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Abstract. We calculate the Poincaré series of the elliptic Weyl group W (A(1,1)
2 ), which is the Weyl group of the

elliptic root system of type A(1,1)
2 . The generators and relations of W (A(1,1)

2 ) have been already given by K. Saito
and the author.
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1. Introduction

Elliptic Weyl groups are the Weyl groups associated to the elliptic root systems intro-
duced by K. Saito [5, 6], which are defined by a semi-positive definite inner product with
2-dimensional radical. The generators and their relations of elliptic Weyl groups were de-
scribed from the viewpoint of a generalization of Coxeter groups by K. Saito and the author
[7, 9]. The Poincaré series W (t) of a group W with respect to a generator system is defined
by

W (t) =
∑
w∈W

tl(w),

where t is an indeterminate and l(w) is the length of a minimal expression of an element w

in W in terms of the given generator system. If W is one of the finite or affine Weyl groups,
it is known that

∑
w∈W

tl(w) =




n∏
i=1

1 − tmi +1

1 − t
(W: finite),

1

(1 − t)n

n∏
i=1

1 − tmi +1

1 − t
(W: affine),

where n is the rank and m1, . . . , mn are the exponents of W [1–4, 8]. The goal of the
present article is to calculate the Poincaré series W (t) of the elliptic Weyl groups W of
types A(1,1)

1 , A(1,1)∗
1 and A(1,1)

2 . In the cases of types A(1,1)
1 and A(1,1)∗

1 , although they have
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been already given by Wakimoto [10], we give a different proof from those and in the similar
way we calculate the case of A(1,1)

2 . The result for A(1,1)
2 is given by Theorem 3.7.

2. Poincaré series of the Weyl groups of types A(1,1)
1 and A(1,1)∗

1

The generators and their relations of the elliptic Weyl group of type A(1,1)
1 are given as

follows [7, 9]:

Generators: wi , w
∗
i (i = 0, 1).

Relations: w2
i = w∗2

i = 1 (i = 0, 1), w0w
∗
0w1w

∗
1 = 1.

The relation w0w
∗
0w1w

∗
1 = 1 is rewritten as follows:

w∗
0w1 = w0w

∗
1(⇔ w∗

1w0 = w1w
∗
0). (2.1.1)

(It means that wiw
∗
j = w∗

i w j (i �= j).) We set T := w1w0, R := w∗
1w1 = w0w

∗
0 , then we

easily see the following.

Lemma 2.1 The elements T , R and w1 generate the Weyl group of type A(1,1)
1 and their

fundamental relations are given by;

TR = RT, w1T = T −1w1, w1 R = R−1w1, w2
1 = 1.

From this, we have W = {Rm T nw1, Rm T n, m, n ∈ Z}. The elements T and w1 generate
a subgroup isomorphic to the affine Weyl group of type A1, and all elements of that are
classified to the following:

{(I) T n(n ≥ 0), (II) T −n(n ≥ 1), (III) T nw1(n ≥ 0), (IV) T −nw1(n ≥ 1)}.

We multiply the elements Rm(m ∈ Z) to the above elements from the left, and examine
their minimal length in each case by using the following.

Lemma 2.2 Let w be a minimal expression by w0 and w1. Then even if we attach ∗ to
any letters of w, the length of w does not decrease.

Proof: This is clear from the fact that a relation in wi holds if and only if the relation in
w∗

i obtained by attaching ∗ also holds.

(I) T n = (w1w0)n (n ≥ 0)

From the expression Rw1w0 = w∗
1w0 and (2.1.1), we see that Rk T n = Rk(w1w0)n =

(w11w10)(w21w20) · · · (wn1wn0), for 0 ≤ k ≤ 2n, where wi1 (resp. wi0) is either w1 or w∗
1

(resp. w0 or w∗
0) for all i , in such a way that ∗ is attached until the k-th letter. Further for

m ≥ 1, R2n+m T n = Rm(R2nT n) = (w∗
1w1)m(w∗

1w
∗
0)n , R−m T n = (w1w

∗
1)m(w1w0)n , and
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each length is 2n + 2m, so we get �{Rk T n, (n ≥ 0, k ∈ Z) | l(Rk T n) = 2n} = 2n + 1,
and �{Rk T n, (n ≥ 0, k ∈ Z) | l(Rk T n) = 2n + 2m} = 2.

The case of (II) is similar to (I).

(III) T nw1 = (w1w0)nw1 (n ≥ 0)

From Rw1 = w∗
1 and (2.1.1), for 0 ≤ k ≤ 2n + 1, we have Rk T nw1 = Rk(w1w0)nw1 =

(w11w10) · · · (wn1wn0)wn+1,1 where wi1 ∈ {w1, w∗
1} and wi0 ∈ {w0, w∗

0}, so �{Rk T nw1,
(n ≥ 0, k ∈ Z) | l(Rk T nw1) = 2n + 1} = 2n + 2, and �{Rk T nw1, (n ≥ 0, k ∈ Z) |
l(Rk T nw1) = 2n + 1 + 2m} = �{R2n+1+m T nw1, R−m T nw1} = 2.

(IV) T −nw1 = (w0w1)n−1w0 (n ≥ 1)

From R−1w0 = w∗
0 , (2.1.1), and that for m ≥ 1, R−(2n−1)−m T −nw1 = R−m(w∗

0w
∗
1)n−1w∗

0 =
(w∗

0w0)m(w∗
0w

∗
1)n−1w∗

0, Rm T −nw1 = (w0w
∗
0)m(w0w1)n−1w0, we see that �{Rk T −nw1,

(n ≥ 1, k ∈ Z) | l(Rk T −nw1) = 2n − 1} = 2n, and �{Rk T −nw1, (n ≥ 1, k ∈ Z) |
l(Rk T −nw1) = 2n + 2m − 1} = 2.

In the case of type A(1,1)∗
1 , the generators and their relations are given as follows:

Generators: w0, w1, w∗
1 .

Relations: w2
0 = w2

1 = w∗2
1 = (w0w1w

∗
1)2 = 1.

This Weyl group is obtained from the Weyl group of type A(1,1)
1 by removing one generator

w∗
0 , so we examine the case of type A(1,1)∗

1 similarly to the case of type A(1,1)
1 .

(I) T n = (w1w0)n (n ≥ 0)

From Rw1 = w∗
1 , we have RnT n = (w∗

1w0)n , and for m ≥ 1, Rn+m T n = Rm(w∗
1w0)n =

(w∗
1w1)m(w∗

1w0)n and R−m T n = (w1w
∗
1)m(w1w0)n , so we get �{Rk T n, (n ≥ 0, k ∈ Z) |

l(Rk T n) = 2n} = n + 1, and �{Rk T n, (n ≥ 0, k ∈ Z) | l(Rk T n) = 2n + 2m} = 2.
The case of (II) is similar to (I).

(III) T nw1 = (w1w0)nw1 (n ≥ 0)

From Rw1 = w∗
1 , and Rn+1(w1w0)nw1 = (w∗

1w0)nw∗
1 , we see that �{Rk T nw1, (n ≥ 0, k ∈

Z) | l(Rk T nw1) = 2n +1} = n +2, and �{Rk T nw1, k ∈ Z | l(Rk T nw1) = 2n +1+2m} =
�{Rn+1+m T nw1, R−m T nw1} = 2.

(IV) T −nw1 = (w0w1)n−1w0 (n ≥ 1)

From R−1(w0w1) = w0w
∗
1 and R−(n−1)(w0w1)n−1w0 = (w0w

∗
1)n−1w0, we see that

�{Rk T −nw1, (n ≥ 1, k ∈ Z) | l(Rk T −nw1) = 2n − 1} = n, and �{Rk T −nw1, k ∈
Z | l(Rk T −nw1) = 2n − 1 + 2m} = �{R−n+1−m T −nw1, Rm T −nw1} = 2.
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From the above argument, we obtain the following.

A(1,1)
1 l(w) (n ≥ 1, m ≥ 1) � A(1,1)∗

1 l(w) (n ≥ 1, m ≥ 1) �

I 0 1 I 0 1

2n 2n + 1 2n n + 1

2m, 2(n + m) 2 2m, 2(n + m) 2

II 2n 2n + 1 II 2n n + 1

2(n + m) 2 2(n + m) 2

III 2n − 1 2n III 2n − 1 n + 1

2(n + m) − 1 2 2(n + m) − 1 2

IV 2n − 1 2n IV 2n − 1 n

2(n + m) − 1 2 2(n + m) − 1 2

Further from this, we obtain the following.

Proposition 2.3 ([10])
(i) The number of the elements of W (A(1,1)

1 ) and W (A(1,1)∗
1 ) of length n is given by;

W
(

A(1,1)
1

)
: �{w ∈ W | l(w) = 0} = 1, �{w ∈ W | l(w) = n, (n ≥ 1)} = 4n,

W
(

A(1,1)∗
1

)
: �{w ∈ W | l(w) = 0} = 1, �{w ∈ W | l(w) = n, (n ≥ 1)} = 3n.

(ii) The Poincaré series of W (A(1,1)
1 ) and W (A(1,1)∗

1 ) are given by;∑
w∈W (A(1,1)

1 )

t l(w) = (1 + t)2

(1 − t)2
,

∑
w∈W (A(1.1)∗

1 )

t l(w) = 1 − t3

(1 − t)3
.

Proof: (i) For an integer k ≥ 2, the number of pairs (m, n) satisfying k = m + n(m ≥
1, n ≥ 1) is equal to k − 1, so in the case of type A(1,1)

1 , �{w ∈ W | l(w) = 2n} =
(2n + 1) × 2 + 2 + 2 × (n − 1) × 2 = 8n, and �{w ∈ W | l(w) = 2n − 1} =
2n ×2+2× (n −1)×2 = 8n −4, so we get the result. The case of type A(1,1)∗

1 is calculated
similarly. Then (ii) is easily obtained from (i).

3. Poincaré series of the Weyl group of type A(1,1)
2

The elliptic Weyl group W of type A(1,1)
2 is presented as follows [7, 9].

Generators: wi , w∗
i (i = 0, 1, 2).

Relations: w2
i = w∗2

i = 1 (i = 0, 1, 2),

for i �= j

wiw jwi = w jwiw j , w∗
i w

∗
j w

∗
i = w∗

j w
∗
i w

∗
j ,

w∗
i w jw

∗
i = w jw

∗
i w j = wiw

∗
j wi = w∗

j wiw
∗
j ,

and w0w
∗
0w1w

∗
1w2w

∗
2 = 1.
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We set T1 := w0w2w0w1, T2 := w0w1w0w2, R1 := w1w
∗
1 , and R2 := w2w

∗
2 , then we have

the following.

Lemma 3.1
(i) W is generated by w1, w2, T1, T2, R1, R2, and they satisfy the following fundamental

relations:


wi Ti = T −1
i wi

wi Ri = R−1
i wi

wi Tj = Ti Tjwi (i �= j)

wi R j = Ri R jwi (i �= j).

(ii) W = {Rn
1 Rm

2 T k
1 T l

2w, (n, m, k, l ∈ Z) | w = id, w1, w2, w1w2, w2w1, w1w2w1}.

Proof: Let � be the elliptic root system of type A(1,1)
2 , then one has the expression [5]

� = {±(εi − ε j ) + nb + ma | 1 ≤ i < j ≤ 3, n, m ∈ Z},
with an inner product 〈 , 〉, which is a symmetric bilinear form given by

〈εi , ε j 〉 = δi j , 〈εi , a〉 = 〈εi , b〉 = 〈a, b〉 = 〈a, a〉 = 〈b, b〉 = 0, (1 ≤ i, j ≤ 3).

Let F = ⊕
1≤i< j≤3 R(εi − ε j ) ⊕ Rb ⊕ Ra be a real vector space. Let wα be the reflection

corresponding to the root α defined by wα(x) = x− < x, α∨ > α, ∀x ∈ F with α∨ =
2α

〈α,α〉 . We set α0 := ε3 − ε1 +b, α1 := ε1 − ε2, α2 := ε2 − ε3 and α∗
i := αi +a (i = 0, 1, 2).

Then wi = wαi , w∗
i = wα∗

i
. We see that all reflections act on Rb ⊕ Ra as identity, and




w1(ε1) = ε2

w1(ε2) = ε1

w1(ε3) = ε3




w2(ε1) = ε1

w2(ε2) = ε3

w2(ε3) = ε2




w0(ε1) = ε3 + b

w0(ε2) = ε2

w0(ε3) = ε1 − b


w∗
1(ε1) = ε2 − a

w∗
1(ε2) = ε1 + a

w∗
1(ε3) = ε3




w∗
2(ε1) = ε1

w∗
2(ε2) = ε3 − a

w∗
2(ε3) = ε2 + a




w∗
0(ε1) = ε3 + a

w∗
0(ε2) = ε2

w∗
0(ε3) = ε1 − a

From these, we have the following:


T1(ε1) = ε1 − b
T1(ε2) = ε2 + b
T1(ε3) = ε3




T2(ε1) = ε1

T2(ε2) = ε2 − b
T2(ε3) = ε3 + b




R1(ε1) = ε1 − a
R1(ε2) = ε2 + a
R1(ε3) = ε3




R2(ε1) = ε1

R2(ε2) = ε2 − a
R2(ε3) = ε3 + a

From these actions, we have

w0 = T1T2w1w2w1, w∗
0 = R1 R2T1T2w1w2w1, w∗

1 = w1 R1, w∗
2 = w2 R2,

and from this, (i) is easily checked. (ii) follows from (i).
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We first consider minimal expressions of the elements T n
1 T m

2 generated by T1 =
w0w2w0w1, and T2 = w0w1w0w2, then by noting the following minimal expressions;

T1T2 = w0w1w2w1, T1T −1
2 = (w2w0w1)2, T1T 2

2 = (w0w1w2)2,

we have T n
1 T n+i

2 = (0121)n(0102)i = (012)2(0121)n−1(0102)i−1, and from this we obtain

T n
1 T n+i

2 (n ≥ 1, i ≥ 1) =
{

T n
1 T n+i

2 = (012)2i (0121)n−i (1 ≤ i < n, n ≥ 2)

T n
1 T 2n+i

2 = (0102)i (012)2n (i ≥ 0, n ≥ 1)

where for brevity, we use 0, 1, 2, 0∗, 1∗, 2∗ for w0, w1, w2, w∗
0 , w∗

1 , w∗
2 , respectively. Further

by considering minimal expressions of T n
1 T m

2 w(w = w1, w2, w1w2, w2w1, w1w2w1), we
classify T n

1 T m
2 (n, m ∈ Z) as follows.

T n
1 T m

2 (n, m ∈ Z) =




T n
1 T n+i

2 = (012)2i (0121)n−i (1 ≤ i < n, n ≥ 2) (1 ↔ 2)

T −n
1 T −n−i

2 = (210)2i (1210)n−i (1 ≤ i ≤ n, n ≥ 1) (1 ↔ 2)

T n
1 T 2n+i

2 = (0102)i (012)2n (i ≥ 0, n ≥ 1) (1 ↔ 2)

T −n
1 T −2n−i

2 = (210)2n(2010)i (i ≥ 1, n ≥ 0) (1 ↔ 2)

T −n−i
1 T n

2 = (1020)i (102)2n (i ≥ 0, n ≥ 1) (1 ↔ 2)

T n+i
1 T −n

2 = (201)2n(0201)i (i ≥ 1, n ≥ 0) (1 ↔ 2)

T n
1 T n

2 = (0121)n (n ≥ 1)

T −n
1 T −n

2 = (1210)n (n ≥ 0),

(3.1.1)

where (1 ↔ 2) means that we consider the element obtained by exchanging T1 and T2.

Similarly to the case of type A(1,1)
1 , we use the following.

Lemma 3.2 Let w be a minimal expression by w0, w1 and w2. Then even if we attach ∗
to any letters of w, the length of that does not decrease.

In each case we multiply Rk
1 Rl

2 from the left, and examine their minimal length. For
1 ≤ i < n, T n

1 T n+i
2 = (012)2i (0121)n−i , by noting the expressions:




0∗12012 = (R1 R2) 012012

01∗2012 = R2 012012

012∗012 = (R1 R2) 012012

0120∗12 = R2 012012

01201∗2 = (R1 R2) 012012

012012∗ = R2 012012




0∗121 = (R1 R2) 0121

01∗21 = R2 0121

012∗1 = (R1 R2) 0121

0121∗ = R1 0121,

we consider how many R1, R2 and R1 R2 can be contained in (012)2i (0121)n−i by attaching
∗ to arbitrary letters. From the above, (012)2 can contain 3 × R1 R2 and 3 × R2, and 0121
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can contain 2× R1 R2, 1× R1, 1× R2, so by the relation, (012)2 R j = R j (012)2 ( j = 1, 2),
we see that (012)2i (0121)n−i can contain (n − i) × R1, (n + 2i) × R2 and (2n + i) × R1 R2.

Lemma 3.3 For 1 ≤ i < n

Rk
1 Rl

2(R1 R2)m T n
1 T n+i

2

= Rk
1 Rl

2(R1 R2)m(012)2i (0121)n−i

= (w10w11w12) · · · (w2i,0w2i,1w2i,2)(w′
10w

′
11w

′
12w

′′
11)

· · · (w′
n−i,0w

′
n−i,1w

′
n−i,2w

′′
n−i,1)

where wi j , and w′
i j = w j , w

∗
j ( j = 0, 1, 2) and w′′

i1 = w1, w
∗
1, for any 0 ≤ k ≤ n − i, 0 ≤

l ≤ n + 2i, 0 ≤ m ≤ 2n + i.

We count the number

�
{

Rk
1 Rl

2T n
1 T n+i

2 , (1 ≤ i < n, n ≥ 2, k, l ∈ Z)
∣∣ l

(
Rk

1 Rl
2T n

1 T n+i
2

)
= l

(
T n

1 T n+i
2

) = 4n + 2i
}
.

For the purpose we use the following figure:

R2

R1

✻

✲�
�

�
�

�
�

�
�

�
�

n − i + 1

n + 2i + 1

n + 2i + 1

2n + i + 1

2n + i + 1

n − i + 1

n + 2i + 1

then the number is equal to the number
of the vertices of the lattices, where
n − i + 1, n + 2i + 1, and 2n + i + 1 are
the number of vertices on each edge.

Then we use the following.

Lemma 3.4

�
�

�
�

�
�

�
�

�
�

a + 1

b + 1

c + 1

c + 1

a + 1

b + 1

In the left figure, the number
of the vertices of the lattices is
ab + bc + ca + a + b + c + 1.
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(For example, the case of a = 1, b = 2, c = 3)

�
�

�
�

��

�
�

�
�

��

•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•

� {all vertices} = 1 · 2 + 2 · 3 + 3 · 1 + 1 + 2 + 3 + 1 = 18.

By multiplying R±1
1 , R±1

2 , and (R1 R2)±1, (R1 = w1w
∗
1, R2 = w2w

∗
2, R1 R2 = w∗

0w0),
we obtain the elements whose length are 4n +2i +2, and actually we have only to multiply
to the boundary in the figure, and iterating this procedure we get the following.

Lemma 3.5

�
{

Rm
1 Rl

2T n
1 T n+i

2 , (1 ≤ i < n, n ≥ 2, m, l ∈ Z)
∣∣ l

(
Rm

1 Rl
2T n

1 T n+i
2

)
= 4n + 2i + 2k, (k ≥ 1)

} = 8n + 4i + 6k.

Proof:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

a + 2

b + 2

c + 2

c + 2

b + 2

a + 1

c + 1

b + 1

a + 2

The number of the vertices of
the boundary of the outside is
2(a + 1 + b + 1 + c + 1) = 2(a + b + c) + 6
= � {the boundary of the figure of the previous element} + 6.

Next we consider the elements T n
1 T n+i

2 w, for w = w1, w2, w1w2, w2w1, and w1w2w1,

then we have the following:




T n
1 T n+i

2 = (012)2i (0121)n−i

T n
1 T n+i

2 1 = (012)2i (0121)n−i−1012

T n
1 T n+i

2 2 = (012)2i (0121)n−i−1021

T n
1 T n+i

2 12 = (012)2i (0121)n−i−101

T n
1 T n+i

2 21 = (012)2i (0121)n−i−102

T n
1 T n+i

2 121 = (012)2i (0121)n−i−10.
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In the similar method to the case of T n
1 T n+i

2 , in this case and for other cases we count how
many R±1

1 , R±1
2 and (R1 R2)±1 can be contained in a minimal expression. By the figure

of the number of R±1
1 , R±1

2 and (R1 R2)±1, we count the number of a minimal expression
of the elements of the Weyl group and that of increasing length by 2, which is equal
to �(the boundary of the figure of the previous element) + 6. In the sequal, we examine
the number of the vertices on each edge of the figure in a minimal expression, first we
have




2∗10210 = R−1
2 210210

21∗0210 = (R1 R2)−1 210210

210∗210 = R−1
2 210210

2102∗10 = (R1 R2)−1 210210

21021∗0 = R−1
2 210210

210210∗ = (R1 R2)−1 210210




1∗210 = R−1
1 1210

12∗10 = (R1 R2)−1 1210

121∗0 = R−1
2 1210

1210∗ = (R1 R2)−1 1210




0∗102 = (R1 R2) 0102

01∗02 = R2 0102

010∗2 = R−1
1 0102

0102∗ = R2 0102




2∗010 = R−1
2 2010

20∗10 = R1 2010

201∗0 = R−1
2 2010

2010∗ = (R1 R2)−1 2010




1∗020 = R−1
1 1020

10∗20 = R2 1020

102∗0 = R−1
1 1020

1020∗ = (R1 R2)−1 1020




1∗02102 = R−1
1 102102

10∗2102 = R2 102102

102∗102 = R−1
1 102102

1021∗02 = R2 102102

10210∗2 = R−1
1 102102

102102∗ = R2 102102

From these and (3.1.1), we obtain the following eight tables.

(I) Tn
1Tn+i

2 = (012)2i(0121)n−i (1 ≤ i < n, n ≥ 2)

(012)2i (0121)n−i w �R±1
1 �R±1

2 �(R1 R2)±1

(012)2i (0121)n−i n − i n + 2i 2n + i

(012)2i (0121)n−i−1012 n − i − 1 n + 2i 2n + i

(012)2i (0121)n−i−1021 n − i n + 2i − 1 2n + i

(012)2i (0121)n−i−101 n − i − 1 n + 2i 2n + i − 1

(012)2i (0121)n−i−102 n − i n + 2i − 1 2n + i − 1

(012)2i (0121)n−i−10 n − i − 1 n + 2i − 1 2n + i − 1
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(II) T−n
1 T−n−i

2 = (210)2i(1210)n−i (1 ≤ i ≤ n, n ≥ 1)

(210)2i (1210)n−i n − i n + 2i 2n + i

(210)2i (1210)n−i 1 n − i + 1 n + 2i 2n + i

(210)2i (1210)n−i 2 n − i n + 2i + 1 2n + i

(210)2i (1210)n−i 12 n − i + 1 n + 2i 2n + i + 1

(210)2i (1210)n−i 21 n − i n + 2i + 1 2n + i + 1

(210)2i (1210)n−i 121 n − i + 1 n + 2i + 1 2n + i + 1

(III) Tn
1T2n+i

2 = (0102)i(012)2n (i ≥ 0, n ≥ 1)

(0102)i (012)2n i 3n + 2i 3n + i

(0102)i (012)2n1 i + 1 3n + 2i 3n + i

(0102)i (012)2n−201201 i 3n + 2i − 1 3n + i

(0102)i (012)2n−2012021 i + 1 3n + 2i 3n + i − 1

(0102)i (012)2n−20120 i 3n + 2i − 1 3n + i − 1

(0102)i (012)2n−201202 i + 1 3n + 2i − 1 3n + i − 1

(IV) T−n
1 T−2n−i

2 = (210)2n(2010)i (i ≥ 1, n ≥ 0)

(210)2n(2010)i i 3n + 2i 3n + i

(210)2n(2010)i−1210 i − 1 3n + 2i 3n + i

(210)2n(2010)i 2 i 3n + 2i + 1 3n + i

(210)2n(2010)i−12102 i − 1 3n + 2i 3n + i + 1

(210)2n(2010)i 21 i 3n + 2i + 1 3n + i + 1

(210)2n(2010)i−121021 i − 1 3n + 2i + 1 3n + i + 1

(V) T−n−i
1 Tn

2 = (1020)i(102)2n (i ≥ 0, n ≥ 1)

(1020)i (102)2n 3n + 2i 3n + i i

(1020)i (102)2n1 3n + 2i + 1 3n + i i

(1020)i (102)2n−210210 3n + 2i 3n + i − 1 i

(1020)i (102)2n12 3n + 2i + 1 3n + i i + 1

(1020)i (102)2n−2102101 3n + 2i 3n + i − 1 i + 1

(1020)i (102)2n−21021012 3n + 2i + 1 3n + i − 1 i + 1

(VI) Tn+i
1 T−n

2 = (201)2n(0201)i (i ≥ 1, n ≥ 0)

(201)2n(0201)i 3n + 2i 3n + i i

(201)2n(0201)i−1202 3n + 2i − 1 3n + i i

(201)2n(0201)i 2 3n + 2i 3n + i + 1 i

(201)2n(0201)i−120 3n + 2i − 1 3n + i i − 1

(201)2n(0201)i−12012 3n + 2i 3n + i + 1 i − 1

(201)2n(0201)i−1201 3n + 2i − 1 3n + i + 1 i − 1
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(VII) Tn
1Tn

2 = (0121)n (n ≥ 1)

(0121)n n n 2n

(0121)n−1012 n − 1 n 2n

(0121)n−1021 n n − 1 2n

(0121)n−101 n − 1 n 2n − 1

(0121)n−102 n n − 1 2n − 1

(0121)n−10 n − 1 n − 1 2n − 1

(VIII) T−n
1 T−n

2 = (1210)n (n ≥ 0)

(1210)n n n 2n

(1210)n1 n + 1 n 2n

(1210)n2 n n + 1 2n

(1210)n12 n + 1 n 2n + 1

(1210)n21 n n + 1 2n + 1

(1210)n121 n + 1 n + 1 2n + 1

We explain how to read the above tables, by using (I). In the element (012)2i (0121)n−iw,

w runs the elements {id, 012, 021, 01, 02, 0}. The row of �R±1
1 denotes the number

of R±1
1 , for example, in the case (012)2i (0121)n−i , �R1 = n − i . Therefore the third

line in (I) means that in the type (012)i (0121)n−i , the number of the elements such that
l(w) = 3 × 2i + 4 × (n − i) = 4n + 2i, is equal to � { all vertices in the figure of
�R1 = n − i, �R2 = n + 2i, �(R1 R2) = 2n + i }. From all tables, we find the following.

Lemma 3.6
(i) By the suitable rearrangements of rows and columns, all tables are rewritten as

�R±1
1 , �R±1

2 , �(R1 R2)±1

a b c

a b + 1 c

a b + 1 c + 1

a + 1 b c

a + 1 b c + 1

a + 1 b + 1 c + 1

and

a b c

I n − i − 1 n + 2i − 1 2n + i − 1

II n − i n + 2i 2n + i

III 3n + i − 1 i 3n + 2i − 1

IV 3n + i i − 1 3n + 2i

V i 3n + i − 1 3n + 2i

VI i − 1 3n + i 3n + 2i − 1

VII n − 1 n − 1 2n − 1

VIII n n 2n

(ii) In all eight tables, we see that the minimal length l(w) of each element w is equal to
the sum of �R±1

1 , �R±1
2 , and �(R1 R2)±1, that is, l(w) = �R±1

1 + �R±1
2 + �(R1 R2)±1.

From this lemma, we obtain the main result.
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Theorem 3.7 The Poincaré series of the Weyl group of type A(1,1)
2 is given by

∑
w∈W

tl(w) = 1 + 4t + 17t2 + 19t3 + 17t4 + 4t5 + t6

(1 − t)4(1 + t)2

= (1 + t + t2)(1 + 3t + 13t2 + 3t3 + t4)

(1 − t)4(1 + t)2
.

Proof: We set w(a, b, c) := (ab + bc + ca + a + b + c + 1)ta+b+c + ∑∞
k=1{2(a + b +

c) + 6k}ta+b+c+2k, and W (a, b, c) := w(a, b, c) + w(a, b + 1, c) + w(a, b + 1, c + 1) +
w(a + 1, b, c) + w(a + 1, b, c + 1) + w(a + 1, b + 1, c + 1). Then the Poincaré series is
calculated as follows:

∑
w∈W

tl(w) = 2

{ ∞∑
n=2

n−1∑
i=1

W (n − i − 1, n + 2i − 1, 2n + i − 1)

+
∞∑

n=1

n∑
i=1

W (n − i, n + 2i, 2n + i)

+
∞∑

n=1

∞∑
i=0

W (3n + i − 1, i, 3n + 2i − 1)

+
∞∑

n=0

∞∑
i=1

W (3n + i, i − 1, 3n + 2i)

+
∞∑

n=1

∞∑
i=0

W (i, 3n + i − 1, 3n + 2i)

+
∞∑

n=0

∞∑
i=1

W (i − 1, 3n + i, 3n + 2i − 1)

}

+
∞∑

n=1

W (n − 1, n − 1, 2n − 1) +
∞∑

n=0

W (n, n, 2n).

By using Mathematica, we obtain the desired result.
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4. I.G. Macdonald, “The Poincaré series of a Coxeter group,” Math. Ann. 199 (1972), 161–174.
5. K. Saito, “Extended affine root systems I,” Publ. RIMS, Kyoto Univ. 21 (1985), 75–179.
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