
is this latter viewpoint of learning general descriptions. Below we summarize our results,
and describe the learning protocols used.

1.3. Learning Protocols

We will employ two standard learning protocols: that of exactly learning from equivalence
and membership queries (Angluin, 1988b), and that of PAC learning (Valiant, 1984; Blumer
et al., 1989) with membership queries.

In both protocols, the learning algorithm may posmambership querywhich is an
examplex. In response, the learner is told whether or mas a positive or negative
example of the concept to be learned. Keeping in mind that in our setting, examples are
themselvesCLAssIC descriptions, a membership query i€aassic sentence”, and the
response is “yes” exactly when the target senteficsubsumes”. Our algorithm will
take (perhaps unfair) advantage of the fact that such quériesy be arbitrary concepts,
so perhaps it is more appropriate to call these subsumption queries, or even subset queries.
As mentioned earlier, such distinctions are lost given the use of the single representation
trick.

Because the subsumption relation forassic sentences is computable in polynomial
time (Cohen et al., 1992; Cohen & Hirsh, 1994a), membership queries are efficiently
computable by a teacher. Consequently, if membership queries model a type of active
learning by asking questions of a teacher or domain expert, then such queries here should
not prove to be computationally difficult for a reasonable teacher.

Exact learning with equivalence and membership queriesn addition to membership
queries, in the exact learning model the algorithm may also conjectur€anysic de-
scriptionH, and is told in response whether or tfdtis equivalent to the target description

C.. If H is not equivalent ta”,, then the algorithm receives a counterexample, which

is a positive example of one dff andC,, but not both. (l.e., a descriptiofi’ that is
subsumed by one but not the other.) We note that equivalence queries can also be answered
in polynomial time by a teachei, is equivalent toH if and only if each subsumes the

other. If this is not the case, then the (at least) one that is not subsumed by the other is a
counterexample, as it is trivially subsumed by itself, hence is a positive example of itself,
but not of the other.

Because the size of counterexamples may vary, and are not under the direct control of
the learning algorithm, there are technical subtleties in defining the appropriate model for
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exact learning in polynomial time (Angluin, 1987). We follow the standard convention and
require that for efficient learning, at any point during the run of our algorithm, the time used
up to that point must be polynomial in the longest counterexamplessefam Henceforth,
we will simply say “in time polynomial in the longest counterexample” to mean this stronger
statement.
Alearning algorithmis said to leafiLAssIc from equivalence and membership queries if
for any unknown target descriptidr,, the algorithm, after time polynomial in the length of
the descriptiorC,, and in the length of the longest counterexample, using only equivalence
and membership queries, outputsmassic sentencéf such thatd andC, are equivalent.
Standard transformations may be employed to obtain an algorithm that learns in the “PAC”
learning model (Valiant, 1984) augmented with membership queries (described below), or
in the on-line mistake bounded learning model (Angluin, 1988b; Littlestone, 1988) with
membership queries.

PAC learning from random examples and membership queriesThe model of PAC
(“probably approximately correct”) learning assumes that there is an arbitrary, fixed, un-
known probability distribution defined over the set of positive and negative examples of
size at most:. A learning algorithm draws random examples according to the distribu-
tion, with each example labeled as positive or negative according to an unknown target
conceptC,. PAC learning requires that a learning algorithm output in polynomial time a
conceptH that, with probability at least — 8, has error at mostin classifying random
examples as the targét, does, where the error is measured with respect to the unknown
distribution (Valiant, 1984).

We consider the PAC learning model where the algorithm may ask membership queries in
addition to receiving randomly generated examples. More formally, a learning algotithm
is said to PAC-lear©LAssIC in polynomial time from random examples and membership
queries if the following holds:

1. Areceives as input parameterss, ¢, andé.
2. Aoutputs aCLassIc sentenced within time polynomial inn, s, 1, 1.

3. A may make membership queries, or obtain upon request an example generated ac-
cording to a fixed distributio® on exampleCrAssIC sentences of length at mast
and labeled according to some unknown tafgetssic sentence, of representation
length at moss.

4. For every possible, distribution D, target concep€., upper bound: on |C.|, and
parameters, and¢, the output sentencH of A satisfies Profd(C.AH) > ¢] < 6,
where “A” denotes symmetric difference.

A slightly relaxed model of PAC learning is that of polynomRAC-prediction where
no syntactic requirements are placed on the hypothesis output by the learning algorithm
(e.g., that it be &LAssIC description), other than that it be a polynomial-time executable
program that classifies examples well (Haussler et al., 1994; see also Pitt & Warmuth,
1990). In particular, we say th&trassic is PAC-predictable if conditions 1 through 4
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hold above, but with condition 2 modified to read butputs a polynomial time program

H within...” That this is called “prediction”, as opposed to “learning” rests on the fact that
the model is equivalent to one in which the algorithm need make no hypothesis whatsoever,
but instead simply reach a state from which it can classify randomly generated unlabeled
examples within some specified accuracy boand

1.4. Summary of Results

We obtain both positive and negative results. On the positive side, we sho@ithasic
sentences can be learned with equivalence and membership queries, that they can be learned
even in the presence of a high malicious misclassification noise rate in the membership query
responses, and that a simple type of “weak” uniorCofsssic sentences can be learned.

On the negative side, we show that predictiiigassic sentences from individuals is as

hard as predicting arbitrary polynomial-sized circuits, and that membership queries alone
do not suffice for learnin@’LAssIC.

The rest of this paper is organized as follows. After reviewing related work in Section 1.5,
we show in Sections 2-4 th&trassic is exactly learnable in time polynomial in the size
of the target description and the length of the longest counterexample, using membership
(subsumption) and equivalence queries.

In Section 5 we argue that any algorithm using membership (subsumption) queries alone
requires a number of queries that is exponential in the size of the target concept. Thus the
positive result does not come solely from the membership queries. Cohen and Hirsh (1994a)
showed tha€CrAssIC is not learnable in polynomial time (without membership queries) in
the PAC model (assuming RP NP), henceCLAssIC cannot be learned from equivalence
gueries alone giventhe same assumption. Thus, neither membership nor equivalence queries
are dispensable — they form a minimal set of learning querie€farssic.

Section 6 addresses the problem of learniiigrssic descriptions from individuals as
described above. We show thatGfLassic is PAC-predictable from individuals, then
arbitrary Boolean circuits are PAC-predictable. Similarly;ifassic can be PAC-predicted
from individuals, by an algorithm that may also make membership queries (from a fixed
database of possible examples), then Boolean circuits are PAC-predictable by an algorithm
that also uses membership queries. It follows that, assuming the existence of one-way
functions,CLassic cannot be learned from individuals, with or without (a certain type of)
membership query.

In Section 7, we show that for one of two possible definitions of the semantics of a
union of CLASSIC sentences, such unions can be learned exactly in polynomial time using
equivalence and membership queries.

Finally, in Section 8, we consider a modification of our algorithm which demonstrates that
Crassic remains learnable in polynomial time in the PAC learning model with membership
gueries, even when each membership query may be answered incorrectly by a malicious
adversary with probability} — % wherer is any polynomial function of the size of the target
concept. (The errors apersistentso that the algorithm may not benefit from repeatedly
asking the same question.) To our knowledge, this is the first algorithm for any concept
class capable of coping robustly with such errors.
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1.5. Comparison to Previous Results

Automating propositional concept discovery has been well studied (Angluin, 1992). In
comparison, efficient first-order learnability has been less well studied. Even so, some
results are known. Cohen (1993b) gives a PAC learning algorithm for function-free, two
clause, closed, linearly recursivig-determinant logic programs; he also shows (Cohen,
1993a) that when the condition of linear recursiveness is relaxed, the learning problem
becomes cryptographically hard. Page and Frisch (1992) show that constrained atoms (a
typed logic) are efficiently learnable. Frazier and Page (1993) provide a learning algorithm
for a syntactically restricted subclass of first-order Horn formulasrbski et al. (1992)
provide a learning algorithm for a different restriction of first-order Horn formulas. A small
number of other results, especially those related to Inductive Logic Programming, can be
found in the survey by Cohen and Page (1994).

Haussler (1989) investigated existentially quantified conjunctive concepts and described
a graph representation for those concepts. He showed that learning some very simple scene
descriptions is difficult. Specifically, he showed that even restricted to unary atoms, such
concepts are not learnable from random examples uREss NP, but did give a learning
algorithm for settings where the algorithm may use a richer vocabulary than that from which
the target was chosen. Indeed, positive first-order learning results appear to be quite rare for
“natural” classes of first-order formulas. It would seem that the difficulty of the learning task
he faced revolved around the ambiguity admitted by the graphical representation required
to capture existential quantification in the concept class he investigated; our concept class
does not permit existential quantification. It will be seen that the graphs we use suffer no
such ambiguity, thus we are able to avoid the difficulty he faced.

The work most closely related is that of Cohen and Hirsh (1994a) who employ a graphical
representation developed by Borgida and Patel-Schneider (1992) fassic concepts. To
explain their results, and present ours, we briefly explain the notiolabkded equivalence
graph(called aconcept graplin related work of Borgida and Patel-Schneider (1992), Cohen
et al. (1992), and Cohen and Hirsh (1994a).

best friend

at-least 1 brother {shaggy, brown}

at-nost 2 sister at-least 20 child

attorney

Figure 2. A labeled equivalence graph.

Consider the graph in Figure 2. This is a graphical depiction o€thessic description
of the set of individuals who have at least one brother and at most two sisters, whose best
friend has brown hair, who are their best friend’s attorney, and whose best friend only has
brown, shaggy dogs that have at least twenty puppies. The cycle in the graph also asserts
infinitely many other SAME-AS conditions —for example, conditions about the best friend’s
attorney’s best friend.
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Formally defined in Section 2, a labeled equivalence graph is a rooted, directed, vertex-
and edge-labeled graph. Further, no vertex has two identically labeled outgoing edges.
The edge labels represent binary relations over the universe of individuals, and an edge
demands that all individuals in the image of the relation satisfy the constraints asserted
by the vertex to which the edge leads. Those labeled equivalence graphs that correspond
to CLAssIC descriptions also satisfy the following additional property: Any pair of edge-
disjoint directed paths between a pair of vertices involve only binary relations which are
in fact functions — this pair asserts that the individual selected along one path must be
the same as the individual selected along the other path. This restriction is apparently a
necessary one in order to allow for tractable subsumption. We associate a subset of the set
of individuals! with each vertex in the graph — the subset of individuals satisfying every
constraint (whether vertex label, edge label, or assertion of equivalence at some reachable
vertex) asserted by the graph. The set of individuals denoted by the graph is exactly the
set of individuals associated with the root. Note that the presence of directed cycles in
the graph, and in particular, those involving the root, implies that the root concept is being
defined in terms of other concepts, , which are in turn being defined in terms of the root.
Thus, cycles allow co-referential definitions.

Polynomial-time algorithms exist for transforming any equivalence graph satisfying the
above properties into @LAssIC sentence, and vice-versa (Cohen et al., 1992; Borgida
& Patel-Schneider, 1992; Cohen & Hirsh, 1994a). Thus, the question of learnability of
Crassic sentences reduces to that of learning a subclass of equivalence graphs. What
would a positive example of an equivalence graph look like? It is another graph which
satisfies all of the constraints (and perhaps more) represented by the first. The subsumption
algorithm for Crassic essentially verifies that the vertex label reached by a path in the
first graph is less restrictive than the label of the corresponding vertex (which must exist)
in the second graph, and that if in the first graph the two paths labeled by stringisd
wy lead to the same vertex, then this occurs in the second graph as well. For example, if
we add new edges and/or vertices to the graph in Figure 2, we obtain a positive example of
the original graph, because it satisfies all of the original constraints, and more. Similarly,
if we delete some edge, it becomes a negative example of the original graph. It turns out
that the hard part of the learning problem is to determine the structure of the graph and the
edge labels, not to determine the vertex labels. Thus, most of the constructors from the
Crassic language are not problematic; the main challenge is presented by the SAME-AS
conditions (each represented by a distinct pair of paths between two vertices), and the role
and attributes (which are edge labels). Initially we assume that all the vertex labels are
irrelevant; in Section 3 we show how the algorithm is modified when this is not the case.

A natural first attempt to learn such graphs would be to simply intersect the graphs which
represent positive examples, thereby extracting the set of common vertices and edges. This
approach does not work, as positive examples need not contain all of the edges of the target
graph. For example, consider the “universal” positive example graph (Figure 3) consisting
of a single vertex, and for each possible edge label, a self-looping edge with that label.
For every possible string, there is a path in this graph labeled with and further, for
every pair of stringsv; andw,, the vertex reached by both is the same (unique) vertex.
Hencegvery possibleonstraint is satisfied, and this example is a positive example of every
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Figure 3. The universally positive example for equivalence graphsindicates that every possible edge label
o € ¥ appears on a directed edge from the root vertex back to itself.

possible target graph. But the structure of the target is hidden; the target grapiais
subgraph of this positive example graph. Thus, simply intersecting the graphs will not be
enough. What does succeed is a variant of the “cross-product of DFAS” construction for
regular language intersection. This cross-product will produce a graph corresponding to a
Crassic description which is maximally specific, and which covers both of the positive
examples whose cross-product was taken. By repeatedly taking the cross-product of positive
examples, a (one-sided) learning algorithm is obtained. The inadequacy of this approach
is easily demonstrated — the cross-product of two equivalence graphs can be as large as the
product of their sizes, so the repeated cross-product necessary to implement this approach
may yield exponentially sized hypotheses.

Cohen and Hirsh (1994a) circumvent this problem by restricting the number of distinct
paths through the graphical representation @fiassic concept. Given a constat
they consider graphS having at mostG|k distinct paths (hence their graphs are acyclic).
Denote this clas-Crassic. They show that the intersection approach above yields an
O(m**1) mistake-bounded one-sided learning algorithm Fe€rassic, assuming all
counterexamples have size at mest Negatively, they show that in the PAC learning
model, assuming that R NP, CLassic is not learnable from random examples alone,
even if either of the following constraints hold: (i) the primitive class alphabet is singleton,
the role alphabet is doubleton, and the equivalence graph of every example is acyclic, or
(i) the primitive class alphabet is singleton, and the equivalence graph of every example
contains only two vertices.

2. Learning Unlabeled Equivalence Graphs

As discussed above, the learning problem@amssic sentences is closely related to that

of learning labeled equivalence graphs. We first consider the learning of equivalence graphs
without vertex labels, and then indicate how the algorithm is modified to the more general
case in Section 3. Later, in Section 4, we modify the algorithm again in order to learn
CLASSIC.

Definition 1 Let Y be a finite alphabet. A rooted, directed, edge-labeled gr&pk an
equivalence graph ovex if each vertexv in G is reachable from the root and for every
symbolo in ¥, v has at most one outgoing edge labetedThesize|G| of an equivalence
graph is the sum of the number of edges and verticés in
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For the moment, this definition does not recognize any semantic content of the edge labels.
However, by representing functions and relations, these edge labels will acquire semantic
content when we use equivalence graphs to l€arnssic. At that point this definition
is to be taken to include the condition that the label of each edge appearing in any pair of
edge-disjoint paths between a pair of vertices represents a function.

Simply stated, our algorithm employs the one-sided approach of graph cross-product
discussed above, but uses membership queries to bound the intermediate hypothesis size.
Figures 4 and 5 give the learning algorithm.

The cross-produdf x H of labeled equivalence graptsandH is described below, as is
the argument that the algorithm efficiently learns. At first glance, equivalence graphs seem
DFA-like, but their semantics are quite different, so well-known DFA learning algorithms
(Angluin, 1987; Rivest & Schapire, 1993) do not apply. While the algorithm is quite simple,
the proof is somewhat subtle. The technical details follow.

1 Let H be the universally positive example

2 H :=Prune(H)

3 While EQUIVALENT (H) provides counterexamplg
4 G := Prune(G)

5 H :=Prune(G x H)

6 ReturnH

Figure 4. Equivalence graphs learning algorithm.

Prune(G)
G is a positive example.
1 For each edgein G
2 If MEMBER (G\e)? is “yes”, then remove from G
3 ReturnG.

Figure 5. Algorithm using membership queries to remove excess graph elements from a positive example.

A string w of ¥* is G-supportedf w is the concatenation of symbols on the edges of
a rooted, directed path i¥. G defines an equivalence relatiexy; on strings ofy* as
follows: wy, =g wy iff both w; andw, areG-supported, and their paths terminate at the
same vertex. Thus, @-unsupported string is nd@¥-equivalent to any other string. The
set of all stringsG-equivalent to a string is denotedw],, and, by an abuse of notation,
the set of all strings that terminate at a vertesf G' is denotedv] .. It is easily verified
that for any equivalence grafh, =4 is a right-invariant equivalence relation on strings,
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and that ifw is G-supported then so is every prefix®of We now define a partial order on
equivalence graphs based on which strings are supported and which strings are equivalent:

Definition 2 G, subsumeg?, if every G;-supported string i<5>-supported and every
pair of G;-equivalent strings aré/s-equivalent.

It is known (Cohen & Hirsh, 1994a) that @LaAssic description subsumes a second
Crassic description iff the equivalence graph of the first subsumes that of the second.
Examples will be labeled according to their relationship to the target under this partial
ordering. Positive examples of an equivalence gr@pWill be exactly those graph&’
which are subsumed .

Definition 3 (Cohen & Hirsh, 1994a) Letz; = (V1,E;) and Gy = (Va, E) be two
equivalence graphs. Theross-producbf Giand Gs, denotedG; x Gs, is defined as
follows. Letpy, pa,...,ppv,| denote the vertices @, with p; denoting the root, and let
a1, G2, - - - q|v,| denote the vertices @f, with ¢; denoting the root. It7; or G5 is empty,
thenG, x G, is empty. Otherwise, the vertex setif x Gs (a subset of; x 15) and the
edge set of7; x G- are defined recursively:

e The graphGG; x G has a root denote@p, ¢1)-

e The graphG; x G, has a vertex denote@;,, ¢;,) and edg€(p;,, ¢;,) — (pin, 2j»)
iff G1 x G has the vertex denote@;, , ¢;,), G1 has edgey;, — p;,, andG> has
edgeq;, —— qj,-

Note thatG, x G4 is an equivalence graph whenever béth and G, are equivalence

graphs. The following properties @f; x G5 are either easily verified, or follow from
Cohen et al. (1992) and Cohen & Hirsh (1994a).

Property 1 LetG; andG> be two equivalence graphs. Then
1. Astringw is (G1 x Gs)-supported iffw is bothG,-supported and~,-supported.
2. For any stringss andt, s =¢, x @, tiff boths =g, tands =g, t.

3. G1 x G2 is the most specific generalization (least upper bound)pfand G, with
respect to the subsumption ordering. That ig;{f G5, andG are equivalence graphs,
then if G subsumes boty'; and G5, thenG subsumes’; x Gs.

Definition 4 An equivalence grapty is pruned with respect tan equivalence graptv.
if G subsumes?, but does not subsume any proper subgrap& of

The following is a useful property of pruned graphs.

Property 2 LetG and G, be two equivalence graphs such tliais pruned with respect
to G.. Then for every vertexin G and every outgoing edge labelfromv, [v], contains
some (F.-supported) string such thatso is G..-supported.
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Proof: Suppose to the contrary th@tcontains a vertex with outgoing edge labet such
that[v], contains no string such thato is G.-supported. But then deletings outgoing
edge labeled produces a proper subgraph@fthat supports everg .-supported string
and leaves equivalent every pair@f-equivalent strings. This contradicts the hypothesis
thatG is pruned. [ ]

LEemMmA 1 LetGy, Go, and G, be equivalence graphs such that b@th and G, are
pruned with respect t@.. If there exists a vertex of G1 x G2 such that[v], , ¢,
contains onlyG,-unsupported strings, then there are tiy-supported strings that are
G1-equivalent but not®, x G2)-equivalent.

Proof: First observe that if7.. supports no strings at all — not even the empty string — then
G., G1, andG4 must each be the empty graph. In this case the lemma holds trivially. The
rest of the proof assumes that at least the empty string is supportéd bpd therefore
also byG; andG, by Property 1 item 1. The proof assumes the existence of a vertex
of G1 x G5 such tha{v]G1  Go contains onhyG -unsupported strings and then constructs
two G .-supported strings ands’ that areG;-equivalent but@; x Gs)-inequivalent.

Letv be avertex of7; x G2 suchthatv],, , o, contains onlyG,.-unsupported strings,
and letw be any string irju]G1 « Gy NOW, since th&7; x G5 equivalence class containing
the empty string contains@,-supported string (the empty string itself) and sincethe
supported strings are contained[im]G1 X Go» there exists a prefixw, of w and an edge
labelo such that

o w,o is a prefix ofw,
. [u;p}G1 X Gy contains a5 ,-supported string, and
° [wpa—]G1 X Gy contains na&,.-supported string.

Let s be anyG.-supported string ir[lwp]G1 « G- Now observe that since is (G1 x G2)-
supported so are both,o andw,. Also observe that since,o is (G1 x G2)-supported
wpo Must beGy-supported by Property 1(1). But by Property 2 sidgeis pruned with
respect toG., [wp]G1 must contain a7 ,-supported string’ such thats’c is alsoG,-
supported. Thus we have tw@,-supported strings and s’ such thats =¢, « ¢, wp
(which by Property 1(2) implies that=¢, w,) ands’ =g, w,, and sos =¢, s’. Since
s'ois G.-supported, ifs =g, « ¢, ¢’ thens’ =g, « ¢, wy, SO that[wpa]G1 X Gy contains
s'o, aG,-supported string, contradicting the choicegfando. Thus,s #¢, x ¢, s’, and
s ands’ areG,-supported strings that ar&; -equivalent but not@'; x G»)-equivalent.
]

The proof that the learning algorithm is correct and efficient (Theorem 1) will follow
easily from Lemma 2, which asserts that progress is made with each new hypothesis of
the algorithm. The proof of the lemma follows the proof of Theorem 1. We first need the
following definition:

Definition 5 Let G be an equivalence graph théat, subsumes. Thenag* is the equiva-
lence relation= restricted toG.-supported strings.
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LEMMA 2 LetG = Prune(G; x G3), with G; and G2 both pruned with respect t@'..
Further suppose that’; does not subsum@s. Thenzg* is a proper refinement Gtgi.

THEOREM 1 LetG, be the target equivalence graph to be learned. The algoritkarn
finds an equivalence graph equivalent@q, and at no point during execution does the
running time exceed a polynomial [B|, |G.|, and the size of the largest counterexample
seen so far.

Proof: The initial hypothesis has one equivalence class. A simple inductive proof shows
that each tim&QUIVALENT (H) is called,H is a positive example, so by Lemma 2, each
counterexample causes the number of equivalence classes over supported strings to increase
by at least one. Thus, to show that the number of equivalence queries is bounded above by
|G.|, it suffices to show that the number of equivalence classes in the hypothesis is bounded
above by the number of equivalence classeS of To see this, note that if some vertex of

the hypothesis contained é,-supported string, that vertex would have been pruned. On

the other hand, if the number of vertices in the hypothesis contaf®jrgupported strings

is greater than the number of verticesGh, then the hypothesis is a negative example
because some pair 6f,-equivalent strings are inequivalent in the hypothesis.

To bound the running time of the algorithm, we show that at each ste, isf the
counterexample with the greatest number of vertices seen so far, the algorithm has made
at most|G.|? - |G| - |%| membership queries, and has run for at most a number of steps
that is polynomial inG.|, |G|, and|%|. This follows from the fact that at each step, if
G is the counterexample having the greatest number of vertices seen so far, the number
of membership queries used Byune on H x G is at mostO(|X| - ny - ng), where
ny andng are the number of vertices i and G, respectively. Since.y is bounded
above byng, and since H| < |G.| (for every edge ofH that could not be deleted by
Prune, there is some equivalence class, i.e., vertexGofto which that edge can be
associated — thus, the number of edgesHbis at most the number of edges @&,

S0 |H| < |G.|) the number of membership queries used by a single cdilrtme is
O(|2| - |G.| - |G|), whereG is the largest counterexample yet witnessed by the algorithm.
]

Proof of Lemma 2: It is sufficient to show thaizgz « G, I a proper refinement @Eg;

becausezg* is a proper refinement @eg;  Go (noting that= is obtained by pruning from
G x G2, and no edges or vertices are added — only deleted.)

Now, =g, x ¢, is arefinement o&q, (Property 1(2)). Further, since both are subsumed
by G., they both support ever§..-supported string. Hencesg; X Ga is a refinement of
Egi' If the number of equivalence classegg’{ « G, €xceeds the number of equivalence

classes ofzgi, then the lemma is proved. Otherwise, siraagz « G, Is arefinement of

Eg; , the number of equivalence classes must be the same, and the classes must be identical.

We show that this leads to a contradiction, thus proving the lemma.
By Property 1(2), for any strings andy,  =¢, x ¢, v iff © =¢, y andz =¢, y, and
since all three support af.-supported strings, we have that for aidy-supported strings
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zandy, z =g o, v iff 2 =g y andx =¢; y. This, together with our assumption that

i G. —G. identical. impli Preh —GC.
Ith rglatllons:_G1 « G, and=¢" are identical, implies that the relatlona%1 and=; are
identical.

By the hypothesis of this lemmdy; does not subsumé’s, hence there exist strings
t1 andt, such that; =¢, to, butt; #g, t2. (Otherwise,G; supports some that G
does not; but thehis G -equivalent to somé& ,-supporteds (by Property 2, sincés; is
pruned). But is notGs-equivalent tow, sincet is not supported ifi72. In this case, let
t1 =t andt2 = w)

Clearly, botht; andt, are supported i .

Case 1:botht; andt, are supported id75. Since botht; andts are supported in both
G, andG., they are both supported & x G2. Since they are not equivalent@y, they
are not equivalent iG’; x Gs. Letwv be the vertex that; andt, both go to inGy, and let
v; andwy (v1 # v2) be the vertices that andt, go to, respectively, if7; x Go. Since
G is pruned with respect t@'., there exists &, -supported stringv that goes ta in G,
(Property 2). If there do not exist.-supported strings); andws such thatw; andws
go towv; andwvs in Gy x Go, respectively, then Lemma 1 applies, and we concludeGhat
andG; x G, are not equivalent o&¥,.-supported strings, a contradiction. Singe@ndw,
are equivalent ir/; x G2, and since, andws are equivalent ir7; x G5, we must have
the same equivalences @ (noting thatG, supports all four strings). Buy and¢, are
equivalent inG'y, hencew; andw, are equivalent iz, transitively. Butw; andws are
not equivalent inG; x Gs, contradicting our assumption tha x G, andG; define the
same relation ok7.-supported strings.

Case 2:atleast one of; andt is not supported id’2. Without loss of generality, assume
t; is not supported byss. Letto be the shortest prefix @¢f such that is G-supported,
butto is notGy-supported. (Such a prefix exists, since the empty string is supported.)

Both G; andG4 supportt, so consider the two paths thaihduces in these two graphs;
we claim that th(Eg; equivalence class containirtgis the same as th&g; equiva-
lence class containing Suppose by way of contradiction that this is not the case. Now
t = o109 --- oy, SO look at the first such thatr, o, - - - 0; is contained in non-identical
equivalence classes efgz andzg;. SinceG; andG- are pruned, the equivalence class
containingoi o, - - - 0;_1 must contain somé&',.-supported (possibly empty) stringsuch
thatwo; is alsoG.-supported. Now since the equivalence classes 1 and =¢, are

identical, theng andzg; equivalence classes containiag; must be identical by right
invariance. Butwo; is both G- and Gs-equivalent too;os - - - 0;, contradicting the as-
sumption that; is the firsti whereo, o - - - o reaches non-identical equivalence classes
in =g and={;:. Hencet is in identical=F: and=¢;: equivalence classes, completing
the proof of the claim. Now, sincp}GQ contained no outgoing edge labeledfor no
G.-supported string in [t] 5, iswo G.-supported. But then the outgoing edge frip,
labeledos can be deleted frortr;, contradicting our assumption th@; was pruned with
respect ta~,, and completing the proof of Lemma 2. ]
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3. Learning Labeled Equivalence Graphs

We consider extending the class of equivalence graphs to allow for labeled vertices. The set
of vertex labels is required to possess enough structure to allow computing what will be the
unique most specific generalization (least upper bound) between any pair of vertex labels.
Specifically, the structure we require is a lattice of finite depth. The following definition
supplies the notion we adopt.

Definition 6 LetX: be an alphabet, and lef = (I, 1, <, L) be a lattice of finite depth
(i.e., no infinite chains), with partial order over elements of the sBt having (unique)
minimum element , and having the binary join operatar that returns the unique least
upper bound of its two operands. Then&#abeled equivalence gragver is a graph
G that is an equivalence graph ov&rin which each vertex of G has been labeled with
somey € T.

Observation:. If {£;}™, is a collection of lattices of finite depthg, ds, ..., dn, re-
spectively, then the tupleSy:, ..., vm) : v € I';} form a lattice of deptI”Ef;1 d;, with
minimum element Lq,..., L,,), and with partial ordering defined b1, ..., vm) =<
(Yis- -+, exactly wheny; =<, +; for eachi. We will use this observation later when we

return to our discussion dfLASSIC.

For any labeled equivalence graphand any stringo that is G-supported, lets(w)
denote the label of the vertex reacheduayThe earlier subsumption-induced partial order
for equivalence graphs is modified to account also for vertex labels:

Definition 7 Let G, and G5 be twoL-labeled equivalence graphs. Théh subsumes
G, if the conditions of Definition 2 hold, and if in additiofg, (w) = £, (w) for every
G'1-supported stringo.

It is shown in (Cohen & Hirsh, 1994a) that@r.assic description subsumes a second
Crassic description iff the labeled equivalence graph of the first subsumes that of the
second. Thus, positive examples of a labeled equivalence gtaphbe graphsG’ which
are subsumed b¢.

The cross-product operation on equivalence graphs given in Definition 3 is easily modified
toincorporate vertex labels from a partial order (Cohen & Hirsh, 1994a). The cross-product
of two labeled equivalence graphs is just as in Definition 3, but in addition, the label of any
vertex(p;, ¢;) that appears i1 x G is just the labelq, (p;) U la, (g;).

Again, the central challenge for learning these graphs is in discovering the structure of
the graph, not in determining the vertex labels. In the previous section we presented an
algorithm for learning the structure of a graph assuming the vertex labels were unimportant.
Itis a simple matter to fold the computation of the vertex labels into computingthe G-
from G, andGs — the vertex label for vertex of G; x G5 is the least upper bound of the
label of vertexv; of G and the label of vertex, of G, wherev; andv, were the vertices
that “combined” to produce.
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THEOREM 2 Let_L be the minimum element of a latti€ehaving maximum chain length
d and having polynomial time computable join operatprand letY be a set of edge labels.
Then the algorithm composed of figures 4 and 5 ledfabeled equivalence graphs over
¥ from membership and equivalence queries in time polynomi@Ejnd, the longest
counterexample received, and the size of the target concept.

Proof: The algorithm is modified only in that the sole vertex of the initial hypothesis
is labeled byl and the cross-product operator for labeled equivalence graphs is used,;
specifically,Prune does not change — only edge deletions are attempted.

Observe that a counterexamgleto H must be of one of the following (not necessarily
mutually exclusive) types

e Some stringw supported by botl#/ andG hasly (w) < {g(w),
e SomeH-supported string is na¥-supported, or
e Some pair ofH -equivalent strings aré-inequivalent.

If the counterexamplé& was of either of the latter two types, théhis a counterexample

to H based solely on their underlying (non-vertex-labeled) equivalence graphs. Therefore,
Lemma 2 applies to show thaﬁrzne(ng) is a proper refinement &fg*. This can happen

at most as many times as there are vertices.in

If the counterexample is only of the first type, then the underlying (non-vertex-labeled)
equivalence graphs df andG (and thereforePrune(H x G)) are isomorphic. As such,
some vertex label off was generalized. Thus, this first type of counterexample can happen
at mostdny < d- |H| < d - |G| times between occurrences of a counterexample of the
second or third type, wherey is the number of vertices iff.

A naive analysis assumes that in the worst case the label on every vertex must be updated
d times between changes to the equivalence classes of the hypothesis. This produces a
bound ofO(dnZ; ) on the number of counterexamples received, whereis the number
of vertices inG...

A more careful analysis recognizes that, until a collection of target equivalence classes
were split, generalizing the vertex label for one of the equivalence classes generalized
the label foreverytarget equivalence class in the collection; thus every target equivalence
class need only be isolated once and have its vertex label changed at tinoss overall.

This bounds the number of counterexamplesliyine, ). Thus the algorithm witnesses
O(d - |G«|) counterexamples to its equivalence queries.

As in the case of (non-vertex-labeled) equivalence graphs, the number of membership
queries used bPrune on H x G is at mostO(|X| - ny - ng), whereny andng are the
number of vertices i{ andG, respectively, so that the number of membership queries
used by a single call tBruneis O(|3| - |G.| - |G]), whereG is the largest counterexample
yet witnessed by the algorithm.

Finally, sincel can be applied in polynomial time, and sindé| < |G| for each
hypothesisH, the class of labeled equivalence graphs are polynomial time learnable using
membership and equivalence queries. ]
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4. Application to CLASSIC

The graphical representation 6f.assic (Borgida & Patel-Schneider, 1992; Cohen et al.,
1992; Cohen & Hirsh, 1994a) forms the structure of the graph from the AND, ALL, and
SAME-AS constraints and annotates the vertices of the graph with the AT-LEAST, AT-
MOST, FILLS, ONE-OF, and PRIM constraints. These latter constraints naturally corre-
spond to the vertex labels discussed in the previous section. Moreover, these different kinds
of annotating constraints also combine naturally into tuples that can serve as the actual ver-
tex label latticeC, because ordering tuplés, . .., sx) < (t1,...,tx) exactly when every

s; = t; is in accordance with the notion of subsumption@arassic (Cohen et al., 1992).

We would like to exploit this similarity to labeled equivalence graphs by employing a
prediction preserving reduction (Angluin & Kharitonov, 1995, Pitt & Warmuth, 1990) using
the labeled equivalence graph learning algorithm developed in the previous section. The
reduction would use known polynomial time transformations betweenssic descrip-
tions and their graphical representations to turn@hessic description examples into a
form suitable folLearn and to turn the graphical representations queried and hypothesized
by Learn into CLassic descriptions suitable for examination outsidd_efirn. Unfortu-
nately, the semantics imposed on the graphical representatiomnefsic dissuade us from
this black box approach; we will employ the known transformations only after modifying
Learn.

4.1. Dealing with mismatches betwe&rLAssic and equivalence graphs

As cautioned earlier, when we use equivalence graphs to (@anssic, the labels ap-
pearing in the graphs acquire semantic content requiring us to restrict to attributes those
labels appearing on edge-disjoint paths between any pair of vertices. In order to apply
the equivalence-graph learning algorithm to the problem of leai@ingssic descriptions,

we must ensure that every hypothesis entertained by the algorithm corresponds to a valid
Crassic description. In particular, the universal positive example, used initiallygayn,

does not satisfy the edge label constraint. In lieu of a universally positive example that
satisfies every constraint of the target, we rely on the semantics of the AT-LEAST and AT-
MOST constructors to build@rassic description that always denotes the empty set, which

is guaranteed to be a subset (and therefore a positive example) of any target description.
Concretely, let be any role. Then

(AND
(AT-LEAST 17)
(AT-MOST 07))

always denotes the empty set; such a concept is said tocbesistent (A number of
description logics, including more recent version§€’ofrssic, include special descriptions
NOTHING and EVERYTHING, to denote the empty set, and the set of all individuals,
respectively). Making an equivalence query on the graph of this concept will provide the
learner with a positive counterexampl&y, that satisfies all the constraints of the target.
The graphG serves the purpose of the initial universal positive exantplased as the
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initial hypothesis by earn. A simple inductive proof shows that all subsequent hypotheses
of Learn are in fact labeled equivalence graphs whose edge labels adhere to this restriction
on equivalent strings over the role alphabet.

Because the AND, ALL, and SAME-AS constraints of the targetassic sentence
determine only the structure of the target equivalence graph (and are independent of the
vertex labels), Theorem 1 applies directly to show tHatssic sentences containing only
AND, SAME-AS, and ALL statements can be efficiently learned with equivalence and
membership queries. In order to apply Theorem 2 to learn arbiCanssic sentences,
we need only argue that the vertex labels arising fron(thgssic statement$PRIM, AT-
LEAST, AT-MOST, FILLS, ONE-OR has semantics consistent with Definition 6. More
specifically, we’ll show that the set of vertex labels to be learned at any vertex is an element
of a finite-depth lattice whose join operation exactly captures the semantics of subsumption
for the label type. In fact, due to our earli®bservatiorregarding the melding of several
lattices into a single one, we may treat each of these vertex-label types separately. We will
show that in each case, the label sought is either an element of a finite-depth lattice, or
else we can apply standard techniques from learning theory to bound the infinite chains of
the lattice to only a finite-depth sublattice which contains the label to be learned (and the
learning algorithm can easily identify the sublattice to be searched). We proceed with the
details.

PRIM: The PRIM statements have the most straightforward structure: Considerthe labeled
equivalence graplir associated with a give@LASSIC sentenceS, and consider a given
vertexv. For any particular primitive symbgl, eitherv contains the constraint (PRI,

or it does not. Letno-constraint ) denote the absence of such a PRIM constraint for

p. Then (PRIMp) < (no-constraint ), and each vertex can be thought of as having a
label taken from this depth-two chain with minimum element (PRAM Intuitively, this

just says nothing more than the following:if € G andvs € G, then the vertexu, , va)

in the cross-product will have label (PRIM if and only if bothv, andvy do; otherwise it

will have “label” (no-constraint ).

It should be noted that althoudhLassic may allow for an infinite number of different
primitive symbols, the learning algorithm need only ever concern itself with those primitive
symbolsp for which the constraint (PRIM) actually appears in some vertex of the first
counterexamplé&s,. (Call this set of primitive symbol®,.) By the semantics of PRIM
and subsumption, any primitive not 7%, cannot appear in the targét.. Thus, the PRIM
constraint results iy, = |Py| independent depth-2 chains that will get combined as de-
scribed in theDbservation

AT-LEAST: For any non-negative integerisandm, and for any role-, (AT-LEAST n r)

< (AT-LEAST m r) if and only if n > m. Consequently, there is no minimum (least gen-
eral) such constraint. However, the first counterexarépl®btained is a positive example
that does not denote the empty set, and any AT-LEAST constraint appeatihdimitely
bounds the AT-LEAST lattice as follows. Ld{ = max{x : for some roler and vertex
vin Gy, vertexv has the constraint (AT-LEAST r)}. Then the minimum (least general)
element for any vertex and any role appearing in the taggetan be assumed to be no
more specific than (AT-LEAST; r). Thus, for each role the AT-LEAST constraints
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are elements of a lattice (in fact, a chain), with join operator given by (AT-LEAS} L
(AT-LEAST m r) = (AT-LEAST min{n, m} r). The minimum element is (AT-LEAST;
r), and the maximum (most general) element is (AT-LEA®T), which is equivalent to
the null constraintno-constraint ). The depth of the chain i& + 1.

AT-MOST: For any non-negative integersandm, and for any role-, (AT-MOST n r)

< (AT-MOST m r) if and only if n < m. Further, for any value of, (AT-MOST k r) <
(no-constraint ). Thus, the partial order induced by the semantics of AT-MOST yields a
structure corresponding to the ordinak- 1: an infinite chain with minimum element (AT-
MOST 0r), together with a single maximum element that corresponds to the absence of any
AT-MOST constraint. While we have no need to dgeto obtain a minimum element as in
the case of AT-LEAST, we have a slightly different problem: The most general AT-MOST
constraint is the absence of an AT-MOST constraint, which is not an AT-MOST constraint
at all. Consequently, a sequence of (positive) counterexamples of the form (AT-MIOST
r), fori = 1,2,3,..., forces an algorithm doing simple most-specific-generalizations to
hypothesize exactly each counterexample (AT-MQST after it is received. No positive
example ever provides reason to eliminate the AT-MOST constraint. Thus, if the@arget
had no AT-MOST constraint for a particular vertex and role, then this fact would never be
discovered.

To overcome this difficulty, we employ a technique in which the learning algorithm cor-
rectly “guesses” the value of some unknown parameter. (We discuss later how to handle this
efficiently in a deterministic setting.) In particular, &t be the value of the largest integer
appearing in any AT-MOST constraint in any vertex of the target gt@aptor any roler.
Armed with this knowledge, a finite chain is induced for each relewe may eliminate
all constraints of the form (AT-MOST® r) for n > d», but we keep the maximum element
(no-constraint ). Thus, the learning algorithm assumes for every r@ad every vertex
v, that either there is a constraint (AT-MO%Tr) atv for n between 0 ands, or else there
is no such AT-MOST constraint far. In other words, the constraint is a member of the
chain of depthi; + 2 of the form (AT-MOST 0r) < (AT-MOST 1r) < (AT-MOST 27r)
< ..+ X (AT-MOST dy r) = (no-constraint ), with join operator defined by (AT-MOST
nr)U (AT-MOST m r) = (AT-MOST max{n, m} r) if n,m < dg, or =(no-constraint )
otherwise. Note that a finite chain is also induced by any upper bdin€ ds, so thatif
the “guess” ofd, is too large, the search will still succeed.

FILLS: By definition of the semantics of FILLS, for any roteand disjoint primitives
P1,DP2y- - Pn @Ndqr, qo, ..., qm, (FILLS 7 p1,p2,...,pn) X (FILLS 7 ¢1,¢2, ..., qpn) if
andonlyif{q1,q2,...,qm} C {p1,p2,...,pn}. Moreover, itis easily argued that the most
specific generalization of (FILL8p1, ps, ..., p,) and (FILLSr s, sa, .. ., S;,,) iS (FILLS
rty,ta, ..., tg), Wwhere{ty,... tx} = {p1,..-,0n} N {s1,...,5m}. Consequently, we
may again use the initial counterexamglg to obtain an initial set of possible disjoint
primitives for each role that may appear in the target concept at any vertex. In particular,
for each roler, let F,. denote the set of all primitive symbols that appear in any FILLS
constraint involving- at any vertex of5y. Then every FILLS constraint involvingin the
targetG. is of the form (FILLSr ¢1, g2, - - -, ¢»), Where eacly; € F,.. Thus, after the first
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counterexamplé&, is obtained, we have a finite lattice for each rpleonstraint (FILLS
r...) that appears in the target. The deptdjst 1, whereds = |F,.|. The join operation
for the lattice is set intersection, and the minimum element is (FILLSmpty — list))
which corresponds ttho-constraint ).

ONE-OF: If py,po,...,p, @andqy, qo, - .., ¢, are disjoint primitives, then, by the se-
mantics of ONE-OF, (ONE-Oby, po, ...,pn) = (ONE-OF ¢1, g2, . .., g,) if @and only
if {p1,p2,...,pn} C {¢1,¢2,...,9m}. Moreover, the most specific generalization of

(ONE-OF py,pa,...,p,) and (ONE-OFsy, so, ..., s,,) is easily seen to be (ONE-OF
ti,ta, ..., tk), where{ty,...,tx} = {p1,-.., pn}U{s1, ..., $Sm}. Thus, alatticeis formed
with the join operation being that of set union, and we may choose as initial vertex labels
those ONE-OF constraints appearing in the first counterexa@plélowever, a problem
similar to that arising in the case of AT-MOST occurs in bounding the maximum depth
of the lattice. The nonconvergent infinite sequence of hypotheses (ONEYQFONE-

OF p1, p2), (ONE-OFp1, p2, p3), ..., Of Learn may be obtained from the corresponding
infinite sequence of counterexamples (ONE-@f, (ONE-OFps), (ONE-OFp;3), ....
Further, each of these is less general than the lack of any constraianstraint ).

We deal with the problem in the same way that AT-MOST was handled. In particular,
let d4 be the maximum cardinality of any set of disjoint primitives appearing in a single
ONE-OF constraint in any vertex of the target grdph for any roler. Given knowledge of
d4, we may assume that every ONE-OF constraint contains atdpalsjoint primitives.

Since proper generalization via the join operation (union, in this case) must increase the
cardinality of the disjoint primitive symbols appearing in a ONE-OF constraint, and any
proper generalization of the constraint (ONE-©p, . . ., pa,) Yields(no-constraint )y

it follows that the lattice corresponding to ONE-OF constraints has dipthl. Note that

a finite lattice is also induced by any upper bouyd> d.

4.2. Putting it all together

We are now ready to apply Theorem Zioassic. We actually obtain a pseudo-polynomial
time algorithm, which we strengthen below.

THEOREM 3 CLASsIC is learnable from membership and equivalence queries in time
polynomial ins, t, andm, wheres is the number of symbols needed to write the target
Crassic description is the number of symbols needed to write the longest counterexample
description, andn isthe largest integer appearing inany AT-LEAST or AT-MOST constraint
in the target description or the first counterexample.

Proof: Letd,ds,ds, andd, be as described in the preceding section, reproduced here
for convenience:
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do = |Pol|, whereP, = primitives appearing iidz,.
maximum AT-LEAST number appearing in any vertexf.

IS8
=
1

d2 = maximum AT-MOST number appearing in any vertexchf.
ds = |F|, F. = disjoint primitives appearing in FILLS constraintsd.
dy = maximum cardinality of any set of disjoint primitives appearing in

a single ONE-OF constraint i@d,.

Consider an algorithm that obtaifis,, and by inspection determinel, d;, and ds.
Assume that the algorithm is given the valuesigfandd,. Suppose thal’ is the total
number of vertices ifz,. andG, together, and thak is the total number of role symbols
appearing inG. or Go. We count the number of distinct vertex-label lattices with which
the learning algorithm must cope, together with the depths of those lattices. Note first that
each ofl/ vertices ofG or targetG,. may contributel, lattices of depth 2 corresponding
to PRIM constraints. Next, since there are at mMogtvertex-role pairs in botltr, andGy,
it is easily seen that there are at mdsk lattices of depthi; + 1 (respectively, of depths
ds +2,ds+1, ds+ 1) arising from the AT-LEAST (respectively, AT-MOST, FILLS, ONE-
OF) constraints. It follows from our earli@bservationthat the vertex labels combine
into a single lattice of vertex labels formed from tuples of PRIM, AT-LEAST, AT-MOST,
FILLS, and ONE-OF labels, with depth at m@gh V' + V R(dy + d2 + d3 + d4 + 5), and
with ordering on the tuples in accordance with thieassic subsumption relation, so that
Theorem 2 applies. The total time taken is a polynomial in the above expression, which
satisfies the statement of Theorem 3 becaus®&ounded below by, andds, ¢ is bounded
below bydy, s + t is ©(V R), andm is bounded below by; andds.

To complete the proof it remains to show that without loss of generality, the algorithm
described above does not need to be given valyesdd,. The trick is a standard one:
The algorithm “guesses” an upper boundor the maximum ofi, andd,. Initially, m is
setto 1. Under the assumption thaindeed is an upper bound dp anddy, the algorithm
should correctly learn the target concept within a known time-bound (the exact computation
of which is left as an exercise for the reader). If this time bound is exceeded, the algorithm
begins again, but doubling the valueraf After at mostO(log max{ds, d4}) restarts, the
assumed upper bound will be sufficient and will be at most twice the minimum sufficient
value. This “guessing” produces at most a factap@iog m) slowdown over having known
m from the outset. ]

Theorem 3 proves only a pseudo-polynomial time algorithm for lear@ingssic, since
the time and number of examples depends polynomially orvalhee of the largest inte-
germ appearing in an AT-LEAST or AT-MOST constraint, and not on the ledgihn
needed to write the number. There are three methods for strengthening the result: We
can incorporate int®rune a binary search procedure, using membership queries, to min-
imize the values in the AT-LEAST constraints, and maximize the values in the AT-MOST
constraints, while still retaining a positive example. It can be shown that such a proce-
dure results in a fully polynomial-time algorithm for learnigg.assic with equivalence
and membership queries. However, for reasons that will become apparent in Section 8,
we would like to avoid asking membership queries involving only changed vertex labels,
so we do not present this approach here. As a second alternative, application of clever
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techniques (Chen & Maass, 1994yould probably allow the same binary search on the
AT-LEAST and AT-MOST constraint values to be performed, but without relying on mem-
bership queries. We leave the details as an exercise for the truly motivated reader.

Instead, for simplicity, we relax the model and argue that a fully polynomial time PAC
algorithm (with membership queries) exists for learn{tigassic. Because the resulting
algorithm will not make any membership queries other than those already m&utaris;
we will be able to apply a general lemma in Section 8 which allows a very noise-tolerant
variation.

Recall that PAC learning requires that for any example lengtbr any arbitrary unknown
probability distribution on examples of length at masof the target concep®.., and for
anye, 6 > 0, the learning algorithm outputs a concépthat, with probability at least— 6,
has error at mostin classifying random examples &s does, where the error is measured
with respect to the unknown distribution. The time taken by the learning algorithm, and
the number of randomly generated labeled examples that it obtains, are required to be
bounded by a polynomial in, |G.|, %, and%. We consider the PAC learning model where
the algorithm may ask membership queries in addition to receiving randomly generated
examples.

Consider the standard transformation (Angluin, 1988H)ezrn into a PAC algorithm:
Each equivalence query is replaced by random sampling; each hypothesis is tested to
see if it is probably approximately correct. If so, the hypothesis is kept and the algorithm
terminates. Otherwise, a counterexample is obtained. The bound on the number of possible
equivalence query counterexamples for the origlredrn translates into a bound on the
number of random examples needed for its PAC version. This transformation, together with
Theorem 3, gives a fully polynomial time PAC algorithm (with membership queries) for
learningCLassIC descriptionswithout AT-LEAST and AT-MOST constraints. Call this
algorithmLearn,.

Now, to learnCrLassIc with AT-LEAST and AT-MOST constraints, first rurearn,, with
appropriate parameters, so as to obtain an hypotfgsiat with probability at least— 6 /2
has error at most/2 if we ignore any misclassification error due solely to AT-LEAST or
AT-MOST constraints. IfH containsk such constraintsk(is at most2 - |X| - |G.|), then
take a sample oﬁf’“ In % additional examples. For a given AT-LEAST constraint (AT-
MOST similar), letm, be the minimum number observed in a positive example for that
constraint. Now consider the error induced by using (AT-LEASJ r) instead of using
(AT-LEAST m, r), wherem, < my is the actual number appearing in the corresponding
AT-LEAST constraint of the target. The probability that this error excegds is (1 —
e/gk)%lnﬁ < §/2k. Summing over all such constraints, we find that the total error
attributable to insufficiently general AT-LEAST or AT-MOST constraints is bounded above
by ¢/2 with probability at least — §/2.

These observations, together with the correctness of Theorem 3, prove the following.

THEOREM 4 CuLassIC is learnable in the PAC model with membership queries in time

polynomial in|G.|, 1 4, andn, the upper bound on example size.
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5. The Insufficiency of Membership Queries

We show in this section that efficient learnability cannot be achieved solely through member-
ship queries. Coupled with the result of Cohen and Hirsh (1994a) showing that equivalence
gueries alone are insufficient assuming: P (or random examples are insufficient in the
PAC setting assuming R NP), this shows that membership and equivalence queries (or
random examples, in the PAC model) form a minimal set of queries with wHickssic

can be efficiently learned.

Figure 6. A target schema requiring exponentially many membership queries.

THEOREM 5 Any algorithm using membership queries alone to le@imssic requires

1. Q(2*) membership queries even when the target sentence has an acyclic equivalence
graph with only three vertices, and when all roles are attributes, and

2. Q(2™) membership queries even when the target sentence has only two roles which are
in fact attributes [X| = 2) and when the corresponding equivalence graph is acyclic
with O(n) vertices.

Proof: For part (1), consideCLAssIC descriptions whose equivalence graphs have the
simple form shown in Figure 6. There af¥2/*!) such concepts, each determined by a
partitioning of edge labetsof X into (disjoint but exhaustive) sefs andS,. Now, any
membership query supporting all strings with a single equivalence class is a positive example
—no information is obtained by asking such a query. Secangmembership query that

does not support some edge label from the root is a negative example because a target-
supported string is unsupported — membership queries of this form provide no information.
Third, any membership query that partitions the set of edge labels emanating from the
root into more than two sets is a negative example because some pair of target-equivalent
strings are inequivalent — membership queries such as these provide no information in
distinguishing among the possible targets.

Thus, only membership queries that partition the set of length 1 strings into two supported
equivalence classes can provide any information. Any query that does not partition the
edge labels into exactly the same sets as the target is a negative example. Thete are
such partitions. The adversary simply answers any such query “no” until all but one of
the partitionings have been exhausted. Notice that if the learner outputs some conjecture
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before exhausting all possible partitions, the teacher simply asserts that the conjecture is
incorrect by choosing as the target any unexplored partitioning.

For part (2), we simulate a sé&t’ of edge labels witi¥'| = n = 2* by using the
labels ofX as a binary code to label a depth— 1 binary tree so that all length — 1
strings are supported and every string of length 1 or less is in its own equivalence
class. Now construct two more equivalence classes such that every string of Aeisgth
in one of these equivalence classes. (See figure 7). These last two equivalence classes
simulate the non-root equivalence classes of the target in part (1), so that learning this target
requires2”~! — 1 membership queries, but the target has @SQ@l 2t = O(n) vertices.

||
RN
/C)\ /O\ /O\ /C)\

Figure 7. This schema requires exponentially many membership queries even thoisginown to be the set
{o1,02}.

Having shown that the set of queries we use to achieve our positive learnability result is
minimal, the next sections explore extensions to that result.

6. Learning from Individuals

We consider the learning model discussed in Section 1.2, where a relational database
is available that explicitly describes all possible examples. We assume each example in-
dividual has a name that is a key, and that the relations of the database are available for
inspection by the learning algorithm. Some names are designated as picking out positive
examples, and others as negative examples. We are interested in the situation where the
database is sufficiently large so as to preclude the strategy of learning by simply collecting
positive examples.

In the exact learning model, the goal of the learner is to fittt.assic sentence whose
denotation onK coincides with exactly the positive examples igf Any equivalence
qguery on a descriptiof/ that does not have this property is answered by the name of some
individual of K that is classified incorrectly b¥/. Similarly, in the PAC learning model,
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we assume that an arbitrary probability distributibron (names of) individuals oK is
chosen, and the learning algorithm must find, after sampling fibamd being told which
were positive examples, a descriptiBhwhose denotation oK has error at most with
probability at least — 6.

In an experimental setting, Cohen and Hirsh (1994b) consider a similar type of learning
from individuals, although their notion of “individual” may have some additional informa-
tion attached in the form of @LAssic assertion. They adapt a result on learnifigassic
sentences without the SAME-AS construct, to the context of learning from individuals. The
main idea used is to construct, from each individual exampl&, &ssic sentence that ab-
stracts the individual and is as restrictive as possible among alkSueksic descriptions.

This CrLaAssIcC description is then passed to the learning algorithm as an example. Because
the search for the “most restrictive abstraction” of an individual could be combinatorially
expensive, they restrict their search to th@aesssic sentences for which the maximum
nesting of ALL constraints is bounded by some constarithis places a bound on a type

of chaining—it embodies the assumption that the data about an individual that is relevant
for describing that individual can be obtained by looking at other individuals who are at
most some fixed distandeaway via relation and function applications.

Indeed, one of the problems in learning from individuals is that via function or relation
chaining, each individual can be relatectteryother in the database. The targatassic
sentence can specify that an example is a positive example only if some condition holds for
individuals that are related by a very long chain of relations from the given example. We
exploit just this possibility in proving the negative results in this section, showing that the
chaining depth restrictions imposed by Cohen and Hirsh are apparently necessary.

We show that just predicting the classification(@fassic sentences on random unseen
examples in the PAC setting is as hard as predicting polynomially-sized circuits, and hence
is intractable given standard cryptographic assumptions, such as the existence of one-
way functions or of cryptographically secure bit generators. (See the work of Angluin &
Kharitonov (1995), Kearns & Valiant (1994), Pitt & Warmuth (1990), and Valiant (1984),
for nonlearnability results arising from hard cryptographic problems. Moreover, because
Boolean circuits are “prediction-complete” for P (Pitt & Warmuth, 1990), if a polynomial-
time algorithm existed that could, after seeing a polynomial number of random example
individuals of somé&’L.Ass1IC sentence, labeled as positive or negative, achieve classification
accuracy% + ¢ (only slightly greater than a half), then this algorithm could be used (with the
appropriate polynomial-time reductions) to achieve accuracy arbitrarily close tcahyor
concept class for which the membership problésmdecidable in polynomial-time (Pitt &
Warmuth, 1990; Schapire, 1990). . Since mostreasonable conceptlearning problems have a
polynomial-time membership problem, in some sense then, lea@iiingsic descriptions
from individuals is “universal”, and is as hard as any reasonable concept learning problem.
This negative result holds even when the tafgehssic description does not contain any
SAME-AS conditions.

Whether or not learning from individuals is tractable when membership queries are al-
lowed also, depends on the definition of a membership query in this setting. If such queries
simply specify the name of an individualin the databas&’, and the response is whether
or notx is a positive or negative example of the target description, then our reduction still
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holds, and the problem of predictiigp.Assic descriptions from individuals, using random
examples and membership queries, is as hard as predicting polynomially sized Boolean
circuits with the same information, and is intractable assuming the existence of one-way
functions (Angluin & Kharitonov, 1995). On the other hand, if a membership query is
allowed to construct a “new individual”, one that is not currently in the database, then we
leave open the question of whether learning is possible. Which model of membership query
on individuals is appropriate, or more natural, depends on our view of whether the database
reflects all possible ground instances that are meaningful or relevant.

6.1. Constructing a Database andrassic Sentence from a Circuit

We proceed with the technical details. We will show how to encode the behavior of an

arbitrary Boolean circuit as a collection of individuals in a database. Being able to predict

which entries are positive examples, and which are negative examples will be exactly the
problem of determining the input-output behavior of the circuit.

Let B be a Boolean circuit withn. gates, where the first of these gates are input ports.

Let the gates be numbered, g-, . . ., g.n, Where the indexing is without loss of generality
consistent with a topological sort of the gates. Thyds the output gate, giving the value
of the circuit for a given setting of the first(input) gates, and for eaéh> n, gy, is either
an AND or OR gate with inputg; andg; for i, j < k, or else it is a NOT gate with input

Consider the step-by-step process of evaluafihgn a given Boolean input vector
of lengthn, as dictated by the topological sort. Initially;, ..., g, are defined, and
gn+1,-- - -gm are undefined. Then, at stage g, obtains a value determined by the
(already-defined) values of the at most two gateg; (with ¢, j < n + k) that feed into
In+k-

We can represent the partial evaluation®fby a lengthm string, where the first
characters take the value 0 or 1, reflecting the original input setting, and the remaining
m — n characters take the value 0, 1, or “?”, indicating that the value of the corresponding
gate has been computed to be either 0, 1, or not yet defined, respectively. There are
2m3™~" such strings. Each such string will be the name of a unique individual over which
the relations of the database are defined. Let this set of domain individuals be dénoted
In what follows, if s € I and we writes = zy; this is to be taken as an indication that
2 consists of the first bits of s (corresponding to the input bits), apds the remaining
m — n characters of (corresponding to the (perhaps partially) evaluated gates). Also, for
s € Iandi inthe range(1,...,m}, s[i] denotes theth character of.

The database contains the following relations/on

e INPUT-VECTOR is a unary predicate drsuch that INPUT-VECTOR) is true if and
only if s = xy, wherez € {0,1}", andy =?""". Thus, INPUT-VECTOR consists
only of those individuals that denote a completely-unevaluated circuit with a particular
input vectorz.
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e EVAL-TO-1is a unary predicate of such that EVAL-TO-1s) is true if and only if
s € {0,1}™ ands[m] = 1. Thus,s is a completely evaluated circuit whose last bit
(i.e., the output bit) is “1".

e For each choice of distinct valuésandj in the range{1,...,m — 1} and for each
choice ofk in the range{max{n,4,j} + 1,...,m}, AND, ; » (respectively, OR; ;)
is a binary relation ord (more specifically, a function fromto I') defined as follows:
Let s; andss both be elements df. Then(sq, s2) € AND; ; . (respectively, OR; x)
if and only if

1. s[¢) andsy[j] are in{0,1} (i.e., theith andjth gates of the partially evaluated
circuit thats, represents are defined (not equal to “?"));

2. s1[k] ="?" (i.e., thekth gate of the partially evaluated circuit representedpy
has not yet been defined);

3. For every numbeb in the range{1,...,m}, if b = k thensa[b] = s1[i] A s1[J]
(respectively= s1[i]Vs1[j]), otherwisesz [b] = s1[b]. Thus,ss represents virtually
the same partially evaluated circuitas except that, denotes exactly one further
step of evaluation: the values of the gates numbeégetj have been conjoined
(respectively, disjoined) to obtain the value of #ta gate.

e For each choice of in the range{1,...,m — 1} and for each choice of such that
i < k < m, NOT; ; is a binary relation od (more specifically, a function from to
I) defined as follows: Let; ands, both be elements af. Then(s;, s2) € NOT, j if
and only if

1. s[¢ € {0,1} (i.e., theith gate of the partially evaluated circuit thatrepresents
is defined (not equal to “?"));

2. s1[k] ="?" (i.e., thekth gate of the partially evaluated circuit representedpy
has not yet been defined);

3. For every numbeb in the range{l,...,m}, if b = k thensq[b] = —(s1[i]),
otherwisess [b] = s1[b]. Thus,s, represents virtually the same partially evaluated
circuit ass, except that, denotes exactly one further step of evaluation: the value
of the gates humberechas been negated to obtain the value offttiegate.

This completes the description of the datab@smntaining allindividuald, and relations
INPUT-VECTOR, EVAL-TO-1, AND ; x, OR; ; x, and NOT; x, for ¢, 5, and k in the
specified ranges. As mentioned earlier, the number of individuald is 273™~", one
entry for each string as above. Note that each element of one of the relations is either
a pair of elements of (for the binary relations AND, OR, NOT), or a single element of
I (for the predicates INPUT-VECTOR and EVAL-TO-1), so that each tuple of any of the
relations has a description that is of size polynomial in the size of the circuit.

We now specify, given a Boolean circutof m gates (the first of which are inputs, and
the last of which is output), &rAssic description whose denotation dn corresponds
exactly to the elementse< I such that
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(1) The keys corresponds to an input vector 8 without any partial circuit evaluation
completed. That iss = zy, wherex is a bit string of lengtm representing a circuit
input, andy is a string ofm — n “?™'s.

(2) B(z) = 1.

While reading the following description, the reader may find it helpful to refer to Sec-
tion 6.2, which provides a concrete example of the reduction. Jhessic description
will classify an entry with key as a positive example if and only if the two conditions (1)
and (2) are satisfied. Clearly(@.assic sentences; asserting that the entgyhas the form
(1) above is just the sentenég given by

S, = (INPUT-VECTOR).

To assert the second condition, consider the step-by-step evaluation of the function com-
puted byB via computing at each step, the output of the next gaten the topologi-
cal ordering. This is achieved by starting in the database with enteyxy for which
INPUT-VECTOR) holds, successively following pointers as given by the function fields
AND; ; x, OR; ; 1, and NOT; ;, to chain through all then — n entries representing the
circuit’s partially evaluated values until a final valse= xy’ is reached, wherg’ rep-
resents the outputs of all gatesaifis the input toB. In particular, the function string
Fn(Fm—1( - (faxs(Ffnr2(frr1(5)))))) will reach the appropriate entryy’ exactly when
the functionf;, (with m > k > n + 1) is chosen to be AND; ;, (respectively, OR; ;, or
NOT; ) if gate g, computes the AND of gateg andg;, (respectively OR ofj; andg;, or

Thens = xy is a positive example if the name/’ of this last individual reached, which
represents the completely evaluated circuit, happens te &dvin itslast position. By
construction, this occurs exactly whep’ satisfies the unary predicate EVAL-TOzl().

Consequently, the condition (2) above can be satisfied b thessic sentence; given

by
Sy =(ALL f 41 (ALL foi2 (ALL ... (ALL f,,_1 (ALL f,, EVAL-TO-1)))))

where eacly; is chosen to correspond, as discussed above, to the function computed by the
corresponding gate ds.
Finally, theCrassic sentenceS that realizes the entire construction is simply

S =(AND S; S).

It is immediate from the construction that the denotatiorb dthe positive examples) on
the databas& consists exactly of those individuals frwith name of the formxy, where
x is ann-bit Boolean vector such tha&(z) = 1, and wherey is a string ofm — n “?™s.

6.2. An Example

Suppose the Boolean circuithas 8 gates, and computes the functign (z1 V z3) V —x2,
as shown in Figure 8. Then individuals will be indexed by strings of length 8, where the
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Figure 8. Example circuit and the straight-line program that computes it. Gaie the output.

first four bits are either 0 or 1, and the last four bits are either 0, 1, or ?. The value of the
circuit can be computed by the following function composition:

(EVAL-TO-1 (ORg,7,8 (NOT5,7 (AND3 56 (ORy 2,5(2))))))

For example, to see how this evaluates on input 0111, we’ll look at the partial values as
the functions are applied from innermost to outermost.

(EVAL-TO-1 (ORs 7.5 (NOT4.7 (AND3 5 6 (ORy 2 5 (0111222?))))))
= (EVAL-TO-1 (OR; 7,5 (NOT, 7 (AND3 5 ¢ (0111122?)))))

= (EVAL-TO-1 (ORg 7.5 (NOT,,7 (011111??))))

= (EVAL-TO-1 (OR; 7 5 (0111110?)))

= (EVAL-TO-1 (01111101))

=1

The last four bits give the values of all of the gates when the input is 0111. Thus, if

we consider the individual named 0111???7?, and chain through the database following the
appropriate function fields as given by the sequence

ORg,7,8(NOT2,7(AND3 56(OR1,2,5())))

then we end up at the individual named 01111101. Because the last bit of thisis a 1, EVAL-
TO-1(01111101) = 1. Hence 0111?77?77 is a positive example @¥ithesic sentence

(AND (INPUT-VECTOR)
(ALL OR 55 (ALL AND3 54 (ALL NOT, 7 (ALL ORs 75 (EVAL-TO-1))))))
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6.3. Learning from Individuals Implies Circuit Prediction

We have shown that for any circuit there exists a databasgof individuals and relations
among individuals, and@rLAssIC sentence, such that the denotation Sfon K is exactly
the entries ofK” that have names that “correspond” to inputs for whitbutputs 1.

We use these constructions to sketch how an algorithm that I€arnssic descriptions
can be used to predict, according to the PAC requirements, the values of a hidden target
circuit B given only random examples, and membership queries on input vectBrs to

Let L be a learning-from-individuals algorithm f@fLAssIC sentences. Suppogeis
an unknown target circuit of inputs andn — n gates to be predicted. (Without loss of
generality, we assume that for the circuit learning problem, we know the number of gates
in the target.) We describe a learning algoritifrthat used. for predictingB’s behavior.

A minor problem which does not appear with standard “learning reductions” is that
the learning algorithnl. assumes the existence of an exponentially-sized database from
which examples are drawn, and from which it can extract information. The (efficient)
reduction that we now describe cannot afford to entirely construct the exponentially large
databasé corresponding t@3. Instead, we imagin& existing only in principle, and the
reduction answers each query about entrie& afiade by the algorithnh without actually
constructingk’. We assume that can make only the following types of database queries:

“Retrieve F'(s,7)", whereF is one of the binary relations (functions) of type AND;,
OR,; ; 1, or NOT; , as described above. This returns the vatusuch tha((s, s’) € F,
that is, the individuak’ that denotes the slightly-more-evaluated circuit obtained by
applying functionF' to s. If there is no sucly’ (for example, ifFF = AND, ; x, but
eithers[i] or s[j] is “?", or s[k] # “?”, or k is not in the required range), then the value
NIL is returned.

“Retrieve F(7,s')", whereF is one of the binary relations (functions) of type AND.,
OR; ; x, or NOT; ;, as described above. This returns the individuslich thats, s') €
F, that is, the individuab that denotes the slightly-less-evaluated circuit which, when
Fis applied, yields the slightly-more-evaluated circtiit (If there is no sucls, then
the value NIL is returned. Note that for a particular choicé'ainds’, there is at most
ones such thaf(s, s’) € F, so the query has an unambiguous answer.)

“F(s)”, whereF is one of the unary predicates EVAL-TO-1 or INPUT-VECTOR. This
query returns TRUE if satisfies the predicate, otherwise it returns NIL.

“Member s”, wheres € I is the name of an individual in the database. This is a standard
membership query, which returns true if and onlyifs a positive example of the
targetCLAssIC sentence. Here we note again that in this model we do not allow the
construction of a hypothetical individual to be used in a membership query.

Note that the answers to each of the queries (except Member) can be computed efficiently
from the description of{ given above, and without requiring an explicit representation of
all of the relations inK. Further note that the answers to these queries (except Member)
are independent of the particular circiitf hence can be answered without knowledge of
B.
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Allowing significantly more complicated queries can result in questions that are not
answerable efficiently, so evenif the database were available in its enfiiy]d not easily
obtain the answers. For example, consider a query that involves finding the projection based
on a condition of a composition of function values, as in the request to fisd@liwhich
EVAL-TO-1((f1(f2(. .. (fm—-n(5)))))) holds. Since the functionf available correspond
to all possible AND, OR, and NOT functions, the search for thgsevhich satisfy the
condition is exactly the question of whether some corresponding circuit is satisfiable—an
NP-hard problem.

Now, to learn the circuiB, L’ begins running the learning algorithin If L requests a
labeled random exampl&, requests a labeled random examplef B, and from it creates
the corresponding individual € I such thats = zy wherey is a string of “?” symbols of
lengthm — n. L’ gives this example t@ labeled as was labeled byB.

If L makes a query of the form “Retrievé(s, ?)” (respectively, “Retrievé”(?, s’)") then
L' simply determines whether or net(respectivelys’) is of the right form with respect
to the indices specified b, and if so, returns td, the unique slightly-more-evaluatet
(respectively, slightly-less-evaluatejlas dictated by*' and the bits of (respectivelys’).

As noted above, this can be computed without knowledde, afs the functiorF' explicitly
states the simple relationship that must exist betwesamds’. If s (respectivelys’) is not
of the correct form, theil’ returns NIL as an answer to the querylaf

Similarly, if L makes a query of the formF(s)” where F' is one of the unary predi-
cates EVAL-TO-1 or INPUT-VECTOR, theh’ simply replies TRUE or NIL, depending
on whether or not satisfies the predicate specified. This can be determined by simple
inspection ofs.

Finally, suppose that makes a membership query on the individsiat zy, wherex
has lengtm andy has lengthn — n. Then, ify # ?" (i.e., if y does not consist entirely of
“?"s), then L’ responds that is a negative example. Otherwisg, poses a membership
query ofz to the Boolean circuit membership oraclez s a positive example dB, thenL’
responds td. thats = xy is a positive example, otherwide responds that is a negative
example.

Because all information thdt’ provides tal is consistent with information thdt would
have obtained had it run with actual databdseand targetCrassic sentenceS that
corresponds t@, it must in time polynomial in relevant parameters, and with probability
at leastl — 6, output some polynomial-time prografh whose error on random unlabeled
examples fronT is at most,

Now, to predict the valué3(z) of a randomly chosen Boolean vector L’ forms the
corresponding element éfwith names = z?™~", and evaluate# (s) to predict whether
or nots is a positive example of the classic sentescdt immediately follows that with
probability at leasi — ¢, the error ofL’ on random unlabeled examplesBfis at moste.

Note thatZ’ asks membership queries if and onlylifdoes, hence learning (predicting)
Crassic sentences without membership queries from random individuals is as hard as the
prediction problem for Boolean circuits without membership queries, and if membership
queries are additionally allowed, the problem remains as hard as the corresponding prob-
lem for Boolean circuits with membership queries allowed. Both of these problems are
intractable given the existence of 1-way functions (Angluin & Kharitonov, 1995).
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7. Unions of CLassic Concepts

Crassic lacks an OR construct. As such, let us comment briefly on a target consisting
of a union of CLassIic concepts. Here we consider a positive example any concept that
is subsumed by the union of the concepts in the target. Care must be taken, however, in
defining what subsumption means in the presence of a union of concepts. Two possibilities
present themselves.

The first possible subsumption definition stems from the definition of subsumption for
a singleCLassic concept, which considers the set of individuals selected under an inter-
pretation. We formalize this definition and leave the question of learnability under this
definition open.

The second possible definition of subsumption, which is interesting in its own right,
possesses a property caltng compactnegPage, 1993) in other logical systems. This
strong compactness property leads immediately to two positive learning results.

7.1. First Definition

Recall that for singl€Cr.Assic concepts:;; andces, ¢; subsumess; if the set of individuals
denoted by is a subset of the individuals denoted yregardless of the interpretation.
Reasoning analogously, the first (and perhaps more compelling) definition of subsumption
for a unionT' of CLAssIC concepts states that a conceps subsumed b{" if for every
interpretation, the set of individuals denoted bis a subset of the union of the sets of
individuals denoted by the membersiof Note that this definition of subsumption permits
interesting interaction between the concept&'inFor example, under any interpretation,

the union

(AND brown (AT-LEAST 3spots )) U (AND brown (AT-MOST 10spots ))

denotes the set of all brown individuals, regardless of the number of spots. Thus the union
subsumes the conceptown even though neither member of the union subsubnesn

on its own. Hence, a positive example of the union of two concepts is not necessarily a
positive example of either one of time— a phenomenon that does not occur in propositional
settings. Reasoning about the possibility of such interaction makes the problem of learning
in this situation challenging. We leave open the question of learnability under this definition
of union.

7.2. Second Definition

Our second definition of subsumption, which is of interest in its own right, is that a set
T of CrLassic concepts subsumes exactly the union of the sets of positive examples of
the concepts irf’. Thus, an example is positive (i.e., follows frdf) if and only if it

is a positive example of (i.e., follows from) one of the concept&'inThis is the strong
compactness property. To distinguish this definition of union from that given above, we
will refer to this as thaveak union
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This kind of non-interaction is not new. In order to make reasoning in certain first order
logic systems tractable, Dalal and Etherington (1992) consider various restrictions to the
interaction permitted among the elements of a set of logical sentences. In the propositional
setting, Blum and Chalasani (1992) considefitching conceptsHere there is actually a
set of targets, and the “current” target switches from time to time from one element of the
set to another. An example is classified as positive or negative according to the “current”
target. Thus no interaction occurs among the elements in the set of targets. Frazier et al.
(1994) define aonsistently ignorant teachgthat models, among other things, a concept
defined by the agreement of a set of target concepts: This is ateacher that has a set of targets
and classifies examples as positive (negative) if all elements in the set of targets classify the
example as positive (negative); in the event that some targets classify the example as positive
and others classify it as negative, the teacher is ignorant about the correct classification and
says “l don't know.”

We sketch an argument that the weak uniofCohssic concepts is learnable. The idea
of learning a (weak) union afLAssIC sentences using this method was suggested by Rob
Schapire (private communication), and is reminiscent of other approaches (Page, 1993;
Angluin et al., 1992). Lefl" be the set of concepts constituting the target. We maintain a
setU of concepts as our hypothesis by replacing anywrelU with Prune(c x u) where
¢ X u is a positive example andis a (necessarily positive) counterexampldito If no
u € U satisfies this property, thé?rune(c) is added to the séf. Initially, U contains only
the universally positive example.

To see that this works, inductively suppose our current hypotbesia set{u;, . . ., ux }
of concepts which are each positive exampl€es efich that na@ in 7" subsumes both,; and
uj2;. Letc be a (necessarily positive) counterexamplé&torhere are two possibilities to
consider — eithePrune(c) is added td/ or someu; is replaced byPrune(c x u;).

For any concept, ¢ subsumes x u; if and only ift subsumes andt subsumes;. Thus,
if Prune(c) is added taU then noc x w; is a positive example, hence for ng is there
at € T such that subsumes; andt subsumeg (and hencéd’rune(c)). The inductive
hypothesis is preserved.

On the other hand, suppose there is same U such that x u; is a positive example,
so thatPrune(c x u;) replaces:; in U. For this to occur, it must be thasubsumes; and
t subsumes for somet € T'. Consider the resulting hypothesis. Inductively, there is no
t € T andu;»; € U such that subsumes both,; andw;. But then, sincérune(c x u;)
subsumes;, there exists né € T' such that subsumes both; andPrune(c x u;). The
inductive hypothesis is again preserved.

WhetherPrune(c) is added taU or Prune(c x u;) replacesu; in U, progress is made
toward some member @f without undermining the progress made by other membets of
toward other members @f. The moral of the story is that a definition of union that possesses
the strong compactness property admits a learning algorithm that identifies each item in
the target simply by updating any item in its current hypothesis when it can, and when no
update to an existing item can be made it must be the case that the new counterexample is a
suitable representative for some member of the target for which we have no representative.
In either case, we essentially learn in parallel the different membé&rsanid the total time
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taken is at most the sum of the running time&eérn, on each member d&f. We conclude
that the weak union of’LAss1c concepts under this definition is efficiently learnable:

THEOREM 6 The weak union o€ LAssIC concepts is learnable in the PAC model with
membership queries in time polynomial|if|, % % andn, the upper bound on example
size, wheréT| denotes the sum of the lengths of €reassic descriptions comprising the

union.

Given this result, let us reconsider the consistently ignorant teacher mentioned above.
Such a teacher will classify a description as positive if each element of its set of targets clas-
sifies it as positive, will classify a description as negative if each element of its set of targets
classifies it as negative, and will say “I don’t know” if there is no agreement of classification
among the elements of the target set. We wish to apply Theorem 7 of (Frazier et al., 1994),
which states that if the set of concepts defined by unions of concepts from &'dalearn-
able, and the set of concepts defined by intersections of conceptgfisiearnable, then
the set of agreements of conceptgns learnable and’ is learnable from a consistently
ignorant teacher. Taking the union@f.Assic sentences to be the weak union, we have just
demonstrated that the union is learnable. On the other hand, the intersection fic
sentences is simply the AND of sentences and so is itsglf assic sentence whose size
is simply the sum of sizes of the individu@lLAssic sentences — so the intersection is also
learnable. We thus obtain the following corollary.

CoRrROLLARY 1 Curassic is learnable from a consistently ignorant teacher.

8. Membership Query Response Errors

We have shown that we need membership queries, but how much do we depend on them?
What if the classification of examples is unreliable? Such questions arise from the desire
to model inaccurate advice from a teacher or expert.

In particular, we consider a setting in which an adversary is permitted, with a given
probability, to foul the classification of an example. It is assumed that the classification we
witness for a particular example persists so that we cannot exploit the adversary’s probability
constraint by asking repeatedly about that example and thereby statistically determine its
correct classification. This notion is knownersistent malicious misclassification noise
A number of authors have investigated this and related models (Angluin & Laird, 1988;
Sloan, 1988; Shackelford & Volper, 1988; Auer, 1993; Decatur, 1993; Kearns & Li, 1993;
Ron & Rubinfeld, 1993; Angluin & Slonim, 1994; Angluin, 1994; Angluin & Ki$, 1994;

Sloan & Tuin, 1994; Frazier et al., 1994) ).

The graphs we have been manipulating admit the random construction of a number of
related, but distinct, graphs having the property that either all of them are positive examples
or all of them are negative examples. Exploiting this property, this section gives a general
test for verifying the answer to a membership query in the presence of even a significant
amount of persistent malicious misclassification noise, showing that this type of difficulty
can be robustly tolerated in learnigg.AssIc.
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For technical reasons, we consider ordglucedlabeled equivalence graphs — labeled
equivalence graphs in which every vertex having “degenerate” labels (which express the
null constraint) and having out degree zero also has in degree at least two — this forces
the vertex to express some non-trivial restriction in @esssic description. Prohibiting
vertices with degenerate labels, which have indegree 1 and outdegree 0 does not change the
ability of labeled equivalence graphs to repregénassic descriptions concisely, because
anyCLAssIC sentence whose equivalence graph contains such a vertex is also representable
more concisely by the equivalence graph with the vertex removed. However, permitting such
vertices does illuminate a slight difference between the semantics of labeled equivalence
graphs and the semantics@f.assic. A given labeled equivalence graph may be a negative
example of the target due to the fact that some target supported string is unsupported even
if the vertex reached by this supported string imposes no other semantic constraint in terms
of the equivalence of strings or the vertex label -(dnassic such a graph would have
arisen from some subexpression stating, “All individuals in the relatitmindividuals in
this set are individuals in the universe.” Clearly such a statement is true for eveny role
and every individual in the universe; eliminating such a subexpression does not change the
semantics of &1.ass1ic description, but the two labeled equivalence graphs representing
these descriptions would be semantically different.

We now introduce our model gfersistent malicious membership query responses
r(-) be any polynomial, and l&¥ be any equivalence graph. The first time a membership
guery is made on a particuléf, the teacher (adversary) flips a coin that with probability

1_ é ) landsheads . If the coin lands heads, the adversary is permitted to answer

2 T
the qu(ery incorrectly if he chooses; however, if the coin lamds the adversary must
correctly answer the query. Thereafter, the answer to a membership quée&ryvath

be the same answer as was first given, preventing the learning algorithm from obtaining
information by asking the same question more than once. Our defense against such noise

resides in the following lemma:

LEmMA 3 LetG, bethetarget (equivalence graph). Thenthereisan algoritetarmine-
label that on input of any equivalence gragh any edge: of GG, and anys > 0, using a
membership oracle with persistent malicious misclassification noise}rate(‘(l;—b, halts
in timeO(M In $), and with probability at least — & determines the correct label of
the graphG\ e with respect ta7...

Proof: The algorithmdetermine-labeluses the following simple idea: It is possible to
create many variants d@f\e that all have the same true classificationtdg:. By taking

a majority vote of the classifications, we can with high probability determine the true
classification o\ e.

Letn¢, be the number of vertices .. Consider any string = s1ss .. . sp_1 over of
lengthk > ng, + 1. Now construct a simple path consistingiafiew verticesy, . . . , v,
with directed edge labeleg, from v; to v;11 for i < k, Leavewvy,...,vr_1 unlabeled,
but makeuv;, the root of the graph of an arbitrarily chosen (but not inconsist€nfjssic
concept. Now redirect the terminusoin G to vertexv; .
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If e was deletable, then this new graph is a positive examplewHs not deletable, then
either it must be used to capture some SAME-AS constraint expressed in the target or it
must be used in a path that reaches some vertex label constraint expressed in tfe target.
In either case such a constraint must occur along a path of length atunostithin the
target, as that is the number of verticesin. However, the firsti;, vertices of this new
path express no constraint of any kind, so that redirectinyst cause some constraint of
G, to be violated. Thus, i¢ is not deletable, this new graph is a negative example.

Let r abbreviater(|G.|). Form a test seT’ by constructingn = § In 1 such graphs,
each with a new path based on a distinct strireg above. (Even j&| = 1, the size of the
largest such graph needed will be at mOs$t.;, + m).) By the observations above, every
graphinT is a positive example ifis deletable (i.e., i7\ e is a positive example) and every
graph inT is a negative example i is not deletable (i.e., ix\e is a negative example).
The algorithmdetermine-labelasks a (noisy) membership query for every element of the
test sefl’. Each independently has probability at Ieés% } of being answered correctly.
By Hoeffding’s inequality (Hoeffding, 1963), the probability that fewer than half of the
queries for graphs ifi" are answered correctly is at mest2™/"* which by choice ofn
is at most. Thus, if the majority response is output, the probability thetermine-label
misclassifies?\e is at mosw®. [ |

We now have our most general result:

THEOREM 7 AlgorithmLearny, augmented with algorithiletermine-label can be used

to PAC-learnCLAssIC sentences, using random examples, and using membership queries
with malicious persistent classification noise raj — 1/r(|G.|). The algorithm runs in

time polynomial iNG.|, r(|G.])?, 1, 1, and the lengtt of counterexamples, and outputs

a CLaAssIC sentence that has error with respect@q at moste, with probability at least
1-6.

Proof: RunLearn, with parameters andé /2, noting that membership queries are used
only in thePrune procedure of Figure 5, and that each such query concerns a@rajth
edgee to be removed. Instead of asking a single membership quefy\erto the noisy
membership oracle, run algorithtetermine-labelwith inputsG, e, and%, wheres is the
total number of membership queries thatirn, would make with noise-free membership
gueries. The probability thany of the invocations of this procedure is incorrect totals at
mosté/2. The probability that the hypothesis producedli®arn, has error exceeding

e is at mosts, which includes the event of probability at m@gt2 that some response of
determine-labelis inaccurate. ]

Note that if an algorithndetermine-labelcould be constructed for arbitrary queries (and
not just those resulting from deleting an edge from samethen we could employ a
variant ofLearny, in the PAC setting with all examples maliciously mislabeled: we could
simply ignore the labels of examples, and instead aplgliermine-label to obtain the
correct classification. There are subtle technical reasons why this cannot be done in any
obvious way, although a variety of techniques similar to the one uselétegymine-label
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are available. We leave open the question of whether an algorithm exists for determining
the label of arbitrary examples.

9. Summary

We have demonstrated a positive polynomial time learnability result using membership and
equivalence queries for labeled equivalence graphs with vertex labels chosen from a finite
lattice, and we adapted this algorithm to obtain a polynomial time algorithm for the natural
first-order concept clagsrassic. We then showed that the learnability did not rest solely

on the power of the membership queries by giving a non-learnability result for membership
guery only algorithms. An alternative model of learning from individuals was investigated,
and shown to be as hard as learning arbitrary Boolean circuits, hence intractable assuming
the existence of one-way functions.

We concluded by examining extensions to the positive result by considering two different
kinds of unreliability — a non-omniscient teacher and a malicious adversary. Learnability
in the former setting followed easily from a particular possible definition of the mean-
ing of a union ofCLASSIC concepts. In the latter, robust learnability in the presence of
random unreliable responses to membership queries was presented in the PAC learning
model. Surprisingly, it was shown that even highly unreliable membership queries are not
dispensable.

Our work ended leaving the following questions open. Is there an algorithm to correctly
determine the labeling of arbitrary concepts using membership queries answered with a
high misclassification noise rate? Our results relied on the ability to determine the correct
labeling only of concepts whose equivalence graphs are missing atleast one edge. Extending
the result to arbitrary equivalence graphs would allow a result@hatsic is learnable in
the PAC setting fronunlabeledexamples, provided that a (highly noisy) membership query
oracle is available. Is the union 6f.AssiC concepts learnable under the more compelling
definition of the meaning of the union?

More generally, what other types of knowledge representations are efficiently learnable,
and what types of queries are necessary? Are fairly general, and practical, knowledge rep-
resentations learnable using natural queries to an expert? Can we help open the “knowledge
acquisition” bottleneck in expert system design?
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Notes

1. Keep in mind that these two different “types” of individuals are indistinguishable within a description logic
statement; it is the venue of the externally supplied meanings of the roles and primitives to preserve any
intuitive distinctions we may have concerning these different “types” of individuals.

2. Along with e remove any unreachable component.

3. They show how to exactly learn, with equivalence queries only, the cross-produntefvals overfl..m] in
time polynomial int andlog m.

4. To adhere to the semantics©@f.Assic, consider a collection of roles all of which are attributes.

5. The membership problem for a concept clasis the following: Given (the description of)@c C, and an
examplez, determine whether or natis a positive or negative example af

6. The construction assumes the language contains a role symbol. If there are no role symbols, the graphs of the
concepts expressible consist of but a single vertex. Such a concept class is learnable without any membership
queries, by finding the upper bound of the vertex labeling of all positive examples in a sufficiently large (but
polynomially sized) random sample. This single vertex algorithm can be interleaved with the construction
about to be presented.

7. This makes use of the assumption that the equivalence graph is reduced.
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