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Abstract. In the IR field it is clear that the value of a system depends on the cost and benefit profiles of
its users. It would seem obvious that different users would prefer different systems. In the TREC-9 filter-
ing track, systems are evaluated by a utility measure specifying a given cost and benefit. However, in the
study of decision systems it is known that, in some cases, one system may be unconditionally better than an-
other. In this paper we employ a decision theoretic approach to find conditions under which an Information
Filtering (IF) system is unconditionally superior to another for all users regardless of their cost and benefit
profiles.

It is well known that if two IF systems have equal precision the system with better recall will be preferred by
all users. Similarly, with equal recall, better precision is universally preferred. We confirm these known results
and discover an unexpected dominance relation in which a system with lower recall will be universally preferred
provided its precision is sufficiently higher.
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1. Introduction

Information Filtering (IF) systems aim to present to the user only the relevant part of an
incoming stream of information. The user’s information needs are expressed in their profiles
that are matched against incoming documents. A good IF system can successfully estimate
the relevance of incoming items, and thus protect the user from irrelevant information
without overlooking that which is relevant (Hanani et al. 2001, Oard 1997, Belkin and Croft
1992). One major difference between IF and IR systems is that IF systems usually target
long term users with stable information needs, represented by user profiles, while many IR
systems target users with ad-hoc information needs.

Filtering was introduced as one of the Text Retrieval Conference (TREC) tasks in TREC-
4, and required the development of new evaluation measures. The reason for this is that
filtering systems make binary decisions (to accept or reject a document of an incoming
string) and the outcome of the system is an unranked set of documents. Therefore, the
standard evaluation measures (like average precision) that apply for ranked sets do not
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apply for filtering systems. One of the measures employed for evaluating IF systems is
general linear utility (Robertson 2002, Hull and Robertson 2000).

The general utility measure depends on utility parameters that reflect the importance of
detecting, and of missing the filtered topic to the user. For example, assuming a system that
filters economic news, the cost of missed documents may be higher for a stock exchange
broker than the cost to a student of economics. As evaluation based on utility reflects only
specific user’s cost and benefits, it is interesting to ask if there is an evaluation method that
might find one system’s superiority over another, regardless of its user’s preferences (costs
and benefits).

In this paper we employ a decision theoretic approach and use the information structure
model (IS) to find conditions under which an IF system is unconditionally superior to
another for all users, regardless of their cost and benefit. The IS model is frequently used
in information economics to assess the value of information in terms of the payoff to a user
of an imperfect information system. The IS model presumes an optimal decision strategy
on the part of the user of the system, i.e., the user takes the most profitable action, given the
system output (McGuire and Radner 1986).

In this paper an IF system is modeled by an IS, based on its precision and recall and
one additional parameter explained below. This modeling permits the evaluation of the
IF system in terms of benefit to the user, in a way similar to the TREC utility measure.
The evaluation can be used to rank order the IF systems. However, since this rank or-
dering is based on the user utility parameters, it only reflects the ordering for a specific
user.

We find that it is possible to partially rank order IF systems that are modeled by IS
regardless of specific user utilities parameter. A system will be said to dominate another
system when it is superior for all users for any utility parameters. The system comparison is
done using the Blackwell theorem (McGuire and Radner 1986). If the modeled IF systems
cannot be compared using the Blackwell theorem, they can still be ordered by their expected
payoff to a specific user utility parameters as done in TREC.

There are some obvious dominance relations between systems that we confirm using the
IS model:

1. System A is better than system B for all its users if they have equal precision, and system
A has higher recall.

2. System A is better than system B for all its users if they have equal recall and system A
has higher precision.

In this paper we show an unexpected dominance relation in which a system A with lower
recall than system B is still better for all its users provided its precision is sufficiently
higher.

The remainder of this paper is structured as follows: Section 2 reviews the IS model.
Section 3 models a basic IF system as an IS. Section 4 presents the relation of IS parameters
to precision and recall. Section 5 illustrates comparison of IF systems modeled by ISs,
using the Blackwell theorem. Section 6 extends the model to support IF systems that main-
tain detailed user profiles, and Section 7 includes concluding remarks and future research
directions.
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2. The information structure model: A review

The Information Structure (IS) model developed by Marschak ((1971); is an information-
economic approach to assess the value of information for a textbook see McGuire and
Radner (1986)). The IS model represents an information system as a Markov (stochastic)
matrix describing the stochastic transformation of states of nature, which are the inputs that
the system receives, to signals, which are the system’s outputs. The model assumes that
the decision maker, the user of the system, is rational and, given its values of payoffs, can
assess the benefits of using the system and choose the optimal usage strategy.

A brief review of the IS model is presented here. A more detailed introduction can be
found in McGuire and Radner (1986) and the original argument appears in Blackwell and
Girshick (1954, 1979 especially Ch. 5).

Let S be a finite set of Events: St = {s1, . . . , sns}. Let Y be a finite set of signals: Y t =
{y1, . . . , ynz}. Let π be a vector of prior probabilities of the events: π = {π1, . . . , πns} where∑ns

i=1 πi = 1, πi ≥ 0. An information structure (IS) is defined as a Markov (stochastic)
matrix of conditional probabilities. Its elements define the probability for a signal to be
displayed when an event occurs (qi, j indicates the probability of displaying signal y j given
event si ).

IS: Q =




q1,1 · · · q1,nz

· · ·
· · ·
· · ·

qns,1 · · · qns,nz




nz∑
j=1

qi, j = 1 ∀ i, and 0 ≤ qi, j ≤ 1 ∀ i, j (1)

Let A be a finite set of actions that can be taken by the decision maker (DM): At =
{a1, . . . , ana}. Let U be a cardinal payoff matrix of real numbers that associates payoffs
to pairs of an action and an event: U : A × S (ui, j indicates the payoff when the DM takes
action ai and the event turns out to be s j ).

A payoff matrix U is written as follows:

U =




u1,1 · · · u1,ns

· · ·
· · ·
· · ·

una,1 · · · una,ns




(2)

The DM observes the signals and chooses actions accordingly. The DM decision rule
can be described by a Markov matrix D where each element of the matrix represents the
probability that the DM will take a certain action when observing a certain signal (di, j

indicates the probability that the DM will take action a j given the signal yi ). Note that we
are admitting mixed strategies. However, when there are no resource limitations, there will
always be an optimal pure strategy. The DM wishes to maximize the expected payoff by
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choosing the optimal decision rule.

D =




d1,1 · · · d1,na

· · ·
· · ·
· · ·

dnz,1 · · · dnz,na




na∑
j=1

di, j = 1 ∀ i, and 0 ≤ di, j ≤ 1 ∀ i, j (3)

Finally, the matrix � is a square matrix with the vector π of a priori probabilities on its
main diagonal and zeros elsewhere:

� =




π1 0 · · 0

0 · ·
· · ·
· · 0

0 · · 0 πns




(4)

The expected payoff (utility) for the DM is EU = tr(QDU�) where tr is the matrix
trace operator (i.e., the sum of the elements on the main diagonal). The DM maximizes
EU by selecting the optimal decision rule D. Maximization is obtained by solving a linear
programming problem. Because the optimum for a linear problem occurs on the boundary,
at least one of the optimal decision rules will be pure, i.e., a matrix whose elements are only
ones and zeros (McGuire and Radner 1986, p. 102).

Given two ISs Q and T operating on the same set of events S, Q is said to be generally
more informative than T if the maximal expected payoff yielded by T is not larger than that
yielded by Q for all payoff matrices U and all probability vectors π . A partial ordering of
ISs is provided by the Blackwell theorem (Blackwell 1951, Blackwell and Girschick 1954,
1979, McGuire and Radner 1986) stating that

Theorem (Blackewell). Q is generally more informative than T if and only if there exists
a Markov matrix M with appropriate dimensions such that Q · M = T ; M is sometimes
called the garbling matrix.

Hereafter we will use the term “informativity” for the concept “generally more infor-
mative”. The informativity relation imposes a partial ordering over the set of Information
Structures. (Usually in information economics the term “informativeness” is used for what
we describe as “informativity”, however, in IR the term “informativeness” was used in
a different context (Tauge-Sutcliffe 1992), and we have introduced a new term to avoid
confusion.

The IS model was expanded by Demski (1972), Ahituv (1981), Ahituv and Wand (1984),
Ahituv and Ronen (1988), Marshall and Narashimhan (1989), Sinchcombe (1990), Ronen
and Spector (1995), and others. Carmi and Ronen (1996) applied the IS model to quality
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control attribute sampling, by analyzing a real life situation in the Israel Postal Authority.
Another discussion of the necessary and sufficient conditions of the Blackwell theorem can
be found in Hilton (1990).

In this paper we use the IS model to describe IF systems. Calculation of the user’s expected
payoff from the system supports comparison of the performance of IF systems. The next
section introduces modeling of IF systems with ISs.

3. Modeling filtering systems as information structures

IF systems receive incoming information for their users. Their goal is to discriminate be-
tween relevant and irrelevant documents so as to expose their users only to information
that is relevant, while not missing important relevant information (Hanani et al. 2001, Oard
1997, Belkin and Croft 1992). IF systems maintain users profiles that represent users’ long
term information preferences. Every piece of incoming information to the IF system is
matched against a specific user’s profile to determine if it is should be routed to him accord-
ing to his profile. Many profile representation methods are described in IF related literature.
One popular implementation of a user profile consists of a vector of weighted terms whose
weights represent their significance to the user. The IF systems goal is, on the one hand, to
maximize the fraction of the relevant incoming information that is presented to the user, and
on the other hand to minimize the fraction of the non-relevant information that it mistakenly
presented to the user. In this section modeling of IF systems that hold basic user profiles is
presented. In Section 6 an extension is presented that includes modeling of IF system that
maintain detailed user profiles.

There is an isomorphism between the filtering process and the information structure
model. The fractions of relevant and non-relevant information entering the IF system can
be thought of as the a priori probabilities of relevant and non-relevant information flowing
into the IF system (the events in the IS model terminology are “relevant” and “non-relevant”).
Van Rijsbergen (1979) defines for IR systems the Generality parameter (G) as the measure of
the density of relevant documents in the collection (i.e., the number of relevant documents
in a collection divided by the total number of documents in the collection). We slightly
alter the definition of G for IF systems to be the average density of relevant documents
in an incoming stream of information, i.e., the average chance that an incoming item is
relevant. Hereafter G will denote the generality (density). The a priori probability of a
relevant document will be G while the a priori probability of a non-relevant document will
be (1 − G).

The IF system’s output can be considered as signals indicating whether a piece of in-
formation is estimated to be relevant or not. In order to distinguish between the events
named “relevant” and “non-relevant” and the signals, the signals will be called “flagged”
and “non-flagged”. A “flagged” signal means that the system suggests that the user read the
piece of information while a “non-flagged” signal means that the system suggests that the
user ignores the piece of information.

The filtering process can be represented by a 2 by 2 IS, denoted by Q. We refer to the
elements of the matrix Q by what they represent, where R means “relevant”, R′ means
“non-relevant”, F means “flagged” and F ′ means “non-flagged”.
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Q[R, F] represents the fraction of the relevant information from the incoming stream
of information that is flagged. Q[R, F ′] represents the fraction of the relevant information
that is not flagged. Q[R′, F]represents the fraction of the non-relevant information that the
system mistakenly flags as relevant. Q[R′, F ′] represents the fraction of the non-relevant
information that the system flags as not relevant. Based on this filtering process the user
can choose whether to follow the system’s recommendation (i.e., whether to examine the
pieces of information indicated by the system as relevant) or not.

In the IS model terminology, the IF users’ activities are translated into two actions:
read the information (action named “read”), and disregard the information (action named
“disregard”).

The following example summarizes and illustrates the modeling of IF system with the
IS model:

• Events: S = {Relevant, Non-relevant}
• A priori probabilities: π ={G for Relevant, (1 − G) for Non-relevant. In this example

we take G = 0.2}
• Signals: Y = {Flagged, Non-flagged}
• Actions: A = {Read, Disregard}.

Suppose the actual IS, Q, modeling an IF system is as follows:

Signals

IS Q events Flagged Non-flagged

Relevant 0.9 0.1

Non-relevant 0.2 0.8

The user profile that typically describes users preferences, is represented in the IS model
as the user’s payoff matrix. A basic profile should define the importance of the relevant
information for the user, and is denoted in the IS model by his or her cost and benefit from
reading and disregarding relevant and non-relevant information. (The representation of a
more detailed profile in the IS model is described in Section 6).

Suppose that the user has the following payoff matrix U :

Events

U actions Relevant Non-relevant

Read 20 −5

Disregard −10 0

In the above payoff matrix, the user payoff from examining relevant information is 20.
The user loss caused by examining non-relevant information is −5. The user loss caused by
not examining an item of relevant information is −10, which is higher than the loss caused
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by using irrelevant information. The payoff from not using irrelevant information is set to
0 (In fact, both the zero point and the scale of the utility matrix may be set arbitrarily). The
expected payoff to the user can be expressed in terms of the trace of a matrix product

EU = tr(QDU�)

= G(d11 q11 u11 + d21 q12 u11 + d12 q11 u21 + d22 q12 u21)

− (G − 1) (d11 q21 u12 + d21 q22 u12 + d12 q21 u22 + d22 q22 u22)

= 2.8 · d11 − 1.8 · d12 − 2.8 · d21 − 0.2 · d22 (5)

For that EU, the optimal decision strategy D is:

Actions

D signals Read Disregard

Flagged 1 0

Non-flagged 0 1

In this case the optimal decision rule is to read the flagged information and disregard
the non-flagged information to maximize expected payoff. This decision strategy is a direct
result of the user payoff matrix, i.e. his profile. Applying the optimal decision rule to the
EU equation yields the maximal EU (in this example EU = 2.6).

Thus, given the properties of an IF system and his or her payoff matrix, a user can, deter-
mine whether using the IF system will increase expected payoff. In the next section we will
demonstrate how IF system modeled by ISs can be compared using the Blackwell theorem.

4. Relating IS parameters to precision and recall evaluation measures

The two most commonly used measures for performance of information retrieval and
information-filtering systems are precision and recall (Van Rijsbergen 1979, Frakes and
Baeza-Yates 1992, Baeza-Yates and Ribeiro-Neto 1999). “Precision is the fraction of those
documents that have been retrieved that are relevant. Recall is the fraction of all relevant
documents that have been retrieved” (Frakes and Baeza-Yates 1992). A precision and recall
curve usually describes the performance of a ranking system for one query. The curve repre-
sents the precision for different recall points. When used as a system’s performance measure,
the curve represents some average of these precision and recall curves over some distinct
queries. Information retrieval researchers have defined several single-number measures to
combine the precision and recall measure in an effort to avoid the essential complexity
of comparison of precision-recall curves (Frakes and Baeza-Yates 1992, Van-Rijsbergen
1979). When the user utilities and the a priori probabilities are specified, modeling IF sys-
tems with IS will also produce such a single measure, the payoff value for the user. In
this section the relation between IS parameters and precision-recall measure is given. In
Section 4.1 the mathematical derivation of precision and recall from IS modeling IF system
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is presented, and in Section 4.2 the derivation of IS parameters for an IF system is illustrated
based on the system’s precision and recall.

4.1. Precision and recall derivation from an IS modeling an IF system

Assume the following IS matrix Q models an IF system:

Signals

IS Q events Flagged Non-flagged

Relevant 0.9 0.1

Non-relevant 0.2 0.8

Assume as before that the a priori probabilities of the events (“relevant”, “Non-relevant”)
are: Pr(Relevant) = 0.2, Pr(Non-relevant) = 0.8. The relevant density in the IF model is
G = Pr(Relevant) = 0.2.

The recall measure (in probabilistic terms) is the probability to flag a relevant piece of
information, given the set of relevant documents in the system (hereafter denoted by R).
We can derive the recall for the above system Q as follows

R = Pr(Flagged/Relevant) = Q[1, 1] = 0.9 (6)

The precision measure (in probabilistic terms) is the probability of relevance for a piece of
information, given that the system has flagged it to be relevant (hereafter denoted by P).
Using Bayes’ theorem we can derive the precision for above system Q, as follows:

P = Pr(Relevant/Flagged)

= Pr(Flagged/Relevant) · Pr(Relevant)

Pr(Flagged/Relevant) · Pr(Relevant) + Pr(Flagged/Non-relevant) · Pr(Non-relevant)

= R · G

R · G + Q[2, 1] · (1 − G)
= 0.9 · 0.2

0.9 · 0.2 + 0.2 · 0.8
= 0.529 (7)

4.2. Derivation of an IS model of IF system based on its precision and recall

Assume an IF system with precision 0.8 and recall 0.9 and assume that the known gen-
erality (density) G is 0.2. In the IS model of that system, the a priori probabilities are:
(Pr(Relevant) = G = 0.2, Pr(Non-relevant) = (1 − G) = 0.8).

It is possible to “translate” the recall measure to IS terminology as follows, and to
calculate the probabilities of the signals given the relevant event:

Pr(Flagged/Relevant) = R = 0.9
(8)

Pr(Non-flagged/Relevant) = 1 − R = 0.1
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When transforming the precision measure to IS terminology, it is possible to calculate
the probabilities of the signals (“flagged”, “non-flagged”) given the not-relevant event:

P = R · G

R · G + Pr(Flagged/Non-relevant) · (1 − G)
⇓
Pr(Flagged/Non-relevant) = R · G − R · G · P

(1 − G) · P
(9)

= 0.9 · 0.2 − 0.9 · 0.2 · 0.8

0.2 · 0.8
= 0.225

Pr(Non-flagged/Non-relevant) = 1 − Pr(Flagged/Non-relevant) = 0.775

The IS thus derived for the above IF system is

Signals

Events Flagged Non-flagged

Relevant 0.9 0.1

Non-relevant 0.225 0.775

5. A comparison of IF systems modeled by IS

The motivation for IF modeling as an IS is to evaluate and compare IF systems using a
single measure, without the necessity of comparing precision-recall curves. This is not, in
general, unconditionally possible. However, once we represent the IF systems using ISs, we
may compare them using the Blackwell theorem. Since the Blackwell theorem offers only
a partial ordering of ISs it is not guaranteed that each pair of IF systems will be comparable.
But, sometimes, one dominates another. In this section we characterize pairs of IF systems
that can be compared by the Blackwell theorem based on the precision and recall measures
of the systems. Thus we define the partial order of the Blackwell theorem in precision-recall
terms.

Let Q and T be two ISs modeling two different IF systems. A partial rank ordering of ISs
is provided by the Blackwell theorem quoted above. It can be shown that a more informative
IF system never yields lower expected payoff for any choice of a priori probabilities and
payoff matrix.

For example, assume two ISs Q and T, modeling IF systems, have the following matrices

Signals

IS Q events Flagged Non-flagged

Relevant 0.9 0.1

Non-relevant 0.2 0.8
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Signals

IS T events Flagged Non-flagged

Relevant 0.8 0.2

Non-relevant 0.2 0.8

There exists a garbling matrix M that Q · M = T :

Signals

M signals Flagged Non-flagged

Flagged 0.8857140 0.114286

Non-flagged 0.0285714 0.971429

In this case, Q is preferred to T by all users. A detailed description of how to find the
matrix M , using linear programming, is given in Appendix A.

Note that the Blackwell theorem offers only partial ordering, meaning that only some
pairs of ISs can be compared unconditionally. If two ISs cannot be compared using the
theorem, the expected payoff of each of the systems must be evaluated using the model for
a given user profile (called the payoff matrix in the IS model terminology) and the relevance
density G (a priori probabilities in the IS terminology). The system which delivers higher
expected payoff will be considered “more informative”, and the choice is conditioned on
the specific details of the situation.

To be concrete, assume the user has the following payoff matrix

Events

U actions Relevant Non-relevant

Read 20 −5

Disregard −10 0

Assume the a priori probabilities are

Events

Relevant Non-relevant

Probability 0.2 0.8

The expected payoff using the IF system modeled by Q is 2.6 while the expected payoff
using the IF system modeled by T is 2.0. The IF system modeled by Q delivers higher
expected payoff to the user. This result is not surprising, since the IS Q is more informative
than T according to the Blackwell theorem.
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By straightforward arithmetic we can express the information structure in terms of pre-
cision, generality (or density or relevant documents), and recall. With precision (P), recall
(R) and density (G): the result is

Signals

IS Q events Useful Trash

Relevant R 1 − R

Non-relevant R·G−R·G·P
(1−G)·P 1 − R·G−R·G·P

(1−G)·P

Theorem 1. Assume an IF system A with recall R and Precision P and consider a bounded
region in the p-R coordinates defined by the following parameterized curves.

1. 0 ≤ α ≤ 1

{
Rα = α · R

Pα = P

2. 0 ≤ β ≤ 1

{
Rβ = β

Pβ = G

3. 0 ≤ γ ≤ 1




Rγ = γ R + (1 − γ )

Pγ = Rγ P
Rγ · P + (

γ R(1 − P) + P
G (1 − γ )(1 − G)

)

Any IF system with precision and recall within the bounded region is inferior to system A
according to the Blackwell theorem.

Proof: Appendix B.

The key to the proof is that we transform a simple convex set, defined in the space of the
elements of the IS, into the more complex curves shown here.

Two known relations can be derived from Theorem 1 and are expressed in Corollary 1
and 2:

Corollary 1. Any set of IF systems modeled by ISs can be rank ordered using the Blackwell
theorem if their precision measure is the same.

Proof: Appendix C.

In Corollary 1 it is shown that any group of IF systems whose representative precision
is equal can be ranked ordered using the Blackwell theorem. This ranking is true for every
payoff matrix of the user. An IF system that has a higher recall will be a more informative
IS.

Corollary 2. IF systems modeled by ISs can be rank ordered using the Blackwell theorem
if their recall measure is the same.
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Figure 1. Dominance in p-R coordinates for a system with P = 0.4, R = 0.4, G = 0.025.

Proof: Appendix D.

In Corollary 2 it is shown that any group of IF systems whose representative recall points
are equal can be ranked ordered using the Blackwell theorem. This ranking is true for every
payoff matrix of the user. An IF system that has a higher precision has a more informative
IS.

Figure 1 is a graphical presentation of the bounded dominance region defined in Theo-
rem 1 for a system with R = 0.4, P = 0.4, and G = 0.025. Any other IF systems whose
representative points in the p-R place fall inside a bounded dominance region are inferior
to the system according to the Blackwell theorem.

Assume an IF system A whose dominance region is illustrated in figure 2. It is possible
to characterize the IF systems that are dominated by system A based on their precision and
recall representative points:.

1. It is known that if two systems have equal precision, the system with better recall
dominates the other. This known relation is stated in Corollary 1, and is graphically
pointed to on figure 2 as the “Corollary 1” line, which presents the domination over
systems with lower recall when equal precision is observed.

2. It is also known that if two systems have equal recall, the system with better precision
dominates the other. This known relation is stated in Corollary 2, and is graphically
pointed to on figure 2 as the “Corollary 2” line which presents the domination over
systems with lower precision when equal recall is observed.
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Figure 2. Three areas of dominance in p-R coordinates.

3. The area that is bordered by Corollaries 1 and 2 lines represents all the systems with
lower recall and lower precision dominated by system A.

4. However, it is difficult to compare two systems where one system has higher recall and
the other higher precision. We have found an unexpected dominance region, which
is actually the main contribution of Theorem 1. This region represents all the sys-
tems that have higher recall and lower precision snd are none the less dominated by
system A. The significance of this dominance region is that it is possible to rank or-
dered systems and to point up the universally superior system (by using the Blackwell
theorem) when the superior system has lower recall but a sufficiently higher preci-
sion. This dominance area is illustrated in figure 2 as the “main contribution of
Theorem 1”.

6. Modeling IF systems with detailed user profiles

In this section the model is extended to support filtering systems that maintain detailed user
profiles. The detailed profile represents the user long-term preferences regarding several
specific areas of interest. Using IS model terminology, the user profile is defined as a payoff
matrix reflecting the user’s perceived payoff for the receipt of information items flagged for
each area of interest included in the detailed user profile. The following is an illustration
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of modeling such IF systems by an IS. Two different users are represented by two distinct
payoff matrixes which reflect their user profiles.

The IS model parameters in this example are:

• Events: S = {News, Finance, Computers, Other subjects}—representing the set of areas
of interests (subjects), that the systems might receive documents about and is able to deal
with.

• A priori probabilities: π = {0.05 for News, 0.15 for Finance, 0.1 for Computers, 0.7 for
other subjects}—representing the probabilities of receiving documents relating to the
known areas of interest (the events).

• Signals: Y = {Flagged News, Flagged Finance, Flagged Computers, Non-flagged}—
representing the set of signals that the system can send notifying the user as to which
area of interest the arriving document relates to.

• Actions: A = {Read, Disregard}—representing the actions that the user might take upon
a receipt of a signal from the system.

The matrix of the IS Q is as follows:

Signals

IS Q events Flagged News Flagged Finance Flagged Computers Non-flagged

News 0.80 0.05 0.04 0.11

Finance 0.02 0.70 0.10 0.18

Computers 0.07 0.03 0.85 0.05

Other subjects 0.10 0.05 0.15 0.70

Each of the first three rows of the structure Q represents the ability of the IF system
to “detect” incoming documents in the related subject that is represented by the column.
Thus, for example, the cell [“Flagged Finance”, “Finance”] presents the probability (0.70)
that the system will indicate (correctly) that Finance related documents are received, in
the event of receiving a Finance related document; while the cell [“Flagged Finance”,
“News”] presents the probability (0.05) that the system will indicate (incorrectly) that
Finance related documents were received in the event of receiving News related docu-
ments. The three first rows of the table reflect the ability of the system to indicate the
area (domain) of documents for all areas of interests that are part of the users’ profile.
In other words, it reflects the quality of the system filtering, i.e., the extent of the ability
to match the user profile. The fourth row represents the “ability” of the IF system to flag
information in subjects that are not of interest to the user. The fourth row (“Other sub-
jects”) reflects the extent of “under filtering” of the system. For example, the cell [“Flagged
News”, “Other Subjects”] presents the probability (0.10) that the system will (incorrectly)
indicate that a News related document is received when actually a non-relevant docu-
ment is received, i.e., a document not related to any of the areas of interests of the user’s
profile.
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Consider the following payoff matrices U 1 and U 2 for two different users. The following
matrices represent their profiles:

Events

U 1 actions News Finance Computers Other subjects

Read 15 10 30 −3

Disregard −2 −5 −3 0

Events

U 2 actions News Finance Computers Other subjects

Read 15 10 7 −9

Disregard −5 −15 −4 0

Each of the above payoff matrices (U 1, U 2), presents for one user the payoff for a received
document for each area of interest, and the damage caused by disregarding relevant infor-
mation for every area of interest. The payoff matrix represents the detailed user profile as
it includes a declaration of the importance of each subject to the user.

The expected payoff for the first user (User1) is

EU1 = tr(QD1U 1�) = 0.63 · d11 − 0.116 · d12 + 1.0725 · d21 − 0.539 · d22

+ 2.415 · d31 − 0.334 · d32 − 0.9675 · d41 − 0.161 · d42 (10)

For that expected payoff, the optimal decision strategy D1 is:

Actions

D1 signals Read Disregard

Flagged News 1 0

Flagged Finance 1 0

Flagged Computers 1 0

Non-flagged 0 1

The expected payoff for the second user (User2) is

EU2 = tr(QD2U 2�) = 0.049 · d11 − 0.273 · d12 + 0.7935 · d21 − 1.5995 · d22

− 0.17 · d31 − 0.575 · d32 − 4.0225 · d41 − 0.4525 · d42 (11)
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For that utility, the optimal decision strategy D2 is:

Actions

D2 signals Read Disregard

Flagged News 1 0

Flagged Finance 1 0

Flagged Computers 1 0

Non-flagged 0 1

In this case the optimal decision rule suggests that both users should follow the system’s
recommendations (for all subjects on the profile) in order to maximize their expected pay-
off. When applying the optimal decision rule to the EU1 and EU2 equations the maximal
expected payoff obtained in this example is: Q-EU1 = 3.9565, Q-EU2 = 0.22. This ex-
ample demonstrates how different user profiles as expressed by different payoff matrices
result in different expected payoff for the same IF system.

According to general utility theory, we do not attempt to compare utilities for different
users so the fact that these numbers Q-EU1 and Q-EU2 are different has no implications
for action. It does not, for example, mean that the system would serve User1 better than it
would serve User2. Conclusions can only be made regarding the comparison of two systems
for the same user.

The following example assumes that the same two users (User1, User2) are using another
IF system modeled by the IS T , whose matrix is

Signals

IS T events Flagged News Flagged Finance Flagged Computers Non-flagged

News 0.7278 0.0873 0.0716 0.1133

Finance 0.0500 0.6042 0.1046 0.2412

Computers 0.0834 0.0395 0.8111 0.066

Other subjects 0.1295 0.0770 0.1540 0.6395

The expected payoff for the optimal strategy of the users (based on their above U1
and U2 Payoff matrices, i.e., their profiles) is found as above, yielding: T -EU1 = 3.63615
T -EU2 = −0.41155.

The specific optimal decision strategies (D1) and (D2) of the User1 remains the same.
For both users the expected payoff is lower when using system T compared to using
system Q, for User1: Q-EU1 = 3.9565 T -EU1 = 3.63615, for User2: Q-EU2 = 0.22
T -EU1 = −0.41155. This suggests that for these two users the system modeled by T is
inferior to the system modeled by Q. However, in order to conclude that the system modeled
by T is always worse than system modeled by Q, i.e. for every user with every profile, there
must exist a garbling matrix M such that Q · M = T , and M is a Markov matrix. This will
satisfy the Blackwell theorem conditions. The following matrix is the desired M for the
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above example:

M =




0.90 0.05 0.04 0.01

0.03 0.85 0.01 0.11

0.02 0.01 0.95 0.02

0.05 0.04 0.01 0.90


 (12)

The existence of M for the above example allows us to conclude that for any user with any
profile, system T is always worse than system Q. The ability to conclude such dominance
between two such systems is an important extension to the model as it permits comparison
of filtering systems that include detailed profiles.

7. Discussion and future research directions

We have shown that it is possible to take a deep theorem about information structures and
transform it into the language familiar in IR, the language of precision and recall. The key
ingredient is the specific value of G, the density of relevant items in the incoming stream.
For different values of G, the region dominated by a system with specific (p, R) will vary.
However, as long as p is greater than G (and if it is not, then the system is actually worse than
random guessing) the dominated region will include the lines of constant p and constant R,
as determined in Corollaries 1 and 2. Thus for all values of G < p, any system with smaller
p and smaller R is dominated by the given system. This result, which is intuitively clear,
is given a rigorous foundation in the theory of information structures, and the Blackwell
theorem.

While the situation for the simple filtering case is easily represented in terms of a p-R
graph, as shown here, the model also applies to more complex systems, which function
as text classifiers. We have shown the basic model in Section 6. Those complex models
are an interesting topic in their own right, applying to the general text classification prob-
lem, and they will be presented elsewhere. Classification of texts into multiple categories
is of considerable importance in areas ranging from Customer Resource Management to
intelligence work. We mention also that the complex shape of the curves in the precision
recall plot can be translated into a less familiar plot whose axes represent (1/p, 1/R). These
variables were considered by Van Rijsbergen (1979) in the context of the so-called E and
F measures. The dominance region, according to the Blackwell theorem can easily be seen
on these plots. As might be expected, systems with higher values of E do not necessarily
dominate those with lower values, or vice versa.

Real systems usually have a complex performance curve, with many possible values of
the pair (p, R),depending on the setting of some threshold parameter. It can be shown that
the Blackwell theorem applies here as well, with one system dominating another if and only
if its precision-recall curve always lies above that of the other. This subsumes the approach
using cumulated numbers of relevant documents applied to the evaluation of IR systems by
Kantor and Voorhees (2000). In extreme cases, a single tuning of a more powerful system
will be more informative than any tuning of the less informative system.
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We believe that examining filtering systems from the point of view of information struc-
tures will provide a rigorous basis for the sometimes vexing issue of comparing the perfor-
mance of those systems.

Appendix A: Using LP techniques to determine whether two systems can be ordered
using the Blackwell theorem

It is a critical practical issue for systems comparison to be able to determine whether M exists
for given Q and T and how to compute it when its existence is known. In this section we
suggest converting the “existence of M” problem to an LP (Linear Programming) problem.
In LP terminology the problem is defined as finding a matrix M , given matrices Q, T , to
satisfy one of the following two sets of constraints:

1. Q · M − T = 0; Mi j ≥ 0;
∑

j

Mi j = 1 in case that Q is better than T .

2. T · M − R = 0; Mi j ≥ 0;
∑

j

Mi j = 1 in case that T is better than Q.

The second and the third constraints in each of the two sets stem from M being Markov.
Any software that has Linear Programming capabilities (such as Mathematica) can ap-
ply an LP algorithm (such as SIMPLEX) to solve this problem. If any of the sets of
constrains are not satisfied, then Q and T cannot be ordered by the Blackwell
theorem.

For example: given the following Q T 2 × 2 matrices, and defining the above constraints
would yield the following M when applying LP in Mathematica, meaning that Q and T are
comparable, and that Q is always better than T .

Q =
[

0.94 0.06

0.11 0.89

]

T =
[

0.95 0.05

0.26 0.74

]




Q · M − T = 0∑
j

Mi j = 1 ⇒ M =
[

0.999880 0.000120482

0.168554 0.831446000

]

Mi j ≥ 0;


T · M − Q = 0∑
j

Mi j = 1 ⇒ There is no M that satisfies the contraints

Mi j ≥ 0;

(A1)

However, applying LP to the following Q and T would result in a message indicating
that M does not exist for either set of constraints, meaning that these two systems can not
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be compared under the Blackwell theorem.

Q =
[

0.91 0.09

0.21 0.79

]

T =
[

0.95 0.05

0.26 0.74

]




Q · M − T = 0∑
j

Mi j = 1 ⇒ There is no M that satisfies the contraints

Mi j ≥ 0;


T · M − Q = 0∑
j

Mi j = 1 ⇒ There is no M that satisfies the contraints

Mi j ≥ 0;

(A2)

Appendix B: Proof of Theorem 1

Theorem 1. Assume an IF system A with recall R and Precision P and consider a bounded
region in the p-R coordinates defined by the following parameterized curves:

1. 0 ≤ α ≤ 1

{
Rα = α · R

Pα = P

2. 0 ≤ β ≤ 1

{
Rβ = β

Pβ = G

3. 0 ≤ γ ≤ 1




Rγ = γ R + (1 − γ )

Pγ = Rγ P
Rγ · P + (

γ R(1 − P) + P
G (1 − γ )(1 − G)

)

Any IF system with precision and recall within the bounded region is inferior to system A
according to the Blackwell theorem.

Proof: In this proof we show a graphical representation of the comparability condition
of the Blackwell dominance relation and extend it to a precision-recall diagram. Thus, we
graphically define a region (rather than points) for Blackwell comparable systems (i.e.,
systems that can be compared using Blackwell theorem).

The relation Q = T · M where T and M are Markov matrices admits a useful geo-
metric interpretation, which will help us to extend it to the p-R diagram that is familiar
to researchers in Information Retrieval. We note first that the IS T modeling an IF system
has two characteristic probabilities d = Pr(Flagged/Relevant), and f = Pr(Flagged/Non-
relevant), and can be represented in a plot whose axes are the conditional probabilities
to flag a relevant (y-axis) and non-relevant (x-axis) document. The two numbers define a
vector ( f, d), and (trivially) a second vector, (1 − f, 1 − d). Their sum, is (1, 1). As shown
in figure 3, they define a parallelogram. The point corresponding to the system T is marked
by ( f, d), and the reflected point marked by (1 − f, 1 − d). The relation to the Blackwell
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Figure 3. Dominance in f -d coordinates.

theorem is that a system whose representative pair of points lies within the parallelogram
is exactly a system in the form T · M , which is less informative than the system T . It is
easy to see that the expression of any point within the triangle defined by (0, 0), (1, 1), and
( f, d) as a convex combination of the three vertices can be transformed into an expression
in terms of a Markov matrix such that the interior point is represented by T · M .

We must show how the Blackwell dominance region can be drawn in p-R coordinates
based on the system’s derived precision and recall on each edge.

The first edge of the triangle ((0, 0), ( f, d)) represents all the systems (α · f, α · d) where
α is in the interval [0, 1]. The average precision of the systems on this line is constant and
does not change with α(Pα = P) whilst the recall changes from 0 for α = 0 to the recall R
of the system T (Rα = α · R). This edge represents all the systems based on the system that
is represented by ( f, d) and the trivial alternative “never flag”. These systems retain (with
probability α) documents that were flagged by the system ( f, d), and throw the flagged
documents with probability (1 − α) away. As α ranges from 0, 1, these systems sweep out
the line from (0, 0) to ( f, d).

The second edge of the triangle, ((0, 0), (1, 1)), represents all the systems flagging doc-
uments for retrieval entirely at random. Thus d = f = β where β represents the fraction
of all documents that are flagged by the system. Systems on this edge have a recall equal to
β(Rβ = β) while the precision equals the density measure G(Pβ = G) (as we have defined
G on the 3rd section to be average density of an incoming stream of information, i.e., the
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average chance that an incoming item is relevant). As β ranges from 0 to 1, it sweeps the
line from (0, 0) to (1, 1).

The third edge of the triangle, (( f, d), (1, 1)), is the most interesting one. It represents the
systems that can be achieved by randomly mixing the system at hand, T , with the system
that retrieves all the documents, which will be denoted by I (I has d = f = 1). For a
particular mixture (γT + (1 − γ )I ) we can calculate the actual values of the precision Pγ

and recall Rγ . The recall equals a mixture of the recall of both systems (Rγ = γR + (1−γ )).
The precision of the mixed systems is derived in the following way:

The value of f of system T (based on Eq. 14) is:

f = Pr(Flagged/Non-relevant) = R · G − R · G · P

(1 − G) · P
(B1)

The value of f of the mixed system (denoted by f γ ) is

f γ = γ · f + 1 − γ = γ
R · G − R · G · P

(1 − G) · P
+ 1 − γ (B2)

The precision of the mixed system (based on Eq. 12) is

Pγ = Rγ · G

Rγ · G + f γ · (1 − G)
= Rγ · G

Rγ · G + (
γ R · G−R · G · P

(1−G) · P + 1 − γ
) · (1 − G)

= Rγ · G · P

Rγ · G · P + (γR · G − γ R · G · P + P(1 − γ )(1 − G))
(B3)

Each of the triangle edges in figure 3 is drawn in p-R coordinates in figure 1 based
on the system’s derived precision and recall on each edge (as summarized in Table 1).
The line ((0, 0), ( f, d)) in f -d coordinates is transformed into the line ((0, P), (R, P)) in
p-R coordinates. The line ((0, 0), (1, 1)) in f -d coordinates is transformed into the line
((0, G), (1, G)) in p-R coordinates.

Table 1. Systems whose performance lies on the Triangle ((0, 0), ( f, d), (1, 1)).a

Triangle edge Systems Precision and recall

((0, 0), ( f, d))

[
αd 1 − αd
αf 1 − αf

]
for 0 ≤ α ≤ 1

Rα = α · R
Pα = P

((0, 0), (1, 1))

[
β 1 − β

β 1 − β

]
for 0 ≤ β ≤ 1

Rβ = β

Pβ = G

(( f, d), (1, 1))

[
γ d + 1 − γ γ (1 − d)
γ f + 1 − γ γ (1 − f )

] Rγ = γ R + (1 − γ )

Pγ = Rγ P
Rγ · P + (

γR(1 − P) + P
G (1 − γ )(1 − G)

)
for 0 ≤ γ ≤ 1

aWe do not discuss systems with P < G as these systems are irrelevant.
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Appendix C: Proof of Corollary 1

Corollary 1. Any set of IF systems modeled by ISs can be rank ordered using the Blackwell
theorem if their precision measure is the same.

Proof: Assume Q and T are ISs modeling two IF systems where RQ, P Q and RT , PT

are the recall and precision of the systems respectively and P Q = PT .
The ISs Q and T have the following structure where P = P Q = PT :

Q =

 RQ 1 − RQ

RQ · G − RQ · G · P

(1 − G) · P
1 − RQ · G − RQ · G · P

(1 − G) · P




(C1)

T =

 RT 1 − RT

RT · G − RT · G · P

(1 − G) · P
1 − RT · G − RT · G · P

(1 − G) · P




Q is more informative than T according to Blackwell theorem if there exists a Markov
matrix M = Q−1 · T . In this case, Q is invertible, and:

M = Q−1 · T =

 RT

RQ
1 − RT

RQ

0 1


 (C2)

M will be Markovian if RQ > RT . Thus, any pair of IF systems with the same precision
can be compared using the Blackwell theorem since M can be found for the IF with the
higher recall.

Appendix D: Proof of Corollary 2

Corollary 2. IF systems modeled by ISs can be rank ordered using the Blackwell theorem
if their recall measure is the same.

Proof: Assume Q and T are ISs modeling two IF systems where RQ, P Q and RT , PT

are the recall and precision of the systems respectively and R = RQ = RT .
Q is more informative than T according to Blackwell Theorem if there exists a Markov

matrix M = Q−1 · T . As Q is invertible we find directly:

M = Q−1 · T

=




G · P Q − P Q · PT − G · P Q · R + G · PT · R
(G − P Q ) · PT

G · (P Q − PT )(R − 1)
(G − P Q ) · PT

G · (PT − P Q ) · R
(G − P Q ) · PT

G · PT − P Q · PT + G · P Q · R − G · PT · R
(G − P Q ) · PT




(D1)
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M will be Markovian if P Q > PT since we assume P Q, PT > G and these conditions
make the off diagonal elements positive and less than 1.
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