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Abstract. We re-examine the problem of the evolution of protein synthesis or enzyme production
using a stochastic cellular automaton model, where the replicators are fixed in the sites of a two-
dimensional square lattice. In contrast with the classical chemical kinetics or mean-field predictions,
we show that a small colony of mutant, protein-mediated (enzymatic) replicators has an appreciable
probability to take over a resident population of simpler, direct-template replicators. In addition,
we argue that the threshold phenomenon corresponding to the onset of invasion can be described
quantitatively within the physics framework of nonequilibrium phase transitions. We study also the
invasion of a resident population of enzymatic replicators by more efficient replicators of the same
kind, and show that although slightly more efficient mutants cannot invade, invasion is a likely event
if the productivity advantage of the mutants is large. In this sense, the establishment of a population
of enzymatic replicators is not a ‘once-forever’ evolutionary decision.
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1. Introduction

Common wisdom says that long-term evolution is the result of invasions of mutant
traits and that the success of invasion attempts is determined by the fitness of
the mutant. Exceptions to this pattern lead inevitably to paradoxes. The purpose
of this article is to re-examine one such paradox which has played a major role
in the theoretical development of pre-biotic evolution, namely, the evolution of
enzyme production or protein synthesis (Eigen, 1971; Michod, 1983; Szathmáry
and Maynard Smith, 1997; Alves et al., 2001). Underlying this issue is, of course,
the current paradigm about the nature of the first functioning bio-molecules, the
so-called RNA-world, which asserts that early nucleic acids (or related precursor
molecules) replicated directly via some template mechanism and the protein syn-
thesis was subsequently ‘invented’ by those replicators (Orgel, 1986, 1992; Joyce,
2002). Although nucleic acids are ideally suited for replication, large molecules
can replicate accurately only if assisted by specialized protein catalysts (enzymes),
whose synthesis, in turn, is impossible without a blueprint provided by the rep-
licating nucleic acids. In the absence of evidences about pre-biotic biochemical
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events, the appeal of the various solutions of this chicken-and-egg riddle (see e.g.,
Dyson, 1985; Shapiro, 1987; Maynard Smith and Szathmáry, 1995) is necessar-
ily subjective. From the theoretical viewpoint, the nucleic-acids-first assumption
is more appealing because the notion of replication can easily be transcribed to
mathematical terms and the consequences of the model fully calculated.

Since in the pre-biotic or chemical evolution context natural selection may be
viewed as the dynamics of replicators (Szathmáry and Maynard Smith, 1997) most
of the studies on this subject have focused on the competition between replicators.
Following Michod (1983), in this contribution we consider two types of replicat-
ors, namely nonenzymatic or Malthusian replicators which use a direct template
mechanism to replicate, and enzymatic or hypercyclic replicators which have de-
veloped a protein-mediated mechanism of replication. Much of our knowledge
on the dynamics of replicators stems from analyses carried out in the chemical
kinetics or mean-field framework, in which the replicators are perfectly mixed,
i.e., each replicator can interact with all the others in the system (Eigen, 1971). Of
particular importance is the finding that, in a homogeneous population, a mutant
replicator of the hypercyclic kind cannot invade a resident population of more
primitive Malthusian replicators. A possible solution to this problem of evolution of
protein synthesis is provided by the structured deme formulation of group selection
(Wilson, 1980), where it is assumed that the replicators are localized in natural
compartments, such as rock crevices, clay particles, or water droplets, so that the
benefits of enzymatic replication are enhanced in favor of the mutant replicators
(Michod, 1983). In that formulation the notion of group or deme is somewhat
blurred as there is a stage in the life cycle of the replicators when they leave their
demes to effectively interact with each other. Although it is not hard to envision
such a scenario in the context of viral selection dynamics (Szathmáry, 1992, 1993),
where the burst of the infected cells releases free viruses in the blood stream which
then compete to infect new cells, it requires some stretch of imagination to apply
Wilson’s formulation to pre-biotic evolution. In particular, one needs to assume that
the replicators are regularly released from their compartments and then confined
again through, say, the action of tides or winds.

Another hindrance to understanding evolution of protein synthesis in the mean-
field framework is the finding that the fixation of a population of hypercyclic
replicators is a ‘once-forever’ decision, in the sense that it cannot be invaded by
a mutant replicator of similar type, no matter what the superiority of the mutant is
(Eigen and Schuster, 1978). Such a situation corresponds to an evolutionary cul-de-
sac, making it impossible to explain, for example, the evolution of the sophisticated
mechanism of replication of DNA from simpler ancestral enzymatic replicators.
However, in this case we are not aware of any solution proposed in the literature.

In this contribution we show that in the extremely incomplete mixing regime,
where the replicators are fixed in their positions in a lattice so that only nearest-
neighbor interactions are allowed, many of the results derived in the mean-field
limit lose their validity. In particular, by evaluating numerically the probability �
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that a small colony of mutant replicators takes over a population of replicators
of a different kind, we find that the evolution of enzyme production occurs quite
naturally, in the sense that the above-mentioned difficulties are absent in such a
spatial framework.

This paper is organized as follows. In Section 2 we define the replication mech-
anisms of both Malthusian and hypercyclic replicators and present a brief ana-
lysis of the mean-field limit in order to illustrate the impossibility of invasion
of any resident population by a colony of hypercyclic mutants. Following the
cellular automaton implementation proposed by Boerlijst and Hogeweg (1991),
we also present the set of rules that govern the dynamics of the replicators in
a two-dimensional square lattice in the position-fixed or contact process limit.
In Section 3 we describe the physics framework to study nonequilibrium phase
transitions (Grassberger and De La Torre, 1979) and apply that formalism to a
somewhat more fundamental problem, namely the stability of small colonies of
spontaneously generated self-replicating molecules against the vaccum. In section
4 we present the results concerning the invasion of a resident population of either
Malthusian or hypercyclic replicators by mutant hypercyclic replicators. Finally,
in Section 5 we discuss the limitations of our model and present some concluding
remarks.

2. The Model

The replication mechanism that defines a Malthusian replicator corresponds to the
simplest reproduction process, namely the binary fission of a parent replicator, and
is modeled by the chemical reaction

A + E
s−→ 2A , (1)

where A is the Malthusian replicator and E is the source material (mononucleotide
resources). It is well-known that the concentration of A grows exponentially with
the rate constant s, provided that the concentration of E is kept constant, hence the
name Malthusian replicator. This explosive growth can be avoided by imposing a
constraint on the total concentration of replicators which in practice can be imple-
mented by a dilution flux (Eigen, 1971). Alternatively, one can allow the replicators
to be degraded by hydrolysis into its mononucleotide components E according to
the reaction

A
γ−→ E , (2)

which seems a more natural approach to limit the growth of a population of replic-
ators.
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The definition of enzymatic replication is more involved. First we assume that,
given the appropriate resources E′ (e.g., amino-acids), the hypercyclic replicators
B produce a protein P via the reaction

B + E′ −→ P , (3)

which, in turn, catalyses the replication of B,

B + P + E −→ 2B + P . (4)

In addition, we assume that the reactions involving the production of P and its
decay into the resources E′ are much faster than Reaction (4), so that the con-
centration of P is always at its equilibrium value, i.e., [P ] ∝ [B]. Hence, for the
purpose of mathematical modeling, enzymatic replication can be described by the
simpler reaction scheme

2B + E
c−→ 3B , (5)

which leads to a hyperbolic growth of the concentration of the hypercyclic rep-
licator B (Eigen and Schuster, 1978; Szathmáry and Maynard Smith, 1997). We
note that this reaction scheme describes an one-membered hypercycle. Here the
rate c is a measure of the efficiency of the enzyme production mechanism as well
as of the efficiency of the protein-mediated replication. Throughout this paper we
will make the (admittedly unrealistic) assumption that the enzyme P is already
specific for the replicator that produced it. A more plausible approach would be to
consider the primordial enzymes as some kind of general catalysts, which would
facilitate the replication of a wide spectrum of replicators (Michod, 1983; Alves
et al., 2001). Furthermore, we assume for simplicity that the degradations of A

and B are governed by the same decay rate γ and, more importantly, that the
mononucleotide components E are the same for both types of replicators. This
setting is clearly well suited to study the dynamics of replicators competing for a
limited supply of mononucleotide resources. We note that the reaction scheme (5)
also describes sexual reproduction, where two replicators are needed to produce a
third one.

2.1. THE MEAN-FIELD LIMIT

We re-derive now the classic mean-field results concerning the invasion of a res-
ident population by a colony of mutant replicators (Michod, 1983) using a model
suitable for comparison with the Boerlijst-Hogeweg cellular automaton (Boerlijst
and Hogeweg, 1991). We consider two types of replicators, residents and invaders,
whose concentrations at time t are denoted by x1(t) and x2(t), respectively. In ad-
dition, the abundance of the mononucleotide source materials required to assemble
a new replicator is denoted by e(t). A replicator has a probability γ of decaying
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into its components, and the tendency of these components to remain in their un-
organized state is modeled by a stiffness parameter k. In a homogeneous medium,
replicator dynamics may be described by the nonlinear difference equations

e(t + 1) = k
Z
e(t) + γ [x1(t) + x2(t)]

xi(t + 1) = xi(t)[ si+cixi (t)

Z
e(t) + 1 − γ ] ,

(6)

for i = 1, 2 and where

Z = k +
2∑

i=1

xi(t)[si + cixi(t)] , (7)

ensures that e + x1 + x2 = 1 for all time t . Here si and ci are the productivities of
the nonenzymatic and enzymatic replication processes, respectively. According to
the basic Reactions (1) and (5), Malthusian replicators are characterized by si > 0
and ci = 0, and hypercyclic replicators by si = 0 and ci > 0. Next we will
show how to derive the condition on the productivity parameters of invaders and
residents which must be satisfied in order to guarantee the success of the invasion,
without resorting to the full stability analysis of the difference equations. Let us
consider the stationary state in the case where only the resident replicators are
present in the lattice, so that the steady-state concentrations are obtained by setting
x1(t + 1) = x1(t) = x∗

1 , x2(t) = 0 and e(t + 1) = e(t) = e∗ in Equation (6). In
particular, we can eliminate e∗ in favor of x∗

1 using

e∗ = γ x∗
1

(1 − k/Z)
(8)

where Z is given by Equation (7). To verify whether this steady state is stable
against invasion by a small colony of mutant replicators we rewrite the equation
for x2(t) keeping only terms of first order in the concentration of invaders. This
yields

x2(t + 1) − x2(t) = γ x2(t)

(
s2

s1 + c1x
∗
1

− 1

)
, (9)

where we have used Equation (8) to eliminate e∗. Invasion is successful provided
that the initially small concentration of invaders increases, i.e., provided that the
condition

s2

s1 + c1x
∗
1

> 1 , (10)

is satisfied. We recall that x∗
1 is the non-zero equilibrium solution of Equations (6)

for x2 = 0, i.e., the steady-state concentration of the unperturbed resident popu-
lation of replicators. It is then clear from Equation (10) that a protein-assisted or
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Figure 1. Illustration of the cellular automaton rules for the update of the empty cell at position (2,2)
in the case of (a) a Malthusian replicator located at (1,2) and (b) a hypercyclic replicator located at
(1,2). In case (b), replication can take place provided that at least one of the cells at positions (1,1),
(1,3), (2,1), (2,3) is occupied by other hypercyclic replicator.

hypercyclic invader (s2 = 0) can never take over or even establish a colony in
a resident population of replicators, regardless of their type. Moreover, a mutant
Malthusian replicator (c2 = 0) can invade a resident population of Malthusian
replicators if s2 > s1. Explicit knowledge of x∗

1 is required only in the case of
Malthusian replicators invading a resident population of hypercyclic replicators.
However, since this situation is not directly related to the onset of protein synthesis,
it will not be considered further in the present contribution. Actually, henceforth we
will focus on the case of hypercyclic invaders only. We note that in the mean-field
framework there is no stable steady-state solution corresponding to the coexistence
between invading and resident replicators.

2.2. THE POSITION-FIXED LIMIT

We now turn to the study of the replicator dynamics in an explicitly spatial frame-
work. Following the suggestion that chemical evolution started with surface-bonded
autocatalytic chemical networks that take advantage of the enormous thermody-
namic and kinetic gains of surface binding reactions (Wächtershäuser, 1988, 1997),
we consider a two-dimensional space consisting of L × L cells in a square tor-
oidal lattice. Each cell is either empty or occupied by a single replicator and it is
assumed that an empty cell contains all source materials required to assemble a
new replicator. As before, a replicator has a probability γ of decaying; after decay
the cell becomes empty and an empty cell has a probability proportional to k to
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remain so. The replication mechanism depends on the nature as well as on the
local neighborhood of the replicators, according to the following local rules which
are applied simultaneously to all cells in the lattice (Boerlijst and Hogeweg, 1991):

(1) a Malthusian replicator in one of the four nearest neighbor cells (Von Neumann
neighborhood) of an empty cell can replicate into that cell with probability
proportional to the productivity parameter s (see Figure 1a).

(2) a hypercyclic replicator in the von Neumann neighborhood of an empty cell
can replicate into that cell if there are other replicators of its kind in the in-
tersection of the Moore neighborhoods of both cells. The probability of this
type of replication is proportional to c for each pair of replicators. We recall
that the Moore neighborhood of a cell consists of its nearest and next-nearest
neighbors, and in the square lattice it corresponds to the eight cells surrounding
the central cell in Figure 1.

For example, an empty cell surrounded by two Malthusian resident replicators at
positions (1,2) and (2,3) and three invading hypercyclic replicators at positions
(2,1), (3,1) and (3,2) can be occupied by the invaders with probability 4c2/(k +
2s1 + 4c2). The main advantage of this formulation is that the probability of occu-
pancy of an empty cell is always well-defined, regardless of the (positive) values
of the replication parameters. We note, in addition, that the stiffness parameter k

gives the scale of the productivity parameters si and ci only, and so henceforth
we set k = 1 without loss of generality. As a result, the productivity parameters
are now dimensionless quantities. Furthermore, we will fix the value of the decay
constant at γ = 0.05 and the lattice size at L = 200, as we have verified that
changing the values of these parameters does not affect the characterization of the
onset of invasion.

Before embarking on the quantitative study of the probability of invasion of a
resident population by hypercyclic mutants, we would like to point out the altruistic
nature of the hypercyclic replication mechanism (Maynard Smith, 1979). In fact,
consider in Figure 1b the behavior of the replicator at (1,1) that gives catalytic
support to the hypercyclic replicator at (1,2) to occupy the central cell. In doing so,
it substantially decreases its own chance of occupying cell (1,2) when it becomes
vacant, because of the presence of a new replicator at position (2,2).

3. Spreading Analysis

The first step of our analysis is the establishment of a resident population of replic-
ators in a stationary state. Since this problem may also be viewed as the invasion of
an empty lattice (the vacuum) by a small colony of spontaneously created replicat-
ors (Ferreira and Fontanari, 2002), we take advantage of its simplicity to introduce
the tools and concepts that we will need in the study of the competition between
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Figure 2. The log-log plot of P(t) as a function of t for (top to bottom) c1 = 0.0196, 0.0195, 0.0193
(dashed line), 0.0192 and 0.0190. The dashed straight line corresponds to our estimate of the critical
rate cc

1 for the onset of the invasion.

distinct replicators. Here we consider in detail the case of hypercyclic replicators
only.

The initial colony is composed of four replicators located in the von Neumann
neighborhood of the central empty cell of an otherwise empty lattice of infinite
size. Finite size effects are absent because the lattice size is taken large enough so
that during the time we follow the evolution of the colony the replicators can never
reach the lattice boundaries. This of course sets an upper limit to the number of
generations we can follow the colony and so, in particular, we let the population
evolve up to typically t = 104 for L = 200. We concentrate on the time dependence
of the survival probability of the colony, P(t). For each time t we carried out 105

independent runs, all starting with the same initial colony so that P(t) is estimated
as the fraction of runs for which there is at least one replicator in the lattice at time
t . In Figure 2 we present a log-log plot of P(t) as function of t in the vicinity of
the critical rate cc

1 corresponding to the onset of the invasion. In fact, close to this
transition point, i.e., for � ≡ (c1 − cc

1) ≈ 0, we expect that the survival probability
obeys the scaling hypothesis

P(t) ∼= t−δϕ(�νt) , (11)
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Figure 3. Probability that a small colony of hypercyclic replicators of productivity c1 establishes a
resident population in an empty lattice. The inset shows the fitting (Equation (11)) with cc

1 = 0.0193
and β = 0.97.

where δ and ν are critical exponents, and ϕ is a universal scaling function (Grass-
berger and De La Torre, 1979). The asymptotic straight line shown in Figure 2 is
the signature of the critical point (� = 0), while upward and downward deviations
indicate supercritical and subcritical behaviors, respectively. From the data of that
figure we find cc

1 = 0.0193 ± 0.0001 and δ = 0.92 ± 0.01. This technique, known
as spreading analysis, yields very precise estimates of the critical values of the
parameters at which the onset of the invasion occurs.

As mentioned before, our main interest is in the evaluation of the probability of
invasion, defined by

� = lim
t→∞ P(t) , (12)

so that � = 0 in the subcritical (c1 < cc
1) regime and � > 0 in the supercritical

(c1 > cc
1) regime. The existence of these two regimes is illustrated in Figure 3

where the probability of invasion is shown as a function of the rate c1.
The physicists’ compulsion for quantitativeness can be partly satisfied by look-

ing at the behavior of � close to the critical point cc
1. Explicitly, we assume that

� ∼= �β , (13)
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so that by using the previous estimate of cc
1 and a simple log-log plot of � as

function of the distance � (see the inset of Figure 3) we can easily evaluate the
critical exponent β. It yields β = 0.97 ± 0.03. There are many (good) reasons for
our fondness of critical exponents. The values of these exponents are, in general,
insensitive to variations in the details of the model. For instance, changes in the
number of replicators forming the initial colony, in the value of the decay constant
γ , or in the geometry of the lattice, affect the invasion threshold cc

1 but not the
critical exponents. In this sense, models characterized by the same set of critical
exponents are said to belong to the same universality class. Understanding what
features determine the universality class of a nonequilibrium phase transition (such
as the one described in this section) is a major open problem in statistical physics.
Surprisingly, the critical exponents δ, ν and β are not all independent, and in the
following we will derive the scaling relation between them.

Since the supercritical regime is characterized by a non-vanishing invasion prob-
ability � > 0, the explicit time dependence in Equation (11) must be balanced by
the scaling function ϕ. We can see this by rewriting that equation as

P(t) ∼= �νδψ(�νt) (14)

where ψ(x) = x−δϕ(x) with limx→∞ ψ(x) > 0. Hence � ∼= �νδ and so

β = νδ . (15)

Since we have already estimated the exponent δ, we now consider the evaluation
of ν. In the subcritical regime the time correlations are short-ranged so that one
expects P(t) to decay exponentially, i.e.,

P(t) ∼= �νδ exp (− |�|ν t) , (16)

which corresponds to the scaling function ϕ(x) = xδ exp (− |x|) in the limit of x

large. Figure 4 not only illustrates the adequacy of this assumption but also permits
the evaluation of the decay constant

λ = |�|ν , (17)

from the asymptotic slopes of the curves ln P vs t . The results presented in the
inset of Figure 4, showing the dependence of λ on the distance

∣∣c1 − cc
1

∣∣ from the
critical point, allow the calculation of the exponent ν as the slope of the straight
line, yielding ν = 1.07±0.01. Once this exponent is known we can use the scaling
relation (Equation (15)) to obtain an independent estimate of β. We find β = 0.98±
0.02, verifying then the quality of our numerical estimates.

Next we address the problem of establishing a resident population of Malthusian
replicators. In this case the initial colony consists of a single replicator located at
the center of an empty lattice. Applying the procedure described above we found
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Figure 4. The log-linear plot of P(t) against t for several values of the rate c1 in the subcritical regime
(left to right) c1 = 0.0174, 0.0176, 0.0182, 0.0186 and 0.0190. The inset shows the log-log plot of
the time decay constant λ against

∣∣c1 − cc
1

∣∣. The slope of the straight line yields ν = 1.07 ± 0.01.

that the threshold for the onset of invasion is sc
1 = 0.020 ± 0.001 and that the

transition is characterized by the exponents δ = 0.45 ± 0.01, ν = 1.31 ± 0.01
and β = 0.59 ± 0.02 (Ferreira and Fontanari, 2002). These results indicate that
the phase-transition is in the celebrated universality class of the directed percola-
tion, which comprises as diverse problems as the Reggeon field theory of particle
physics (Grassberger and De La Torre, 1979), the forest-fire propagation biased
by external wind (Grassberger, 1989) and the stochastic versions of the ‘Game of
Life’ (Monetti and Albano, 1997), to mention only a few.

We must note that since the vacuum is an absorbing state, i.e., a configuration
from which the system cannot escape, the principle of detailed balance is broken
and so the stationary state is in fact in nonequilibrium. In this sense, if the popula-
tion is left to evolve for arbitrarily large times, it will ultimately return to its initial
state, the vacuum.

In practice, we say that the population reached the stationary regime when the
number of replicators starts to fluctuate around some well-defined mean value.
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4. Results

We now proceed with the analysis of the invasion of a resident population by a
colony of hypercyclic mutant replicators. Once the resident population reaches sta-
tionarity, the invasion process is implemented as follows. An empty cell is chosen
randomly and the resident replicators located in its Von Neumann neighborhood
are then transformed into hypercyclic replicators of productivity c2. In this sense
the invaders can be viewed as mutant resident replicators. Invasion can fail already
at the outset if there are fewer than two replicators surrounding the empty cell.
The perturbed system is then left to evolve according to the cellular automaton
rules. The entire procedure, which includes the generation of the initial stationary
resident population, is repeated 106 times and P(t) is estimated as the fraction
of runs for which there is at least one mutant replicator in the lattice. We have
verified that after a transient regime of about 5 × 105 lattice updates only one type
of replicator persists, in agreement with the mean-field prediction. From the nature
of the surviving replicators one can tell whether the invasion was successful or
not. The probability of invasion � can then be estimated simply as the fraction of
successful invasions.

We first consider a resident population of Malthusian replicators of productivity
s1. The invasion probability � is shown in Figure 5 for different values of s1.
Clearly, the larger the replication efficiency of the resident replicators, the lower the
probability of invasion. However, as illustrated in the inset, when the productivity
of the invaders is measured in units of s1 the dependence on the parameters of
the resident population disappears near the transition point. However, an explicit
dependence on s1, as well as on the decay parameter γ , reappears for very large
values of this ratio, when the success of the invasion is determined solely by the
probability that the initial mutants spread to the neighboring cells before their
decay.

The numerical machinery of the last section was set to work on the data of
Figure 5 yielding cc

2/s1 = 0.60 ± 0.01 for the critical productivities ratio at the
onset of invasion. The critical exponents are δ = 2.45 ± 0.01, ν = 0.63 ± 0.04,
and β = 1.5 ± 0.1, thus indicating that this transition belongs to a universality
class distinct from the previous ones. We note that the larger the value of β, the
slower the increase of the invasion probability as the distance from the critical
point increases. In that sense, invading a lattice already inhabited by Malthusian
replicators is slightly less likely than invading an empty lattice, as expected. Of
course, the remarkable finding here is that, contrary to the celebrated mean-field
prediction, protein-mediated replicators do have a considerable probability to take
over a resident population of direct template replicators.

The results for the case where the resident population is composed of hyper-
cyclic replicators of productivity c1 are presented in Figure 6. As before, near
the invasion point the dependence on c1 enters only through the ratio c2/c1. Our
attempt to fit these data using the framework of Section 3 results in unusually
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Figure 5. Probability that mutant hypercyclic replicators of productivity c2 invade a population
of Malthusian replicators of productivity s1 = 0.1 (�), 0.4 (	), 0.8 (×), and 1.0 (�). The inset
illustrates the collapse of the curves when � is plotted against the ratio c2/s1.

large exponents, e.g., β ≈ 10, and very poor fitting qualities. We recall that the
larger the value of the exponent β, the flatter the invasion probability � at the
critical point, � = 0. (In order not to unduly multiply notation we will denote the
distance to the critical point c2 − cc

2 by the same symbol �). It seems then that the
critical behavior here is somewhat pathological, in that it does not fit in the standard
physics framework of nonequilibrium phase transitions. In particular, we find that
the data in Figure 6 is fitted very well by the flat function

� ≈ exp

[
−C

(
�

c1

)−α
]

, (18)

where the fitting parameters are C = 4.26 ± 0.05, cc
2/c1 = 1.00 ± 0.01 and

α = 0.66 ± 0.01. The flatness of � in the vicinity of the critical point (i.e., all
derivatives of � with respect to � vanish at the critical point) reflects the enormous
difficulty of slightly more efficient mutants to take over a population of enzymatic
replicators. In other words, if the mutants have only a small advantage over the
residents, then the invasion is deemed to failure, in agreement with the mean-field
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Figure 6. Probability that mutant hypercyclic replicators of productivity c2 invade a resident popu-
lation of hypercyclic replicators of productivity c1 = 0.2 (�), 0.4 (	) and 0.8 (×). The inset shows
the collapse of the curves when � is plotted against the ratio c2/c1.

predictions. However, if that advantage is large (i.e., c2 is much greater than c1)
then invasion does occur with high probability, showing thus that the establishment
of a population of protein-mediated replicators is not a ‘once-forever’ evolution-
ary decision, and that such populations can evolve under the guidance of natural
selection.

5. Conclusion

Although the model considered in this paper builds heavily on the by now classical
elementary hypercycle proposed by Eigen and Schuster (1977, 1978) and its lattice
version formulated by Boerlijst and Hogeweg (1991), in this concluding section
we point out the limitations of the model and discuss its relevance to the study of
the evolution of enzyme production.

We begin by addressing the delicate question of why the reaction Scheme (5) or,
equivalently, the presence of the quadratic term cx2 in the growth Equation (6) can
be used to describe the promotion of replication through an enzyme translated from
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the replicator. (Clearly, that setting describes the reproduction scheme of obligatory
auto-mutualistic replicators, in which a replicator cannot be replicated without the
presence of another copy of its own type.) The underlying assumption here is that
the concentration of the enzyme is directly proportional to the concentration of
the enzyme-producing replicator x, yielding a probability per unit of time propor-
tional to x2 for the interaction between replicators and proteins, in the case of a
homogeneous population of reactants (Michod, 1983). Actually, this assumption
seems to have a certain tradition in the field of pre-biotic evolution. For instance,
in the original formulation of the elementary hypercycle there are two very distinct
types of molecules: the information carriers (replicators) Bk and the enzymes Pk

(Eigen and Schuster, 1977). The former exhibit two kinds of instruction, one for
their own reproduction and the other for the translation into enzyme Pk which, in
turn, provides catalytic help for the replication of the subsequent replicator Bk+1.
However, the standard hypercycle growth equation for the concentration xk = [Bk]
involves only the concentrations of the replicator members, which appear in the
quadratic form xkxk−1, from where one concludes that the enzyme concentration[
Pk−1

]
was replaced by the concentration xk−1 of the replicator that codes for that

enzyme (Eigen and Schuster, 1978). There is, of course, no fundamental difficulty
of explicitly taking into account the time evolution of the enzyme concentrations
(i.e., to consider Reactions (3) and (4) directly). The reason this is usually not done
is that it complicates unnecessarily the analysis without bringing any qualitative
feature which is not already present in the simpler reaction scheme involving only
the concentrations of the replicators. Specifically, in the case of the one-membered
hypercycle both schemes predict a hyperbolic growth for the replicator concen-
tration. For this same reason the cellular automaton version of the hypercycle put
forward by Boerlijst and Hogeweg (1991) is based on the set of reactions that
involve the replicators only. Although these precedents lend support to our claim
that the obligatory auto-mutualism reproduction Scheme (5) exhibits all the es-
sential features of the problem of the evolution of enzyme production, a definitive
assessment must necessarily rely on the study of cellular automaton models that
explicitly take into account the presence of the enzyme in the lattice cells (Rosas
and Fontanari, in prep.).

By virtue of the obligatory auto-mutualism of the hypercyclic replicators their
success in the establishment of a colony or in the invasion of a resident popu-
lation depends critically on the initial pattern of the invaders. In our setup the
invasion was initiated by assuming that all resident replicators in the von Neumann
neighborhood of a randomly chosen empty cell become hypercyclic mutants. The
invasion success depends then on the unlikely event that at least two and at most
four neighboring replicators mutate at the same time. This situation is somewhat
reminiscent of the Allee effect (Allee, 1931) in population dynamics in which,
contrary to predictions based on arguments of competition between individuals
for a limited resource, the reproductive output of an individual increases as the
population size increases. In general, this effect is caused by the increased cost of
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mate finding experienced by biparentally reproducing organisms at low densities.
However, we can dispense with the assumption of simultaneous mutation events
by admitting, as in Michod (1983), that the hypercyclic replicators also possess
some potential for nonenzymatic template-directed replication, though with a pro-
ductivity much lower than that of the ‘pure’ Malthusian replicators, so that invasion
is still impossible in the mean-field framework. The invasion is then initiated as
soon as the (single) hypercyclic mutant generates an offspring, thus turning on the
mechanism of enzymatic replication. To make things even we should also assume
that the Malthusian replicators can benefit from the enzyme produced by the hyper-
cyclic replicators, thus removing the unrealistic assumption of enzyme specificity.
We plan to report on the simulations of this more general model in a forthcoming
contribution.

A plausible scenario for the origin of life is one of diffusion-controlled chemical
reactions taking place on adsorbing surfaces (probably pyrite) where each reactant
can move randomly on the surface (Wächtershäuser, 1988, 1997; Maynard Smith
and Szathmáry, 1995). Since the diffusion process of reactants complicates con-
siderably the analysis, in this contribution we have focused on two rather extreme
regimes, namely the infinite diffusion or mean-field limit and the position-fixed
limit. Assuming, however, that the invasion probability is a continuous function of
the chemicals’ diffusion rates, the value of � in such a setting should lie between
the fixed position estimate and the mean-field lower bound � = 0. Of course,
this is a rather conservative statement which may prove wrong if a threshold phe-
nomenon happens to take place as the diffusion rates increase. We cannot discard
this possibility as, despite the local nature of diffusion, its main effect is to dis-
perse the couples of hypercyclic replicators apart, thus precluding the formation of
the clumps that are so essential to their survival. Nonetheless, since the diffusion
rates are determined mainly by the physical properties of the adsorbing surface on
which the reactions take place, one can simply assume that the surface binding is
strong enough to prevent those rates from reaching the threshold above which the
formation of clumps of hypercyclic replicators would be impossible.

For a more complete treatment of the dynamics of replicators, our basic reaction
Schemes (1) and (5) should also include the effects of mutation. For instance,
replicator A might produce, via erroneous replication, another replicator A′ char-
acterized by a different, usually smaller, productivity parameter s. This situation
can be modeled using Eigen’s equations but, qualitatively, taking into account
mutations should simply transform our results for the competition of replicators
(viewed as species) into statements about the competition of quasispecies, i.e., the
cloud of mutants that accompany the wild-type replicator (Eigen, 1971). In fact,
the evolution of the internal structure in the population, in particular, the famous
error catastrophe which occurs at a high mutation rate, can easily be accounted
for in the cellular automaton framework, provided that one avoids the explosive
proliferation of mutant replicators by grouping all of them into a single class, the
so-called error tail (see, e.g., Campos et al., 2000). In that setting, the productivity
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parameters of the wild-type replicators must be multiplied by the probability of
perfect replication, yielding thus the effective efficiency of replication. On the other
side, if one neglects back-mutations, then replicators in the error tail will always
produce, though less efficiently, offspring in that same class. It is not clear to us,
however, whether the spatial dynamics will have any effect on the value of the
error threshold, beyond which the heritable genetic information is irreversibly lost
(Eigen, 1971). In this context, we should mention that the production of enzymes
may be viewed as a major transition in the evolution of life because it has made pos-
sible for the first time the decoupling of function (phenotype) from the information
that codes for the function (genotype). This decoupling opened the possibility for
derived products (e.g., enzymes) of the genotype to promote its growth (Michod,
1983) . Such a promotion could well take place through a substantial increase of
the replication fidelity of the nucleotide sequence via the action of replicases or
more sophisticated proof-reading mechanisms.

In contrast with the group selection approach to the evolution of protein syn-
thesis (Michod, 1983; Szathmáry and Maynard Smith, 1997; Alves et al., 2001),
the assumptions involved in the makeup of our scenario are rather natural, requir-
ing no far-fetched surmises such as, say, the periodical washing of rock crevices
or condensation of water droplets. However, explicitly taking into account the
local spatial correlations makes the problem just too difficult to treat analytically
and, therefore, less attractive to more quantitatively attuned researchers, who do
not content themselves with semi-quantitative results of plain simulations. To sat-
isfy those readers we have discussed at some length the physics framework of
nonequilibrium phase transitions and argued that many threshold phenomena in
the dynamics of replicators can be quantitatively studied using concepts and tools
from statistical mechanics. Conversely, as physicists we were delighted to learn
that some of those phenomena simply do not fit into our framework.
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