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Abstract. Let L be a complex semisimple Lie algebra with specified Chevalley generators. Let V be a finite
dimensional representation of L with weight basis B. The supporting graph P of B is defined to be the directed
graph whose vertices are the elements of B and whose colored edges describe the supports of the actions of the
Chevalley generators on V . Four properties of weight bases are introduced in this setting, and several families of
representations are shown to have weight bases which have or are conjectured to have each of the four proper-
ties. The basis B can be determined to be edge-minimizing (respectively, edge-minimal) by comparing P to the
supporting graphs of other weight bases of V . The basis B is solitary if it is the only basis (up to scalar changes)
which has P as its supporting graph. The basis B is a modular lattice basis if P is the Hasse diagram of a modular
lattice. The Gelfand-Tsetlin bases for the irreducible representations of sl(n, C) serve as the prototypes for the
weight bases sought in this paper. These bases, as well as weight bases for the fundamental representations of
sp(2n, C) and the irreducible “one-dimensional weight space” representations of any semisimple Lie algebra,
are shown to be solitary and edge-minimal and to have modular lattice supports. Tools developed here are used
to construct uniformly the irreducible one-dimensional weight space representations. Similar results for certain
irreducible representations of the odd orthogonal Lie algebra o(2n + 1, C), the exceptional Lie algebra G2, and
for the adjoint and short adjoint representations of the simple Lie algebras are announced.
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1. Introduction

In this paper we visualize a representation V with a directed graph which is defined in terms
of the “supports” of the actions of the Chevalley generators relative to a chosen weight basis
for V . For us, the resulting “supporting graph” (along with its associated “representation
diagram”) is the principal structure associated to any given weight basis for V . Supporting
graphs are studied here with three purposes in mind. First, supporting graphs have been
helpful in formulating certain problems from combinatorics with Lie theory (e.g. [2]). In
this paper we show that any supporting graph P is the Hasse diagram for the poset defined
to be the transitive closure of the directed graph P . We apply Proctor’s sl(2, C) version [17]
of a technique of Stanley and Griggs to see that any connected poset arising in this way is
rank symmetric, rank unimodal, and strongly Sperner. This method is used in [6] to confirm
the conjecture of Reiner and Stanton that certain lattices shown to be rank symmetric and
unimodal in [20] are also strongly Sperner. Second, this paper provides tools which give
some direction for producing a weight basis for a given representation and for identifying
the coefficients for the actions of generators on the elements of the basis. These or related
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techniques are used in [3–6], and Section 6 below to explicitly construct new families of
weight bases. Prior to our earliest results (from 1995), there was only one construction
(from 1950) of a family of representations for which the actions of the Chevalley generators
on the elements of a weight basis were explicitly given [7]. Third, this paper begins to
explore the combinatorial and representation theoretic consequences of producing a weight
basis whose supporting graph “looks as nice as possible.” We introduce four combinatorial
properties which may be possessed by weight bases for representations of semisimple Lie
algebras. These “extremal” properties are defined in terms of supporting graphs and appear
to be possessed only by rare weight bases. In this paper and the sequels [4–6], we study
particular families of weight bases in terms of these properties.

Let L be a semisimple Lie algebra of rank n with Chevalley generators {xi , yi , hi }n
i=1

satisfying the Serre relations. Let V be an L-module with weight basis B = {vx}x∈P , where
P is an indexing set with |P| = dim V . The supporting graph for the weight basis B of V
is the directed graph on the vertex set P which indicates the supports of the actions of the
generators as follows: a directed edge of color i is placed from index s to index t if ct,svt

(with ct,s �= 0) appears as a term in the expansion of xi .vs as a linear combination in the
basis {vx}, or if ds,tvs (with ds,t �= 0) appears when we expand yi .vt in the basis {vx}. The
resulting edge-colored directed graph, which is also denoted by P , is the supporting graph
for the basis B of V . (One could consider the pair of graphs which describe (respectively)
the supports for the actions of the xi ’s and the supports for the actions of the yi ’s relative
to the given weight basis. However, the bases which give rise to the most combinatorially
elegant supporting graphs seem to have the property that the pattern of non-zero matrix
entries in the transpose of a representing matrix for yi is the same as the pattern of non-
zero matrix entries in a representing matrix for xi . In this case the “X -supporting graph”
and the “Y -supporting graph” coincide. This motivates our decision to associate to each
weight basis the simpler combinatorial structure of the supporting graph.) If we attach the
coefficients ct,s and ds,t to each edge s

i→t of the supporting graph P , then we call P the
representation diagram for the basis B of V . If the edge coefficients of the representation
diagram P are positive and rational, we say the basis B is positive rational. A supporting
graph Q for V is positive rational if there exists a positive rational weight basis for V
with support Q. Two weight bases which differ by only one overall scalar multiple will
have the same representation diagram and the same supporting graph. Two weight bases
are diagonally equivalent if there are orderings of these bases such that the corresponding
change of basis matrix is diagonal; their supporting graphs will be the same.

A weight basis B for a representation V is edge-minimizing if the supporting graph for
B minimizes the number of edges appearing in the supporting graph when compared to the
supporting graphs for all other weight bases for V . It is edge-minimal if no other weight
basis for V has its supporting graph appearing as an “edge-colored subgraph” (see Section 2)
in the supporting graph for B. We say that B is a modular (distributive) lattice basis if its
supporting graph is the Hasse diagram for a modular (distributive) lattice. The basis B is
solitary if no weight basis has the same supporting graph as B, other than those bases that
are diagonally equivalent to B. The adjectives edge-minimizing, edge-minimal, modular
lattice, and solitary will apply to supporting graphs and representation diagrams as well as
to weight bases. Since it can be seen that the number of distinct possible supporting graphs
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for a given representation V is finite, the number of solitary weight bases for V is also finite
(but conceivably zero).

Consider the adjoint representation of sl(3, C). This simple, rank two, eight-dimensional
Lie algebra has generators x1, y1, x2, and y2. Figure 1 shows representation diagrams for
three different bases of sl(3, C) under the adjoint action. In these pictures, edges are assumed
to be directed “up.” The number superimposed upon an edge is the color of the edge. On
each edge of color i we have attached two coefficients: a coefficient going “up” for the
action of xi and a coefficient going “down” for the action of yi . If an edge coefficient is not
depicted, it is unity. One can show that any weight basis for the adjoint representation of
sl(3, C) must have one of these three graphs as its supporting graph. It is shown in Section
4 that the last two of these, the “Gelfand-Tsetlin” supporting graphs, are edge-minimizing,
edge-minimal, solitary, distributive lattice supporting graphs. None of these four properties
are possessed by the “maximal” support of figure 1.

In this paper and its sequels, we construct or consider several families of representations
having bases which possess some or all of these extremal properties, as is summarized in
Table 1. Our investigation of extremal properties has usually required explicit descriptions
of the actions of generators on a specific weight basis. The only bases we know of with
such explicit descriptions appear in [3–7, 14–16, 25]. Most of the bases of Table 1 are
distinctive in another sense. With the exception of the bases for the G2 representations, each

Figure 1. Three bases for the adjoint representation of sl(3, C).
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Table 1. Results for various simple Lie algebras.

Family of
representations Bases considered Solitary? Edge-minimal? Modular lattice? Edge-minimizing?

An(λ)
The irreducible
representations of
sl(n + 1, C)

Both GT “left”
and “right”
bases

Yes: Section 4 Yes: Section 4 Yes: Section 4 Open

Cn(ωk )
The fundamental
representations of
sp(2n, C)

Both the “KN”
and “DeC”
constructions
of [3]

Yes: Section 5 Yes: Section 5 Yes: [2] Open

Irreducible
one-dimensional
weight space
representations

The (essentially)
unique weight
basis

Yes: Section 6 Yes: Section 6 Yes: Section 6 Yes: Section 6

Adjoint
representations of
the simple Lie
algebras

The n extremal
bases of [4]

Yes: [4] Yes: [4] Yes: [4] Yes: [4]

“Short adjoint”
representations of
the simple Lie
algebras

The m extremal
bases
corresponding
to the m short
simple roots

Yes: [4] Yes: [4] Yes: [4] Yes: [4]

Bn(ωk )
The fundamental
representations of
o(2n + 1, C)

Both the “KN”
and “DeC”
constructions
of [5]

Yes: [5] Yes: [5] Yes: [5] Open

Bn(kω1)
The “one-rowed”
representations of
o(2n + 1, C)
(Largest
irreducible
component of the
kth symmetric
powers of the
defining
representation)

The RS and
Molev bases
of [6]

Yes: [6] Yes: [6] Yes: [6] Open

G2(kω1)
The “one-rowed”
representations of
G2

The RS and
Molev bases
of [6]

Yes Yes Yes: [6] Open

Cn(λ), Dn(λ), Bn(λ)
The irreducible
representations of
sp(2n, C),
o(2n, C), and
o(2n + 1, C)

Molev’s bases in
[14–16]

Open Open Open Open
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basis “restricts irreducibly” (see Section 3) under the action of a Lie subalgebra obtained
by removing the generators corresponding to a certain node of the Dynkin diagram. The
distributive lattice bases obtained from [6] for the irreducible representations G2(kω1) do
not restrict irreducibly under the action of any Lie subalgebra obtained in this way; in recent
collaboration with the co-authors of that paper we have been able to show that these bases
are solitary and edge-minimal.

In Section 3 of this paper we develop tools which allow us to confirm in Sections 4, 5,
and 6 the entries in the first three rows of Table 1. In [4–6], we use these same techniques
to confirm the results of rows four through seven. The familiar Gelfand-Tsetlin bases of
[7] for the irreducible representations of sl(n + 1, C) are known to possess the distributive
lattice property (e.g. [19]); in Section 4 we show they are solitary and edge-minimal.
We apply this result to determine when the “left” and “right” Gelfand-Tsetlin bases for an
irreducible representation of sl(n+1, C) coincide. In Section 5 we show that the distributive
lattice bases constructed in [3] for the fundamental symplectic representations are solitary
and edge-minimal. In Section 5 and in [6] we use the solitary property to conclude that
certain of our bases coincide with Molev’s bases for certain symplectic and odd orthogonal
representations. In Section 6 we uniformly construct the irreducible one-dimensional weight
space representations by specifying explicit actions of the Chevalley generators in terms
of weight diagram data. In Section 6 we also use the combinatorial perspective developed
here to give another proof of the classification of irreducible one-dimensional weight space
representations. This result obtained by Howe (Theorem 4.6.3 of Howe [8]) was recently
re-derived by Stembridge [24] as a consequence of a broader classification result.

2. Definitions and preliminaries

We will only be using finite posets and directed graphs, and we will allow directed graphs
to have at most one edge between any two vertices. We identify a poset with its Hasse
diagram, the directed graph whose nodes are the elements of the poset and whose directed
edges are given by the covering relations. When we depict the Hasse diagram for a poset,
arrows on the edges will not be drawn; the direction of these edges is taken to be “up.” A
path P from s to t in a directed graph P is a sequence P = (s = s0, s1, . . . , sp = t) such
that either s j−1 → s j or s j → s j−1 for 1 ≤ j ≤ p. A loop in P is an edge s → s. Let
a(P) := |{ j : 1 ≤ j ≤ p, with s j−1 → s j }| be the number of ascents of the path P , and
let d(P) := |{ j : 1 ≤ j ≤ p, with s j → s j−1}| be the number of descents of P . See [22]
for definitions of other combinatorial terms.

Let I be any set. An edge-colored directed graph with edges colored by the set I is a
directed graph P together with a function assigning to each edge of P an element from
the set I . The dual P∗ is the set {t∗}t∈P together with colored edges t∗

i→s∗ (i ∈ I ) if and
only if s

i→t in P . If J is a subset of I , remove all edges from P whose colors are not in J ;
connected components of the resulting edge-colored directed graph are called J-components
of P . Let Q be another edge-colored directed graph with edge colors from I . If the vertices
of Q are a subset of the vertices of P and the edges of Q of color i are a subset of the
edges of P of color i for each i ∈ I , then Q is an edge-colored subgraph of P . Let P ⊕ Q
denote their disjoint union. Let P × Q be the Cartesian product {(s, t) | s ∈ P, t ∈ Q} with
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colored edges (s1, t1)
i→(s2, t2) if and only if s1 = s2 in P with t1

i→t2 in Q or s1
i→s2 in P

with t1 = t2 in Q. Two edge-colored directed graphs are isomorphic if there is a bijection
between their vertices that preserves edges and edge colors.

For a directed graph P , a rank function is a surjective function ρ : P −→ {0, . . . , l}
(where l ≥ 0) with the property that if s → t in P , then ρ(s) + 1 = ρ(t). We call l the
length of P with respect to ρ, and the set ρ−1(i) is the i th rank of P . Possessing a rank
function is sufficient (but not necessary) for a directed graph to be the Hasse diagram for
some poset; then we call P a ranked poset. A ranked poset that is connected has a unique
rank function. A ranked poset P is rank symmetric if |ρ−1(i)| = |ρ−1(l − i)| for 0 ≤ i ≤ l.
It is rank unimodal if there is an m such that |ρ−1(0)| ≤ |ρ−1(1)| ≤ · · · ≤ |ρ−1(m)| ≥
|ρ−1(m +1)| ≥ · · · ≥ |ρ−1(l)|. It is strongly Sperner if for every k ≥ 1, the largest union of
k antichains is no larger than the largest union of k ranks. In an edge-colored ranked poset P
we let li (t) denote the length of the i-component of P that contains t, and ρi (t) is the rank of
t within this component. We define the depth of t in its i-component by δi (t) := li (t)−ρi (t).

For semisimple Lie algebras and their representations our notation mostly follows [9].
For a root system 	 of rank n with simple roots {α1, . . . , αn}, we let 〈·, ·〉 denote the inner
product on the Euclidean space spanned by the roots in 	. For any root α, α∨ denotes the
coroot 2α

〈α,α〉 . We let {ω1, . . . , ωn} denote the associated fundamental weights. Let � denote
the collection of weights, that is, the Z-linear combinations of the fundamental weights. Let
ω0 := 0 be the zero weight. Let L be the complex semisimple Lie algebra with Chevalley
generators {xi , yi , hi }n

i=1 associated to the simple roots and satisfying the Serre relations as
in Proposition 18.1 of [9]. In this paper, representations φ : L → gl(V ) will be complex
and finite-dimensional. Lower case xi , yi , and hi denote elements of L, and upper case Xi ,
Yi , and Hi denote the corresponding images in gl(V ). A representation V of L is non-zero
if there is a v in V and a z in L for which z.v �= 0.

Let φ : L → gl(V ) be a representation ofL, and let µ ∈ �. A vector v in the weight space
Vµ has weight wt(v) := µ. The weight diagram for V is the set �(V ) := {µ ∈ � | Vµ �= 0},
together with the partial order µ ≤ ν in �(V ) if and only if ν −µ = ∑

kiαi , where each ki

is a non-negative integer. It can be seen that µ→ν in �(V ) if and only if there is a simple
root αi for which µ + αi = ν. In this case we write µ

i→ν. Following [10], let M be the
finite-dimensional integrable module for Uq (L) corresponding to the representation V of
L, where Uq (L) denotes the quantized enveloping algebra associated to L. Let A be the
local ring of rational functions in Q(q) well-defined at q = 0. Let (M,B) be a crystal
base for M , where M is a certain finitely generated A-module which generates M as a
Q(q)-vector space, and B is a certain basis for the Q-vector space M/qM. Let Ẽi and F̃i

denote Kashiwara’s “raising” and “lowering” operators respectively. The crystal graph G is
the edge-colored directed graph whose vertices correspond to the elements of B and whose
edges are defined by s

i→t if and only if Ẽi s = t if and only if F̃i t = s. (We direct crystal
graph edges so they go “up.”) The weight wt(t) of an element of G is the same as the weight
of t when thought of as an element of B.

When L is simple of rank n, it will be convenient to identify L by its root system
Xn , where X ∈ {A, B, C, D, E, F, G}. We will let L(λ) denote the equivalence class of
irreducible representations ofLwith highest weightλ. So, for example, we say an irreducible
representation of the Lie algebra Cn with highest weight ωk is of type Cn(ωk). We will also
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use the notation L(λ) to refer to an arbitrary irreducible representation of L with highest
weight λ. Our numbering of the nodes of the Dynkin diagrams for the simple Lie algebras
follows [9], p. 58. However, for a root system of type Cn we allow n = 2, and for Bn we
require n ≥ 3. The following simple linear algebra lemma will be useful later on.

Lemma 2.1 Let V be a representation of L, and suppose µ + αi = ν for weights µ and
ν in �(V ). Let q (respectively, r ) be the largest integer for which µ + qαi (respectively,
µ − rαi ) is in �(V ). If r − q < 0, then Xi injects Vµ into Vν . If r − q ≥ 0, then Yi injects
Vν into Vµ.

Proof: Let Si be the subalgebra of L with generators {xi , yi , hi }. Consider the Si -
submodule W := ⊕

p∈Z Vµ+pαi in V . Set j := r − q. The weight space W j coincides
with Vµ, and W j+2 = Vν . Decompose W to get W = W (1) ⊕ W (2) ⊕ · · · ⊕ W (s), with
each W (k) irreducible. Now W j = ⊕s

k=1 W (k)
j , and W j+2 = ⊕s

k=1 W (k)
j+2. Suppose j < 0.

If W (k)
j is non-empty, then so is W (k)

j+2, and then Xi (W
(k)
j ) = W (k)

j+2 by standard facts about
irreducible representations of sl(2, C). Then Xi injects W j into W j+2. Similarly, if j ≥ 0,
then Yi injects W j+2 into W j .

Lattices for Sections 4 and 5. Let N be a positive integer and let λ be a shape with no more
than N rows. (A “shape” is a collection of boxes arranged into left-justified rows, with each
row having at least as many boxes as the row below it.) A semistandard Young tableau T
of shape λ and with entries from {1, . . . , N + 1} is a filling of the boxes of the shape λ with
numbers from the set {1, . . . , N + 1} so that the rows of T weakly increase (left to right)
and the columns of T strictly increase (top to bottom). Let L(N , λ) be the collection of
semistandard Young tableaux of shape λ and with entries from {1, 2, . . . , N + 1}, ordered
by reverse componentwise comparison. That is, S ≤ T if and only if no entry in T is larger
than the corresponding entry in S. One can show that this partial order makes L(N , λ) a
distributive lattice. A tableau S is covered by a tableau T in L(N , λ) if T is obtained from
S by changing an i + 1 entry in S to an i , for some i (1 ≤ i ≤ N ). In this case, attach
the “color” i to the edge S

i→T in the Hasse diagram for L(N , λ).
Let 1 ≤ k ≤ N , and let λ be a column with k boxes. Set L(k, N + 1 − k) := L(N , λ). A

tableau T in L(k, N + 1 − k) can be thought of as a k-tuple {T1, . . . , Tk}, where 1 ≤ T1 <

· · · < Tk ≤ N + 1. So the column T = 2
4
5

in L(3, 5) corresponds to the 3-tuple {2, 4, 5}.
Now let 1 ≤ k ≤ n, and let N = 2n − 1. Following [2], a column T in L(k, 2n − k)
is KN-admissible if whenever Ta = p and Tb = 2n + 1 − p (where 1 ≤ p ≤ n), then
a + k + 1 − b ≤ p. It is DeC-admissible if whenever Ta = p and Tb = 2n + 1 − p (where
1 ≤ p ≤ n), we have b+1−a ≤ n+1− p. As an example, the column T = {2, 4, 5} is KN-
admissible in L(3, 5), but is DeC-inadmissible. More elegant (but lengthier) descriptions
of KN- and DeC-admissible columns appear in [2]. The KN-admissible columns were
developed by Kashiwara and Nakashima in [12] to describe crystal graphs associated to the
fundamental representations of sp(2n, C). The DeC-admissible columns were used as labels
to index weight bases for the fundamental representations of sp(2n, C) ([1]; see also [21]).
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We define the symplectic lattice LKN
C (n, ωk) (respectively, LDeC

C (n, ωk)) to be the set of all
KN-admissible (respectively, DeC-admissible) columns in L(k, 2n − k), with the induced
partial order. These posets are actually distributive sublattices of L(k, 2n − k) [2]; thus they
“inherit” its edge colors. We recolor the edges of the symplectic lattices by changing an
edge of color i to an edge of color 2n − i whenever n + 1 ≤ i ≤ 2n − 1.

3. Supporting graphs and representation diagrams

This section presents results which expand on the definitions of “supporting graph” and
“representation diagram” and which will be used to study the weight bases of this and future
papers. Let P be the representation diagram for a weight basis {vt}t∈P of a representation V
of L. We sometimes omit any reference to the associated weight basis and simply say that
P is a representation diagram for V and that the underlying edge-colored directed graph is
a supporting graph, or support, for V . We say that the representation diagram (or support)
P realizes the representation V . Two supporting graphs for V are isomorphic if they are
isomorphic as edge-colored directed graphs. The coefficients ct,s (the “x-coefficient”) and
ds,t (the “y-coefficient”) are the edge-coefficients associated to the edge s

i→t in P . For
t ∈ P , we set wt(t) := wt(vt), and we let Pµ := {t ∈ P | wt(t) = µ} denote the µ-weight
space of P .

3.1. Basic facts

Lemma 3.1 Let V be a representation of L.
A. Let P be a support for V . If s

i→t in P, then wt(s) + αi = wt(t). It follows that two
vertices in P can have at most one edge between them, and in addition P has no loops.

B. If two weight bases for V are diagonally equivalent, and have representation diagrams
P and Q respectively, then their supports are isomorphic. Moreover, the product of the
“x” and “y” coefficients for an edge in P equals the product of the coefficients associated
to the corresponding edge in Q.

C. Two weight bases for an irreducible representation V which have the same representa-
tion diagram must be scalar equivalent.

D. Let P be the support for a basis {vt} of V, and let Q be a connected component of P.
Then the linear span of {vs | s ∈ Q} is a submodule of V with supporting graph Q.

E. Let J be any subset of {1, . . . , n}. Let P be a support for V, and let Q be any J -
component of P. Then Q is the Hasse diagram for a ranked poset.

F. If V is irreducible, then each supporting graph for V is connected and has unique
maximal and minimal elements.

Proof: Parts A, B, and D follow from the definitions. For part C, let {vt}t∈P and {wt}t∈P

be two weight bases with representation diagram P . Let T : V −→ V be the linear map
induced by T : vt �→ wt for all t ∈ P . Notice that for 1 ≤ i ≤ n, Xi (T vs) = ∑

t:s
i→t ct,swt =

T (Xivs). Similarly T commutes with each Yi . Since T therefore commutes with the action
of each element of L, by Schur’s Lemma T must be a scalar multiple of the identity trans-
formation. For part E, use part A to see that P (and therefore the J -component Q in P)
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is acyclic. For a path P in P let ai (P) (respectively, di (P)) denote the number of ascents
(respectively, descents) on edges of color i . For distinct elements s and t in Q, we write
s < t in Q if there is a path P in Q from s to t consisting only of ascents. This is a partial
ordering on the elements of Q since Q is acyclic. It is not hard to see that s is covered by
t in this partial order if and only if there is an edge s

i→t in Q for some i . One can see that
there is a minimal element m such that for any t in Q and any path P in Q from m to t,
the number of descents d(P) of P does not exceed the number of ascents a(P). For a path
P from m to t in Q, we get wt(t) − wt(m) = ∑n

i=1(ai (P) − di (P))αi by part A. Define
ρ(t) := ∑n

i=1(ai (P) − di (P)). One can now see that the definition of ρ(t) does not depend
on the path chosen from m to t and that ρ is the unique rank function for Q. For part F, if
V is irreducible, part D implies that any supporting graph for V must be connected. For the
remaining claim of part F, observe that a maximal (respectively, minimal) element of any
supporting graph corresponds to a maximal (respectively, minimal) weight basis vector.

The quantity 2ρi (t) − li (t) introduced in the following lemma appears throughout this
paper and can also be written ρi (t) − δi (t). In [12], ρi (t) − δi (t) is notated φi (t) − εi (t).

Lemma 3.2 Let V be a representation of L.
A. Let P be the supporting graph for a weight basis {vt}t∈P for V . Let 1 ≤ i ≤ n and let

t ∈ P. Then Hivt = (2ρi (t) − li (t))vt. Thus, wt(t) = wt(vt) = ∑n
i=1(2ρi (t) − li (t))ωi .

B. Elements in a connected support with the same weight have the same rank. Connected
supports for the same representation have the same rank generating function.

C. Let P and Q be supports for an irreducible representation V . Suppose Q is an edge-
colored subgraph of P. Let t and t′ be corresponding elements of P and Q respectively.
Then wt(t) = wt(t′).

D. Let P be any supporting graph for V . Let µ
i→ν in �(V ). Then there are at least

r edges between the vertex subsets Pµ and Pν, where r = min(|Pµ|, |Pν |), whose
ends are mutually disjoint. In particular, there exists at least one edge s

i→t in P with
wt(s) = µ and wt(t) = ν.

E. If V is non-zero, then there exists a connected supporting graph for V if and only if the
weight diagram for V is connected.

F. If V is non-zero, has a weight space of dimension greater than one, and has a connected
weight diagram, then it has at least two distinct supporting graphs.

Proof: For part A, it suffices to show the following: if Q is a connected supporting graph
for a representation of sl(2, C), then Hvt = (2ρ(t) − l)vt, where ρ is the rank function of
Lemma 3.1.E for Q, and l is the length of Q. For each t in Q, define mt by Hvt = mtvt. By
Lemma 3.1.A, if s → t, then ms+2 = mt. Let x ∈ Q with ρ(x) = 0. Then the connectedness
of Q implies that {mx, mx +2, . . . , mx +2l} is the complete list of eigenvalues for H . Since
these all have the same parity, it follows from Theorem 7.2 of [9] that mx = −(mx + 2l),
and hence mx = −l. For any t in Q we have mt −mx = 2ρ(t) by the proof of Lemma 3.1.E,
whence mt = 2ρ(t) − l. The second assertion of part B follows from the first. The proof of
the first assertion of B is similar to the proof of Lemma 3.1.E. Similar reasoning also works
in part C to show that corresponding elements t and t′ in P and Q have the same weight.
For part D, we apply Lemma 2.1. First, suppose Xi injects Vµ into Vν . Set r = |Pµ|. Then
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it is possible to find r edges s j
i→t j (1 ≤ j ≤ r ) for which s j �= sk in Pµ and t j �= tk in Pν

for j �= k. Use a similar argument if Yi injects Vν into Vµ. We suppress the details of the
lengthy proofs of parts E and F. In each proof, the key idea is to begin with a representation
diagram and then use a local change of basis to produce a new representation diagram with
the desired properties. We only use part F for the “2 ⇒ 1” part of Proposition 6.3, and part
E is only needed for the proof of part F.

Given some representation V of L, a Zariski topology argument can be used to show that
almost all weight bases for V have the unique maximal support possible: If µ1 and µ2 are
two weights for V of multiplicities m2 and m1 such that µ2 = µ1 + αi for some simple
root αi , then there will be a total of m1m2 edges in this maximal support between vertices
of weight µ1 and vertices of weight µ2. The edges in the supporting graphs of Table 1 are
much more sparse than the edges in the corresponding maximal supporting graph.

Lemma 3.3 Let V be a representation of L.
A. Let P be a support for V, and let Q be a support for another representation W of L.

Then the edge-colored directed graphs P ⊕ Q, P × Q, and P∗ are supports for V ⊕W,

V ⊗ W, and V ∗ respectively. If P and Q are isomorphic as supports, then V and W
are isomorphic representations.

B. Let P be a support for a representation U of K, and let Q be a support for V . Let L
act trivially on U, and let K act trivially on V . Then U and V become K⊕L-modules,
and P × Q is a supporting graph for the K ⊕ L-module U ⊗ V .

Proof: Part B of this lemma follows from part A. For part A, the fact that P ⊕ Q is a
supporting graph for V ⊕ W follows from the definitions. Now let {vs}s∈P and {wt}t∈Q

be (respectively) bases for the representations V and W with supporting graphs P and Q.
Consider the basis {vs ⊗ vt | (s, t) ∈ P × Q} for V ⊗ W . Using the fact that elements of
L act on simple tensors according to the “Leibniz” rule, one can see that the edges of the
edge-colored poset P × Q exactly describe the supports for the actions of the generators
of L on V ⊗ W in this basis. Next, let { ft} be the basis for V ∗ dual to the basis {vt} for
V , so ft(vx) = δt,xvx. Act on these basis vectors with elements of L in the usual way. By
identifying the basis vector ft with the element t∗, one can see that the edges for the edge-
colored poset P∗ exactly describe the supports for the actions of the generators for L with
respect to this basis. For the second claim of part A, note that Lemma 3.2.A implies that V
and W will have the same formal character:

∑
µ∈�(dim Vµ)e(µ) = ∑

µ∈�(dim Wµ)e(µ) in
the notation of [9], Section 22.5.

3.2. Producing representation diagrams and supporting graphs

With the exception of the Gelfand-Tsetlin bases and Molev’s bases, all of the bases of
Table 1 were obtained by first finding directed graphs which seemed likely to be candidates
for supporting graphs and then “working backwards” to produce the bases. That is, in each
case a representation diagram was produced without a priori knowledge of the associated
weight basis. This process begins with an edge-colored ranked poset P with colors from
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{1, . . . , n}. Then to each edge s
i→t, an “x” coefficient ct,s and a “y” coefficient ds,t are

attached. An edge-colored ranked poset with coefficients so attached is called an edge-
labelled poset. The following proposition says how to check that an edge-labelled poset P
is a representation diagram for a representation of a semisimple Lie algebra. It improves
on the techniques of [3]. By [11], it is not necessary to check the poset analogs of the Serre
relations S+

i j and S−
i j in P since the representing space V [P] is finite-dimensional.

Proposition 3.4 Let P be an edge-labelled (ranked) poset with edge colors from {1, . . . , n}.
Let V [P] be the complex vector space freely generated by {vt}t∈P , and for 1 ≤ i ≤ n define
linear maps Xi and Yi on V [P] by

Xivs =
∑

t:s
i→t

ct,svt and Yivt =
∑

s:s
i→t

ds,tvs.

Then V [P] is a representation of L with Lie algebra map L → gl(V [P]) induced by
xi �→ Xi and yi �→ Yi and P is a representation diagram for the representation V [P] if
and only if (1) [Xi , Y j ] = 0 for i �= j ; (2) [Xi , Yi ]vt = (2ρi (t) − li (t))vt for 1 ≤ i ≤ n and
for each t in P; and (3) for 1 ≤ i ≤ n, we have 2ρi (s) − li (s) + 〈α j , α

∨
i 〉 = 2ρi (t) − li (t)

whenever s
j→t with i �= j .

Proof: Set Hi := [Xi Yi ]. In the forward direction, conclusion (1) is immediate, and (2) is
just Lemma 3.2.A. Suppose s

j→t and let 1 ≤ i ≤ n. Set mi (r) := 2ρi (r)−li (r) for any r in P .
Note that [Hi X j ](vs) = ∑

t′:s
j→t′ ct′,s(mi (t′) − mi (s))vt′ . But [Hi , X j ] = 〈α j , α

∨
i 〉X j . Thus

ct,s(mi (t)−mi (s)) = ct,s〈α j , α
∨
i 〉. An argument using [Hi Y j ] shows that ds,t(mi (s)−mi (t)) =

−ds,t〈α j , α
∨
i 〉. Now one of ct,s or ds,t is non-zero, so 2ρi (t)−li (t)−2ρi (s)+li (s) = 〈α j , α

∨
i 〉,

which is conclusion (3).
For the converse we must show that the Serre relations (S1), (S2), (S3), (S+

i j ), and (S−
i j )

from [9] Proposition 18.1 hold for Xi , Yi , and Hi . (S1) is obvious. (S2) follows from
assumptions (1) and (2) of the proposition statement. (S3) follows from computations
similar to the previous paragraph, together with the observation that 2ρi (s) − li (s) + 2 =
2ρi (t) − li (t) whenever s

i→t. In Proposition B.1 of [11], it is observed that the integrable
finite-dimensional Uq (L)-modules are the same as the integrable finite-dimensional Ûq (L)-
modules, where Ûq (L) has the same generators as Uq (L) but without the quantum analogs
of the Serre relations (S+

i j ) and (S−
i j ). At q = 1 this means that finite-dimensional L̂-modules

are the same as the finite-dimensional L-modules, where L̂ is the Lie algebra with the
same generators as L but without the Serre relations (S+

i j ) and (S−
i j ). To see this, let φ :

L̂ → gl(V [P]) be the representation induced by xi �→ Xi and yi �→ Yi . Then imφ is
a finite-dimensional L̂-module via w.φ(z) := [φ(w), φ(z)]. Let Si := span{xi , yi , hi } in
L̂. Observe that φ(y j ) (i �= j) is a maximal vector under the action of Si on imφ. The
Si -submodule W of imφ generated by φ(y j ) is finite-dimensional and standard cyclic, and
therefore irreducible. But hi .φ(y j ) = φ([hi y j ]) = −〈α j , α

∨
i 〉φ(y j ), so W has dimension

1 − 〈α j , α
∨
i 〉. Thus we kill φ(y j ) if we act on it by yi in succession 1 − 〈α j , α

∨
i 〉 times.

Therefore φ(ad(yi )1−〈α j ,α
∨
i 〉(y j )) = 0. Similarly φ(ad(xi )1−〈α j ,α

∨
i 〉(x j )) = 0.



266 DONNELLY

Tableaux or other combinatorial objects are often used to “explain” the weight multi-
plicities of a representation. Sometimes obvious partial orders on these objects will pro-
duce supporting graphs for the representation. We say a set of objects P with weight rule
wt : P → �(V ) splits the multiplicities of a representation V if |wt−1(µ)| = dim(Vµ) for
each weight µ for V . If P is also an edge-colored directed graph with colors from {1, . . . , n}
and such that wt(s) + αi = wt(t) whenever s

i→t, then we say that the edges in P preserve
weights. Any supporting graph for a representation V splits the multiplicities of V , and its
edges preserve weights. The following result can make Proposition 3.4 easier to apply in
practice. Part (1) of this proposition formulates rank symmetry and unimodality results due
to Dynkin in the language of edge-colored posets; it can be used to obtain rank symmetry
and unimodality results for posets that are not known to satisfy the representation diagram
condition of Proposition 3.11.

Proposition 3.5 Let V be a representation of L. Let P be an edge-colored directed graph
with weight rule wt : P → �(V ). For any t in P, write wt(t) = ∑n

i=1 mi (t)ωi . (1) Suppose
that P is connected, splits the multiplicities of V, and that the edges of P preserve weights.
Then P is the Hasse diagram for a rank symmetric and rank unimodal poset. (2) In addition
to (1), suppose that for each t in P and for each i, we have mi (t) = 2ρi (t) − li (t). Then
2ρi (s) − li (s) + 〈α j , α

∨
i 〉 = 2ρi (t) − li (t) whenever s

j→t for 1 ≤ i �= j ≤ n. Moreover,
whenever µ

i→ν is an edge in the weight diagram �(V ), there exists an edge s
i→t in P with

wt(s) = µ and wt(t) = ν.

Proof: Apply the argument in the proof of Lemma 3.1.E to the directed graph P to see
that P is the Hasse diagram for a ranked poset. The action of a “principal three-dimensional
subalgebra” can be applied to obtain the remaining conclusions of part (1) (see for example
[18] and the references therein). For part (2), assume that 2ρi (r) − li (r) = 〈wt(r), α∨

i 〉
for any r in P and any i . If s

j→t in P , then a simple calculation shows 2ρi (t) − li (t) =
2ρi (s) − li (s) + 〈α j , α

∨
i 〉. Now suppose that µ

i→ν in �(V ). We wish to show that there
exist s and t in P for which s

i→t with wt(s) = µ and wt(t) = ν. If not, then any s in P of
weight µ is maximal in its i-component. Thus 2ρi (s) − li (s) is non-negative. Similarly, any
t in P of weight ν is minimal in its i-component, and hence 2ρi (t) − li (t) is non-positive.
But this contradicts the fact that 2ρi (t) − li (t) = 〈wt(t), α∨

i 〉 = 〈wt(s), α∨
i 〉 + 2 = 2ρi (s) −

li (s) + 2.

The next result follows easily from standard facts about crystal graphs. Thus the crystal
graph G associated to an irreducible representation V has enough vertices of correct weight
and its edges are oriented in the manner needed for G to serve as a supporting graph for V .
However, Proposition 6.3 shows that G can serve as a support for V only when all weight
spaces of V are one-dimensional.

Lemma 3.6 Let V be an irreducible representation of L. With the weight rule of Section
2, the crystal graph G associated to V is a connected edge-colored directed graph which
satisfies the hypotheses of parts (1) and (2) of Proposition 3.5.
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3.3. Restricting to the action of a subalgebra

For any J ⊂ {1, 2, . . . , n} the (semisimple) subalgebra K with Chevalley generators
{xi , yi , hi }i∈J is a Levi subalgebra of L. Let P be a supporting graph for a representa-
tion V of L. Let Q be the edge-colored subgraph obtained from P by removing all edges
whose colors are not in the set J . Observe that Q is a supporting graph for the K-module
V . A connected component of Q is called a K-component of P . An element t of P is
K-maximal if it is maximal in some K-component of P . Write wt(t) = ∑n

i=1 mt
iωi . The

K-weight of t is wtK(t) = ∑
i∈J mt

iωi . We say that P (or any weight basis with sup-
port P) restricts irreducibly under the action of K if the connected components of Q
realize irreducible representations of K. More generally, consider a “chain” of Levi sub-
algebras L1 ⊂ · · · ⊂ Lm−1 ⊂ Lm = L. For the supporting graph P , form diagrams
Qm−1, . . . , Q2, Q1 by successively removing edges from P as described above. We say
that P (or any associated weight basis) restricts irreducibly for the chain of subalgebras
L1 ⊂ · · · ⊂ Lm−1 ⊂ Lm = L if the connected components of Qi realize irreducible
representations of Li , where 1 ≤ i ≤ m − 1. The following lemmas are used to show
that bases considered in Sections 4 and 5 and in forthcoming papers have the solitary and
edge-minimal properties.

Lemma 3.7 (Branching Lemmas) Let V be a representation of L.
A. Let L1 ⊂ · · · ⊂ Lm be a chain of Levi subalgebras of L := Lm. Let P be a supporting

graph for V that restricts irreducibly for this chain of subalgebras. Suppose that distinct
Li−1-maximal elements in any Li -component of P have distinct Li -weights. Suppose
that each irreducible component in the decomposition of V as an L1-module has only
one possible supporting graph. Then P is solitary and edge-minimal, and a weight basis
for V restricts irreducibly for the chain of subalgebras L1 ⊂ · · · ⊂ Lm if and only if it
has supporting graph P.

B. Let P be the supporting graph for a weight basis {vs}s∈P of V . LetK be a Levi subalgebra
of L, and suppose that P restricts irreducibly under the action of K. Suppose P has
the property that if {ws}s∈P is any weight basis for V with support P and if t is any K-
maximal element of P, then wt is a scalar multiple of vt. Suppose that theK-components
of P are solitary as supports for representations of K. Then P is solitary as a support
for the L-module V .

C. Suppose V is irreducible, and let P and Q be supports for V . Suppose that Q is an
edge-colored subgraph of P. Let K be a Levi subalgebra of L, and suppose P restricts
irreducibly under the action of K. If the K-components of P are edge-minimal, then
the K-components of P and the K-components of Q are the same.

Proof: For part A, let {vs}s∈P be any weight basis for V with support P . Let Q be the
supporting graph for another weight basis {wt}t∈Q which also restricts irreducibly for the
chain of subalgebras. We show that {wt}t∈Q is diagonally equivalent to {vs}s∈P . Regard V as
anLm−1-module, and supposeLm−1(µ) occurs with multiplicity k > 0 in the decomposition
of V . Let {wt1 , . . . , wtk } be theLm−1-maximal vectors ofLm−1-weight µ. Also, let s1, . . . , sk

beLm−1-maximal elements of P ofLm−1-weight µ. Now the vector subspace of V ofLm−1-
maximal vectors ofLm−1-weight µ has dimension k and is spanned by {vs1 , . . . , vsk }. But the
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Lm-weights of the vsi ’s are distinct, so no non-trivial linear combination of these vectors can
again be anLm-weight vector. Thus each wti is a scalar multiple of some vs j . Apply the same
argument to the Li−1-maximal elements inside the Li -components of P , for 2 ≤ i ≤ m.
Thus, for each Li−1-maximal s in P , there is a corresponding Li−1-maximal element t in
Q so that s and t have the same Li−1-weight and vs and wt differ only by some scalar
factor. The only elements of P and Q we have not yet accounted for are the non-maximal
elements of the L1-components. Pick corresponding L1-maximal elements s in P and t in
Q. In particular, s and t have the same L1-weight, so their L1-components (C(s) and C(t)
respectively) realize the same irreducible representation of L1. But by hypothesis, there
is only one possible supporting graph for this irreducible L1-module. Thus if s′ in C(s)
corresponds to t′ in C(t), then we see that vs′ and wt′ only differ by a scalar factor. So
{wt}t∈Q is diagonally equivalent to {vs}s∈P . In particular, P is solitary.

Now suppose Q is a support for V and is contained in P as an edge-colored subgraph. We
claim that Q restricts irreducibly for the chain of subalgebras L1 ⊂ · · · ⊂ Lm . Indeed, each
Li -component of Q is contained in anLi -component of P , where 1 ≤ i ≤ m−1. Now there
are exactly as many Li -components of P as there are factors in the decomposition of the Li -
module V . Thus, there is exactly one Li -component of Q contained in any Li -component
of P . It follows that each Li -component of Q realizes an irreducible representation of
Li . But now any basis with support Q restricts irreducibly for the chain of subalgebras
L1 ⊂ · · · ⊂ Lm , and the previous paragraphs imply that Q = P . Therefore P is edge-
minimal.

For part B, let {ws}s∈P be any other weight basis with support P . Let t beK-maximal, and
let Pt be the K-component of P containing t. By hypothesis the basis elements vt and wt

only differ by some scalar factor. Then span{vx | x ∈ Pt} = span{wx | x ∈ Pt} as subspaces
and as irreducible K-submodules of V . But since Pt is solitary as a support for K, we see
that each vx (x in Pt) only differs from wx by some scalar factor. It follows that {vs}s∈P

and {ws}s∈P are diagonally equivalent. For part C, argue as in the final paragraph of the
proof of part A that each K-component of P contains one and only one K-component of Q.
Thus the K-maximal elements of Q are exactly the same as those of P . By Lemma 3.2.C,
correspondingK-maximal elements in P and Q will have the sameL-weight, and hence the
same K-weight. It follows that corresponding K-components of P and Q realize the same
irreducible representation of K. But since each K-component C of P is edge-minimal, then
the corresponding K-component of Q must be the same as C .

Proposition 3.8 Let U and V be irreducible representations for semisimple Lie algebras
K and L respectively, with respective supporting graphs P and Q. If P and Q are both
solitary (respectively, edge-minimal, positive rational, modular lattice) supports for U and
V, then P × Q is a solitary (respectively edge-minimal, positive rational, modular lattice)
support for the K ⊕ L-module U ⊗ V .

Proof: Let {us}s∈P (respectively, {vt}t∈Q) be a weight basis for U (respectively, V ) with
support P (respectively, Q). The basis of simple tensors {us ⊗ vt}(s,t)∈P×Q will have the
edge-colored directed graph P × Q as its support. If the edge-coefficients for the basis
{us}s∈P for U and for the basis {vt}t∈Q for V are positive rational, then the edge-coefficients
for {us ⊗ vt}(s,t)∈P×Q will be as well. If P and Q are modular lattices, then P × Q is
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also a modular lattice since “meets” and “joins” can be formed componentwise in P × Q.
Suppose P and Q are both edge-minimal, and suppose a support S for U ⊗ V is contained
in P × Q as an edge-colored subgraph. Apply Lemma 3.7.C to S and P × Q to see that their
K-components are the same. The K-components of P × Q are just the copies of P in this
product of graphs. Likewise, we also see that S and P × Q have the same L-components
(each of which is a copy of Q). Thus, S = P × Q as edge-colored graphs. Since this is true
for any such S, it follows that P × Q is edge-minimal.

Suppose now that P and Q are solitary, and let {w(s,t)}(s,t)∈P×Q be another weight basis
for U ⊗ V that has support P × Q. Let m be the unique maximal element in P and m′

be maximal in Q. The maximal vector w(m,m′) must be a scalar multiple of um ⊗ vm′ . Let
Qm = {(m, t)}t∈Q be the L-component of P × Q that has (m, m′) as its maximal element.
Now each of span{um ⊗vt}t∈Q and span{w(m,t)}t∈Q is isomorphic to V as an L-module, and
they have the same maximal vector (up to some scalar). Then they coincide as subspaces
of U ⊗ V . Since Qm

∼= Q is solitary, then each basis vector w(m,t) (t ∈ Q) is just a scalar
multiple of um ⊗ vt. Observe that if (s, t) is K-maximal in P × Q, then s = m. Also, the
K-components of P × Q are just copies of P . Then P × Q and the basis of simple tensors
for U ⊗ V satisfy the hypotheses of Lemma 3.7.B, which implies that P × Q is a solitary
support for U ⊗ V .

We conjecture that the edge-minimizing analog of this result is also true. This is related
to the question: if P and Q are edge-minimizing supports for representations U and V of
L, is P ⊕ Q an edge-minimizing support for the representation U ⊕ V of L? For evidence
in the affirmative, see Proposition 3.10 below.

3.4. The rank one case

The weight spaces of A1(kω1) each have dimension one, so there is only one weight basis up
to diagonal equivalence. By Lemma 3.1.B, there is only one possible support for A1(kω1).
This support is automatically solitary, edge-minimal, and edge-minimizing. The explicit
basis of Section 7 of [9] has positive rational (in fact integral) support. This support is
easily seen to be a chain of length k, which is a distributive lattice. The following lemma
characterizes all possible representation diagrams for the irreducible representations of
sl(2, C).

Lemma 3.9 An edge-labelled poset P with all edges having the same color is a repre-
sentation diagram for A1(kω1) if and only if P is a chain of length k and the product of the
edge coefficients on an edge s → t is r (k + 1 − r ), where r is the rank of t.

Proof: In the forward direction we have already observed that P must be a chain of length
k. Let tr denote the unique element of P of rank r (0 ≤ r ≤ k). Let cr,r−1 and dr−1,r be the
“x” and “y” coefficients on the edge tr−1 → tr (where 1 ≤ r ≤ k). Now Hvt0 = −kvt0

(Lemma 3.2.A) while [X, Y ](vt0 ) = XYvt0 − Y Xvt0 = −c1,0d0,1vt0 , and so c1,0d0,1 = k.
To see that cr,r−1dr−1,r = r (k + 1 − r ) for tr−1 → tr , induct on r . For the converse, check
condition (2) of Proposition 3.4 with a simple computation.
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The following proposition implies that the connected components of an edge-minimizing
supporting graph for a representation V of sl(2, C) correspond to the irreducible components
in the decomposition of V .

Proposition 3.10 Let P be a supporting graph for some representation of sl(2, C). Then
P is edge-minimizing if and only if P is a direct sum of chains.

Proof: Let V be a representation for sl(2, C) with supporting graph P that is a direct sum
of chains. Set Pi := {t ∈ P | wt(t) = i} for any integer i , so |Pi | = dim(Vi ). It is easy to
see that there are precisely r edges between Pi and Pi+2, where r = min(|Pi |, |Pi+2|). By
Lemma 3.2.D, this is the least number of edges we can have between the i and i + 2 weight
spaces in any support for V . So P is an edge-minimizing support for V . Now suppose
Q is another edge-minimizing support for V . Since P has the minimum number of edges
between Pi and Pi+2 allowed by Lemma 3.2.D, the graph Q must have the minimum number
of edges between Qi and Qi+2. Let i ≥ 0. Since Y injects Vi+2 into Vi by Lemma 2.1, each
element in Qi+2 covers at least one element in Qi , and hence exactly one element. And
since dim Y (Vi+2) = dim Vi+2, we see that for each t in Qi+2, there is a unique element in
Qi covered by t. Similarly, one can show that when i < 0, then for each s in Qi , there is
a unique element in Qi+2 that covers s. Taken together, these say that each element of Q
is covered by at most one other element, and covers at most one other element. So Q is a
direct sum of chains.

Inside any semisimple Lie algebra L with Chevalley generators {xi , yi , hi }n
i=1 are certain

three-dimensional subalgebras called principal TDS’s. One such principal TDS is spanned
by x := ∑

ci xi , y := ∑
yi , and h := ∑

ci hi , where

ci := 4
n∑

j=1

〈ωi , ω j 〉
〈α j , α j 〉 .

Each ci is positive since 〈ωi , ω j 〉 ≥ 0 for 1 ≤ j ≤ n. It can be seen that [xy] = h,
[hx] = 2x , and [hy] = −2y, so that {x, y, h} are Chevalley generators for a copy of
sl(2, C) inside L. Let P be a representation diagram for a representation of L. Then P
becomes a representation diagram for sl(2, C) under the induced action of this principal
TDS if we multiply the “x-coefficients” on each edge of color i by ci and then change
all the edge colors to black. If P is connected, then in the language of [17], x acts as an
order-raising operator and y acts as a lowering operator on the vector space V [P] spanned
by {vt}t∈P . Now apply Proctor’s “Peck Poset Theorem” [17] to get:

Proposition 3.11 Let P be a connected supporting graph for a representation V of L.
Then P is the Hasse diagram for a rank symmetric, rank unimodal, and strongly Sperner
poset.
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4. The Gelfand-Tsetlin bases

For an irreducible gl(n+1, C)-module, it is known that the Gelfand-Tsetlin basis [7] is “de-
termined by” the restrictions to the “upper left” subalgebras gl(1, C) ⊂ · · · ⊂ gl(n, C) ⊂
gl(n +1, C). A second Gelfand-Tsetlin basis is determined by the restrictions to the “lower
right” subalgebras gl(n + 1, C) ⊃ gl(n, C) ⊃ · · · ⊃ gl(1, C). View Ak inside An as the
Levi subalgebra generated by {xi , yi , hi }k

i=1; that is, Ak is the subalgebra whose gener-
ators correspond to the k leftmost nodes of the Dynkin diagram for An . Let A′

k be the
subalgebra inside An generated by {xi , yi , hi }n

i=n+1−k . Let V be an irreducible An-module.
Unlike the gl(n + 1, C) case, an irreducible An−1-module can appear with multiplicity in
the decomposition of the An−1-module V . We use combinatorial arguments to see that that
the Gelfand-Tsetlin bases for V are nonetheless uniquely determined by the restrictions
A1 ⊂ · · · ⊂ An−1 ⊂ An (respectively, An ⊃ A′

n−1 ⊃ · · · ⊃ A′
2 ⊃ A′

1). In Theorem
4.4 we show these bases are solitary and edge-minimal. We use the combinatorics of their
respective supporting graphs to determine when the two Gelfand-Tsetlin bases coincide
(Corollary 4.5).

Throughout this section, λ = a1ω1 + a2ω2 + · · ·+ anωn denotes a dominant weight, and
λsym := anω1+an−1ω2+· · ·+a1ωn . Let shape(λ) be the shape with an columns of length n,
an−1 columns of length n−1, etc. The Gelfand-Tsetlin lattice LGT-left

A (n, λ) is the edge-colored
distributive lattice L(n, shape(λ)) of Section 2. We define the GT-left basis for An(λ) to be
the version of the GT basis obtained in [16]. As Proctor observed in [19], LGT-left

A (n, λ) is the
supporting graph for the GT-left basis. Attach the positive rational coefficients of [16] to the
edges of LGT-left

A (n, λ). Let L denote the edge-colored poset dual to LGT-left
A (n, λ). For an edge

t∗
i→s∗ in L attach coefficients cs∗,t∗ := ds,t and dt∗,s∗ := ct,s. The Gelfand-Tsetlin lattice

LGT-right
A (n, λ) is the edge-labelled distributive lattice L , after the edges have been re-colored

by the rule i �→ n + 1 − i , where 1 ≤ i ≤ n. It will be convenient to identify the vertex in
LGT-right

A (n, λ) associated to the semistandard tableau T as an element T ′ in L(n, shape(λsym)),
where the (a1 + · · · +an + 1 − i) column of T ′ is just the setwise complement of the i th
column of T in {1, . . . , n +1}. One can see that LGT-right

A (n, λ) is a representation diagram for
some basis of An(λ). This basis is unique up to an overall scalar by Lemma 3.1.C. Call this
the GT-right basis. The adjectives “left” and “right” are motivated by Theorem 4.4 below.
(The GT-right basis is also easily obtained from the GT-left basis by acting on V with the
image of An under the outer automorphism of An induced by the Dynkin diagram.) We
record these observations in the following proposition.

Proposition 4.1 The GT-left and GT-right bases are positive rational bases for the rep-
resentation An(λ) with distributive lattice supporting graphs LGT-left

A (n, λ) and LGT-right
A (n, λ)

respectively.

Corollary 4.2 For T in LGT-left
A (n, λ) or LGT-right

A (n, λ), let mT
j denote the number of j entries

in T . If T is in LGT-left
A (n, λ), then the weight of T is

∑n
i=1(mT

i −mT
i+1)ωi . If T is in LGT-right

A (n, λ),
then the weight of T is

∑n
i=1(mT

n−i − mT
n+1−i )ωi .

Proof: From the edge-coloring rule for LGT-left
A (n, λ) it follows that ρi (T ) is the number

of columns of T with an i but without an i + 1. Also, li (T ) is ρi (T ) plus the number of
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columns of T with an i + 1 but without an i . Then 2ρi (T ) − li (T ) = mT
i − mT

i+1. Use a
similar argument for LGT-right

A (n, λ). Now apply Lemma 3.2.A.

Lemma 4.3 Let S be a semistandard Young tableau which is An−1-maximal in LGT-left
A (n, λ),

and set µ = wtAn−1 (S). Then the An−1-component containing S is isomorphic to LGT-left
A (n −

1, µ). Moreover, there is no other An−1-maximal tableau in LGT-left
A (n, λ) with the same An-

weight as S.

Proof: One can see that a tableau S in LGT-left
A (n, λ) will be An−1-maximal if and only

if each column of S of length i has entries {1, 2, . . . , i} or {1, 2, . . . , i − 1, n + 1}. Let
bi be the number of columns of S of length i which do not have an n + 1 entry; then
S has ai − bi columns of length i with an n + 1 entry. So mS

i = bi + ∑n
j=i+1 a j when

1 ≤ i ≤ n, and mS
n+1 = ∑n

j=1(a j − b j ). By Corollary 4.2 the An−1-weight of S is
µ = wtAn−1 (S) = ∑n−1

i=1 (bi + ai+1 − bi+1)ωi . The shape corresponding to the An−1-weight
µ can be obtained from S by removing all boxes with an n + 1 entry and all columns
of length n which do not have an n + 1 entry. Now observe that the An−1-component
containing S is just LGT-left

A (n − 1, µ). Suppose T is another An−1-maximal element, and
suppose S and T have the same An-weight. Let ci be the number of columns of T of
length i which do not have an n + 1 entry. Then bi + ai+1 − bi+1 = ci + ai+1 − ci+1 for
1 ≤ i ≤ n, so b1 − c1 = b2 − c2 = · · · = bn − cn . But mS

n − mS
n+1 = mT

n − mT
n+1 gives us

(b1 − c1) + · · · + (bn−1 − cn−1) + 2(bn − cn) = 0. In light of the previous statement, we
see that bi = ci for 1 ≤ i ≤ n, so S = T .

Theorem 4.4 The GT-left and GT-right bases for An(λ) are solitary and edge-minimal.
The GT-left (respectively, GT-right) basis is the unique weight basis for An(λ) up to diagonal
equivalence which restricts irreducibly for the chain of subalgebras A1 ⊂ · · · ⊂ An−1 ⊂ An

(respectively, An ⊃ A′
n−1 ⊃ · · · ⊃ A′

2 ⊃ A′
1).

Proof: In light of Lemma 4.3, apply Lemma 3.7.A to LGT-left
A (n, λ). The result for the

GT-right basis follows from the result for the GT-left basis.

As an application, we use the combinatorics of the supports LGT-left
A (n, λ) and LGT-right

A (n, λ)
to determine when the GT-left and GT-right bases coincide.

Corollary 4.5 The GT-left and GT-right bases for An(λ) are diagonally equivalent if and
only if λ is a multiple of a fundamental weight.

Proof: Here we identify a dominant weight µ with its corresponding shape shape(µ).
In the forward direction, we first decide when LGT-left

A (n, λ) will restrict irreducibly under
the action of A′

n−1. Begin by removing all edges of color 1 from LGT-left
A (n, λ). Two tableaux

are in the same A′
n−1-connected component if and only if they have the same number of

1 entries. Let Pr be the connected component consisting of all tableaux with exactly r
boxes containing the entry 1. Removing these boxes, the tableaux in Pr can be thought
of as semistandard Young tableaux of skew shape λ/r with entries from {2, . . . , n + 1}
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(see [23]). By the “skew version” of Pieri’s Rule ([23], Chapter 7, Corollary 15.9), each
Pr will correspond to an irreducible A′

n−1-module if and only if λ has rectangular shape.
(Otherwise, when r = 1 there will be more than one possible ν for which ν ⊂ λ and such
that λ/ν is a horizontal strip of size r = 1.) This proves that λ must be a multiple of a
fundamental weight.

For the converse, it suffices to produce a bijection φ from LGT-left
A (n, mωk) to L(n, (mωk)sym)

that takes edges of color i to edges of color n +1− i , and vice-versa. For S in LGT-left
A (n, mωk)

form φ(S) in L(n, mωn+1−k) as follows: the i th column of φ(S) is obtained from the i th
column of S by taking its complement in the set {1, . . . , n + 1}, and then changing an entry
j to n + 2 − j .

5. Bases for the fundamental representations of sp(2n, C)

Let 1 ≤ k ≤ n. The main result of [3] was:

Theorem 5.1 The symplectic distributive lattices LKN
C and LDeC

C are positive rational sup-
porting graphs for the kth fundamental representation of sp(2n, C).

We call the corresponding weight bases specified in [3] the KN basis and the De Concini
basis for Cn(ωk). Theorem 5.4 below states that these bases are solitary and edge-minimal.
As with the Gelfand-Tsetlin bases, the key is to observe that these bases for Cn(ωk) are well-
behaved with respect to the action of certain subalgebras of Cn . The following is Lemma
5.2 of [2]:

Lemma 5.2 Let T be a column tableau in LKN
C (n, ωk) or LDeC

C (n, ωk), and let mT
i be the

number of i entries in T . Then the weight of T is
∑n−1

i=1

(
mT

i −mT
i+1 +mT

2n−i −mT
2n+1−i

)
ωi +(

mT
n − mT

n+1

)
ωn.

View Am inside Cn as the Levi subalgebra whose generators correspond to the m leftmost
nodes of the Dynkin diagram for Cn , where 1 ≤ m ≤ n − 1.

Lemma 5.3 Let S be an An−1-maximal column tableau in LKN
C (n, ωk) (respectively,

LDeC
C (n, ωk)), and set µ := wtAn−1 (S). Then the An−1-component containing S is isomorphic

to LGT-left
A (n−1, µ) (respectively LGT-right

A (n−1, µ)). Moreover, no other An−1-maximal column
tableau has the same Cn-weight as S.

Proof: A column S will be An−1-maximal in LKN
C (n, ωk) or LDeC

C (n, ωk) if and only if
(1) S = {1, . . . , k}, (2) S = {1, . . . , i, n + 1, . . . , n + k − i} for 0 < i < k, or (3)
S = {n + 1, . . . , n + k}. Apply Lemma 5.2 to see that for type (1), µ is ωk if k < n and
ω0 if k = n. For type (2), µ = ωi + ωn−k+i , and for type (3) µ = ωn−k . One can use
this explicit description of the An−1-maximal elements and their weights to see that distinct
An−1-maximal elements have distinct Cn-weights. The shape corresponding to µ has at
most two columns. We will describe a bijection φ from the An−1-component containing
S to LGT-left

A (n − 1, µ). Let R be another column in the An−1-component of S. Obtain a
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tableau φ(R) of shape µ as follows. To get the first column of φ(R), take the complement
of R ∩ {n + 1, n + 2, . . . , 2n}, and then subtract each of these elements from 2n + 1. To get
the second column of φ(R), simply take R ∩ {1, 2, . . . , n}. Now check that this bijection
gives an isomorphism of edge-colored posets.

Finally, suppose S is An−1-maximal in LDeC
C (n, ωk). We will describe a bijection ψ from

the An−1-component containing S to LGT-right
A (n − 1, µ). (If S is of type (1) above, then

µsym = ωn−k , and for type (2), µsym = ωn−i + ωk−i . For type (3), µsym = ωk if k < n
and ω0 if k = n.) For R in the An−1-component of S obtain a tableau ψ(R) of shape µsym

as follows. To get the first column of ψ(R), take the complement of R ∩ {1, . . . , n} and
then subtract each of these elements from n + 1. To get the second column of ψ(R), take
R ∩ {n + 1, . . . , 2n} and then subtract n from each of these elements. This gives a bijection
of edge-colored posets.

Denote by A′
m (1 ≤ m ≤ n − 1) the subalgebra of Cn whose generators correspond to

the nodes n − m, n − m + 1, . . . , n − 1.

Theorem 5.4 The KN and De Concini bases for Cn(ωk) are solitary and edge-minimal.
The KN basis (respectively, De Concini basis) is the unique weight basis for Cn(ωk) up to
diagonal equivalence which restricts irreducibly for the chain of subalgebras A1 ⊂ · · · ⊂
An−1 ⊂ Cn (respectively, Cn ⊃ A′

n−1 ⊃ A′
n−2 ⊃ · · · ⊃ A′

2 ⊃ A′
1).

Proof: Follows from Lemma 5.3 and Lemma 3.7.A.

Corollary 5.5 The KN basis and the De Concini basis for Cn(ωk) are diagonally equivalent
if and only if k = 1 or k = n.

Proof: In Corollary 3.4 of [2] we showed that LKN
C (n, ωk) and LDeC

C (n, ωk) are isomorphic
as posets (without regard to edge-coloring) if and only if k = 1 or k = n. When k = 1
or k = n, the bijections described in the proof of that corollary also preserve edge-colors.
Thus LKN

C (n, ωk) and LDeC
C (n, ωk) are isomorphic as edge-colored posets if and only if k = 1

or k = n. By Theorem 5.4 these supports are solitary, so the corresponding bases coincide
if and only if k = 1 or k = n.

Let Cm be the Levi subalgebra of Cn corresponding to the m rightmost nodes in the
Dynkin diagram for Cn , with C1 = A1.

Theorem 5.6 The De Concini basis is the unique weight basis for Cn(ωk) up to diagonal
equivalence which restricts irreducibly for the chain of subalgebras Cn ⊃ Cn−1 ⊃ · · · ⊃
C2 ⊃ C1.

Proof: Use an argument similar to Lemma 5.3 so that Lemma 3.7.A can be applied. Let
T be a Cn−1-maximal column tableau in LDeC

C (n, ωk). Let i = |T ∩{1, 2n}|. Then wtCn−1 (T )
is the (k − i)th fundamental weight for Cn−1. From the definitions it follows that the Cn−1-
component of T is isomorphic to the (k − i)th symplectic lattice for Cn−1. Moreover, it
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is not hard to see that distinct Cn−1-maximal elements of LDeC
C (n, ωk) will have distinct

Cn-weights. Now apply Lemma 3.7.A.

Corollary 5.7 The De Concini basis is diagonally equivalent to Molev’s basis in [14] for
the fundamental representations of sp(2n, C).

Proof: It can be seen that Molev’s basis restricts irreducibly for the chain of subalgebras
Cn ⊃ Cn−1 ⊃ · · · ⊃ C2 ⊃ C1.

6. One-dimensional weight space representations

In this section we characterize those irreducible representations which have only one sup-
porting graph (the one-dimensional weight space representations of Propositions 6.2 and
6.3), say how to construct these representations uniformly across type (Theorem 6.4), and
re-derive their classification (Theorem 6.7) (cf. Theorem 4.6.3 of Howe [8]). The supporting
graphs for these representations enjoy the following extremal properties.

Proposition 6.1 A one-dimensional weight space representation V has a unique support-
ing graph which is solitary, edge-minimal, edge-minimizing, and positive integral. If V is
irreducible, its unique support is a distributive lattice.

Proof: Since all weight bases for V are diagonally equivalent, Lemma 3.1.B implies V
has only one supporting graph. This unique support is automatically solitary, edge-minimal,
and edge-minimizing. The other assertions follow from Theorem 6.4 and Corollary 6.8.

Proposition 6.2 A representation V is irreducible and all weight spaces of V are one-
dimensional if and only if V has a connected supporting graph P such that the i components
of P are all chains, for 1 ≤ i ≤ n.

The proof of Proposition 6.2 appears in Section 7. The assumption of irreducibility is
needed only for the assertions 2 ⇒ 1 and 4 ⇒ 1 in the following result.

Proposition 6.3 Let V be an irreducible representation. Then the following are equivalent:
1. All weight spaces of V are one-dimensional.
2. The representation V has only one supporting graph.
3. The weight diagram for V is a supporting graph for V .
4. The crystal graph associated to V is a supporting graph for V .

Proof: We show 1 ⇔ 2, 1 ⇔ 3, and 1 ⇔ 4. We have already seen that 1 ⇒ 2. To see that
1 ⇒ 3, note that each basis vector for a weight basis for V can be uniquely identified with
its weight. Then apply Lemma 3.2.D. For 1 ⇒ 4, we may use the fact that V has �(V ) as
its unique supporting graph. But now Lemma 3.6 (together with Proposition 3.5) implies
that the crystal graph coincides with �(V ). For 3 ⇒ 1, observe that |�(V )| ≤ dim V , with
equality if and only if all weight spaces of V are one-dimensional. Now assume that V
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is irreducible. Use Lemma 3.2.F to show that 2 ⇒ 1. Finally, we show that 4 ⇒ 1. All
i-components of the crystal graph are chains, so Proposition 6.2 applies, proving that all
weight spaces of V are one-dimensional.

The following theorem presents a uniform construction of Chevalley generator actions for
all one-dimensional weight space representations: Its proof does not depend on the type of
the Lie algebra or on the classification of one-dimensional weight space representations. An
irreducible representation is minuscule if every weight in its weight diagram is in the orbit
of the highest weight under the action of the Weyl group. Proctor [18] was aware of how to
obtain actions for Chevalley generators on weight bases for the minuscule representations.
Wildberger [25] uniformly constructs all minuscule representations and explicitly describes
the actions of the Lie algebra generators corresponding to every root vector.

By Proposition 6.3 we know that the supporting graph of an irreducible one-dimensional
weight space representation must be its weight diagram, and its i-components are chains.
The choices for coefficients on the edges are therefore limited by Lemma 3.9. The first
choice of coefficients in the next theorem agrees with Lemma 7.2 of [9] for irreducible
representations of sl(2, C). The x-coefficient (respectively, y-coefficient) on an edge s

i→t
is the number of steps to t (resp. s) from the minimal (resp. maximal) element in the i-
component of t. To confirm that the coefficients work globally, we must use a fact concerning
the local structure of edges that is developed in the proof of Proposition 6.2. We must
also consider all the possible interactions between the actions of any two sl(2, C) Levi
subalgebras. This result can also be used to construct the portions of the representation
diagram corresponding to the one-dimensional weight space regions of any representation.

Theorem 6.4 Let V be an irreducible one-dimensional weight space representation. Let
P be the unique support for V . For an edge s

i→t in P, set ct,s := ρi (t) and ds,t :=
li (t) − ρi (t) + 1. With these edge coefficients, P is a representation diagram for V . If the
formulas for ct,s and ds,t are interchanged everywhere, the resulting edge-labelled poset is
also a representation diagram for V .

Keeping the notation of the theorem statement, let tmax be the maximal element in the
i-component of t. Let µ := wt(t) and µmax := tmax . The first choice of edge coefficients
in Theorem 6.4 can be expressed in terms of inner products: ct,s = 〈µmax ,α

∨
i 〉+〈µ,α∨

i 〉
2 and

ds,t = 1 + 〈µmax ,α
∨
i 〉−〈µ,α∨

i 〉
2 . The proof of Theorem 6.4 is given in Section 7.

Lemma 6.5 Each of the following representations has a weight space with dimension
exceeding one: An(a1ω1 + anωn), where a1 > 0, an > 0, and n ≥ 2; A3(aω2) with a > 1;
Bn(ω2) for n ≥ 3; Bn(aω1) with a > 1; Bn(aω1 + ωn) with a > 0; Cn(ω2) with n ≥ 3;
Cn(ωn) with n ≥ 4; Cn(aω1) with a > 1; Cn(aω1 +ωn) with a > 0; C2(a1ω1 +a2ω2) where
a1 + a2 ≥ 2; Dn(aω1) with a > 1; Dn(ω2); D4(aω3) where a > 1; D4(aω4) where a > 1;
F4(ω1); F4(ω4); F4(ω1 + ω4); E6(ω2); E7(ω1); E8(ω8); G2(ω2); and G2(aω1 + bω2) where
a + b ≥ 2.

Proof: For the classical cases, one can use tableaux as in [12]. The following are adjoint
representations: F4(ω1); E6(ω2); E7(ω1); E8(ω8); and G2(ω2). For F4(ω4) and F4(ω1 +ω4),



EXTREMAL PROPERTIES OF BASES 277

compute the character. For the remaining G2 cases, one can use the tableaux described in
[13].

Lemma 6.6 Let V be an irreducible one-dimensional weight space representation with
unique supporting graph P. Let K be a Levi subalgebra of L, and regard V as a K-
module via the induced action. Then P restricts irreducibly under the action of K, and each
K-irreducible component in the decomposition of V is a one-dimensional weight space
representation of K.

Proof: The i-components of P are chains, and each K-component of P inherits this
property. Now apply Proposition 6.2 to each of the K-components of P .

Our proof of the following theorem uses a restriction method based on Lemma 6.6.

Theorem 6.7 (Classification) The minuscule representations of the simple Lie algebras
are An(ωk), Bn(ωn), Cn(ω1), Dn(ω1), Dn(ωn−1), Dn(ωn), E6(ω1), E6(ω6), and E7(ω7).
The representations An(kω1) (for k > 1), An(kωn) (for k > 1), Bn(ω1), C2(ω2), C3(ω3),
and G2(ω1) are the only other irreducible one-dimensional weight space representations
of simple Lie algebras.

The proof is below. Representation diagrams for the representations of Theorem 6.7 are
described in Section 4 for the Type A cases, in [18] and [25] for the minuscule cases, in
Section 5 for the Type C cases, and in [6] for Bn(ω1) and G2(ω1). To use Theorem 6.4 to
construct a particular irreducible one-dimensional weight space representation, one would
first need to form the weight diagram. The diagrams for the various cases could be found
in the references cited above. Then one would locate the strings of color i for each i and
assign the prescribed coefficients. For An(kω1), the second (first) choice of coefficients of
Theorem 6.4 are the coefficients which arise for the (factorial normalized) monomial basis
for the kth symmetric power of the defining representation of sl(n +1, C). The same is true
for An(kωn), the kth symmetric power of the dual of the defining representation. For the
other irreducible one-dimensional weight space representations of the simple Lie algebras,
the first choice of coefficients of Theorem 6.4 agrees with the coefficients described in the
references cited above.

Proof of Theorem 6.7: Use the references mentioned in the previous paragraph to con-
struct the supporting graph in each case. Then observe that for each supporting graph, dis-
tinct elements have distinct weights, so all weight spaces for the associated representation
are one-dimensional. We now show that the one-dimensional weight space representations
listed in the theorem statement are the only possibilities. For An (n ≥ 2) we induct on
n. Case n = 2 is covered by Lemma 6.5. Now let n ≥ 3 and assume the theorem state-
ment is true for An−1. Let An(λ) be a one-dimensional weight space representation, where
λ = a1ω1 +· · · anωn , and let P be its unique supporting graph. Restrict to the Levi subalge-
bra An−1 inside An whose generators correspond to the n − 1 leftmost nodes of the Dynkin
diagram for An . Apply Lemma 6.6 to the An−1-component which contains the maximal
element of P . Then we must have one of these possibilities: (1) λ = a1ω1 + anωn; (2)
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λ = ωi +anωn with 2 ≤ i ≤ n −2; or (3) λ = an−1ωn−1 +anωn . Next, restrict to A′
n−1, the

Levi subalgebra whose generators correspond to the rightmost n − 1 nodes of the Dynkin
diagram for An . Lemma 6.6 leaves us with these possibilities for λ: (1)′ λ = a1ω1 + a2ω2;
(2)′ λ = a1ω1 +ωi , where 3 ≤ i ≤ n − 1; (3)′ λ = a1ω1 + anωn . Combining these facts we
are left with: λ = a1ω1, λ = anωn , λ = ωi , λ = a1ω1 + anωn (with a1 > 0 and an > 0), or
λ = a2ω2 (only if n = 3). The latter two possibilities are ruled out by Lemma 6.5. Analysis
of the one-dimensional weight space representations for the other simple Lie algebras is
similar: induct on n (the rank of the Lie algebra) by restricting to the action of simple Levi
subalgebras of rank n − 1.

Suppose L = L1 ⊕ · · · ⊕Lm with each Li simple. A dominant weight λ for L is written
λ1 + · · · + λm , where each λi is dominant for Li . One can see that all weight spaces for
L(λ) are one-dimensional if and only if all weight spaces of Li (λi ) are one-dimensional for
each i .

Corollary 6.8 The unique supporting graph for an irreducible one-dimensional weight
space representation is a distributive lattice.

Proof: For the simple Lie algebras, consult the references listed in the paragraph preceding
the proof of Theorem 6.7. Now consider the one-dimensional weight space representation
L(λ) where L is non-simple. With L(λ) described as above, Lemma 3.3.B shows that the
supporting graph for L(λ) is the product of supports for the one-dimensional weight space
representations Li (λi ). A finite product of distributive lattices is again a distributive lattice,
cf. [22] Section 3.4.

7. Technical proofs for Section 6

Proof of Proposition 6.2: If all weight spaces of V are one dimensional and V is irre-
ducible, use Lemma 3.1.A and Lemma 3.1.F to see that the i-components in the unique
supporting graph P are chains and that P is connected. For the converse, first we show that
P has no “open vees.” Suppose s

i→u and t
j→u for distinct elements s and t. This implies

that i �= j . Apply Lemma 3.9 to the i-components of P to see that any weight basis {vx}x∈P

with support P has non-zero edge coefficients. Since Y j Xivs = cvt for some c �= 0, then
Xi Y jvs = cvt, which implies that there exists a unique r such that r

j→s and r
i→t. Similarly,

if r
j→s and r

i→t for some r in P , then there exists a unique u such that s
i→u and t

j→u.
Connectedness now implies that P has a unique maximal element and a unique minimal
element.

Next, we claim that if wt(s) = wt(t), then s = t. Suppose otherwise, so wt(s) = wt(t)
but s �= t. Let r be an element of P for which r = s0

i1→s1
i2→ · · · ir→sr = s and r =

t0
j1→t1

j2→ · · · jr→tr = t, where these chains only have the element r in common. Moreover,
choose r to be the “closest” such element to s and t; that is, if r′ is an element that is
r ′ steps below both s and t, then r ≤ r ′. (Such an element r exists since by Lemma
3.2.B, s and t have the same rank and hence are the same number of steps above the
minimal element.) Notice that we cannot have i1 = j1, or otherwise s1 = t1. However,
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wt(s) = wt(r)+αi1 +αi2 +· · ·+αir and wt(t) = wt(r)+α j1 +α j2 +· · ·+α jr , so αi1 must
be one of α j1 , α j2 , . . . , α jr . Let q be least such that i1 = jq . Now there is a unique element x2

with s1
j1→x2 and t1

i1→x2, by the previous paragraph. It follows that there is a unique element
x3 with x2

j2→x3 and t2
i1→x3. Continue this to get a unique element xq with xq−1

jq−1→xq and
tq−1

i1→xq . However, i1 = jq , and so tq−1
jq→xq . But we already have tq−1

jq→tq , and since
the jq -components of P are chains, we have xq = tq . In particular, s1 is r − 1 steps below
t and s. This contradicts the choice for r, so we must have s = t. So the weight spaces of
V are one-dimensional. It follows that any maximal vector in V will appear as a maximal
element in the unique supporting graph P . Since P has a unique maximal element, there is
a unique maximal vector in V (up to scalars), and hence V is irreducible.

Proof of Theorem 6.4: We must show that the given edge-labelled poset P corresponding
to the first choice of edge coefficients satisfies conditions (1), (2), and (3) of Proposition 3.4.
By Proposition 6.3, P = �(V ) is a supporting graph for V . Then Proposition 3.5 applies to
the edge-colored graph P , so condition (3) of Proposition 3.4 is met. Condition (2) is met
by applying Proposition 6.2, Lemma 3.9, and then Lemma 3.2.A to the i-components of P .

Hence we only need to check that Xi Y jvν = Y j Xivν for each ν in the edge-labelled
poset P whenever i �= j . The proof of Proposition 6.2 shows that for a given pair of
weights ν and π in P , there exists a weight σ such that ν

i→σ and π
j→σ if and only

if there exists µ such that µ
j→ν and µ

i→π . Suppose that we have a diamond
�

�

�

���
❅❅

❅❅
��j i

i j

µ

π

σ

ν

in P . We want to know how li (ν) and li (π ) are related. Let νmin and νmax be the min
and max elements in the i-component containing ν, and define πmin and πmax similarly.
It now follows that πmax is covered by an element in the i-component of ν, so we can
write νmax = πmax + α j + piαi where pi ≥ 0. Similarly one can see that νmin covers
an element in the i-component of π , so we can write νmin = πmin + α j + qiαi for some
qi ≥ 0. So the i-components of ν and of π might appear as in figure 2. From this it
follows that li (ν) = 〈νmax , α

∨
i 〉 = 〈πmax + α j + piαi , α

∨
i 〉 = li (π ) + 2pi + 〈α j , α

∨
i 〉 and

−li (ν) = 〈νmin, α
∨
i 〉 = 〈πmin + α j + qiαi , α

∨
i 〉 = −li (π ) + 2qi + 〈α j , α

∨
i 〉. It follows that

pi + qi = −〈α j , α
∨
i 〉 (1)

li (ν) − li (π ) = pi − qi . (2)

For brevity, let l := li (ν), l ′ := li (π ), k := l j (ν), and k ′ := l j (π ). Let r (respectively, s)
be the rank of σ in its i-component (respectively, j-component). Let r ′ be the rank of π in
its i-component, and let s ′ be the rank of ν in its j-component. To check condition (1) of
Proposition 3.4 for P , we must check that Xi Y jvν = Y j Xivν and X j Yivπ = Yi X jvπ in any
diamond such as figure 3. The eight edge coefficients in figure 3 are obtained from the first
definitions of ct,s and ds,t in the theorem statement. Let Q be any representation diagram
for V with support �(V ). In the representation diagram Q, the products of the coefficients
on the corresponding edges are pictured in figure 4. From figure 4 we get the following
relation:

r (l + 1 − r ) · s(k + 1 − s) = r ′(l ′ + 1 − r ′) · s ′(k ′ + 1 − s ′) (3)
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Figure 2. A configuration of i-components for weights µ and ν.

Figure 3. A typical diamond in P .

There are four cases to consider: For Case 0 we have 〈α j , α
∨
i 〉 = 0 and 〈αi , α

∨
j 〉 = 0; for

Case 1, 〈α j , α
∨
i 〉 = −1 and 〈αi , α

∨
j 〉 = −1; for Case 2, 〈α j , α

∨
i 〉 = −2 and 〈αi , α

∨
j 〉 = −1;

and for Case 3, 〈α j , α
∨
i 〉 = −3 and 〈αi , α

∨
j 〉 = −1. For Case 0, Eq. (1) above implies that

pi = qi = 0 = p j = q j . It follows that l = l ′, k = k ′, r = r ′, and s = s ′. Then clearly
Xi Y jvν = Y j Xivν and X j Yivπ = Yi X jvπ in figure 3.

For Case 1, Eq. (1) gives two possibilities for pi and qi : pi = 1, qi = 0 or pi = 0, qi = 1.
First suppose that pi = 1 and qi = 0. Then we have l − l ′ = 1 and r = r ′. If p j = 1 and
q j = 0, then k −k ′ = 1 and s = s ′. Substitute this into Eq. (3) to get (l +1−r )(k +1−s) =
(l − r )(k − s). But this cannot happen, since the left-hand side of this equation is bigger
than the right-hand side. So we must have p j = 0 and q j = 1. Then k − k ′ = −1 and
s ′ = s + 1. Substitute into Eq. (3) to get (l + 1 − r )s = (l − r )(s + 1). Put this information
into figure 3 to see that Xi Y jvν = Y j Xivν and X j Yivπ = Yi X jvπ . Analysis of the case
pi = 0 and qi = 1 is similar, in which case p j = 1 and q j = 0. Cases 2 and 3 can be
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Figure 4. Edge products on the corresponding diamond in Q.

understood with similar arguments. In Case 2, one can show that it is not possible to have
pi = 1 and qi = 1. If pi = 2 and qi = 0, it can be shown that p j = 0 and q j = 1. Also,
if pi = 0 and qi = 2, then p j = 1 and q j = 0. For Case 3, neither pi = 2, qi = 1 nor
pi = 1, qi = 2 is possible. If pi = 3 and qi = 0, then we must have p j = 0 and q j = 1. If
pi = 0 and qi = 3, then p j = 1 and q j = 0. This argument applies to the second choice of
coefficients in the theorem statement by interchanging the role of ct,s and ds,t everywhere
in the proof.
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