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ERRATA CORRIGE

General Ekeland’s Variational Principle for
Set-Valued Mappings

G. Y. CHEN,1 X. X. HUANG,2 AND S. H. HOU
3

Abstract. The authors correct Theorem 4.1 of Ref. 1.
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We thank Dr. Andreads Hamel for pointing out an error in the proof
of Theorem 4.1 of Ref. 1. See the last few lines of page 161. Specifically, we
cannot conclude from (û*, y*µ ) � (ûµ , yµ)∈Z0 that (û*, y*µ )∈Z0 by the maxi-
mality of Z0 because (û*, y*µ ) may depend on µ.

Theorem 4.1 and its proof can be corrected in the following way. First,
an additional assumption should be made.

Assumption A2. For each û∈X, F (û) is K-semicompact, F (û) ∩
(yAK ) is compact for each y∈Y.

Clearly, if K is closed and F is compact-valued on X, then F (û) is K-
semicompact for each û∈X. Then, condition (II) of Theorem 4.1 should be
revised as follows.

(II) K is closed and Assumptions A1 and A2 hold.

The contents from Line 3 of Page 161 to Line 7 of Page 162 of Ref. 1
can be revised as follows.
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‘‘For each µ∈I, define

BµG{(û*, z)∈{û*}BE(û*): (û*, z) � (ûµ , yµ)}.

Clearly,

Bµ2⊂Bµ1, ∀µ1Fµ2 . (1)

We show that each Bµ is nonempty and compact.’’
‘‘The nonemptiness of Bµ has been proved already. Now, we prove that

Bµ is closed. Let {(û*, zα)}⊂Bµ be a net, and let zα→z*. Then, (û*, zα)�
(ûµ , yµ), i.e.,

zαAyµC(r(û*, ûµ)∈AK.

By the closedness of K, we deduce that

z*AyµC(r(û*, ûµ)∈AK,

namely, (û*, z*)∈Bµ . Hence, Bµ is closed.’’
‘‘Note that Bµ⊂{û*}B[F (û*)∩ (yµAK )]. By Assumption A2, F (û*)∩

(yµAK ) is compact; hence, {û*}B[F (û*) ∩ (yµAK )] is compact. This fact,
combined with the closedness of Bµ, yields that Bµ is compact.’’

‘‘By the maximality of Z0 , we conclude (û*, y*)∈Z0 . Furthermore, we
have that û*∈X0 by the definition of X0 and (û*, y*) is the minimum of Z0.’’
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