
Machine Learning 1: 403-422, 1986
© 1986 Kluwer Academic Publishers, Boston - Manufactured in The Netherlands

Determining Arguments of Invariant Functional
Descriptions

MIECZYSLAW M. KOKAR (KOKAR @ NORTHEASTERN.CSNET)
Department of Industrial Engineering and Information Systems, Northeastern University, Boston,
MA 02115, U.S.A.

(Received September 30, 1985)
(Revised August 8, 1986)

Key words: functions, invariance, arguments, discovery, physical laws

Abstract. In this paper we examine the problem of determining arguments of invariant functional
descriptions from incomplete observational data. Physical laws are one example of invariant functional
descriptions. For such functions, we show that one can test the relevance of the function's arguments
even though their values remain constant throughout the observational data. We present a method,
called COPER, for discovering invariant functional descriptions. COPER eliminates irrelevant argu-
ments, generates additional relevant arguments, and generates a functional formula. We focus on the
first two of these features, giving two examples of how the methodology can be applied to determining
arguments of physical laws.

1. Introduction

Determining the relevant attributes (features) of a domain is one of the central
problems of machine learning. This task consists of several subproblems: deciding
which attributes1 should be eliminated as irrelevant, deciding which attributes
should be added as relevant, and combining the relevant attributes into some
useful concept description. This paper presents a methodology for automating this
process.

We will assume that the learning system is provided with some observational
data represented by series of n-tuples of attribute-value pairs (the values can be
numerical or nominal). Such n-tuples are called events, and the space of all

' We will assume that each attribute has a name along with a set of possible values. In the
literature, the same name is sometimes used for both an attribute and its values. Also, the name of the
attribute sometimes represents both a variable and the value of that variable, i.e., one element from
the value set of the given attribute. The reader should be aware of these terminological ambiguities.

404 M.M. KOKAR

syntactically correct events is called event space. A concept is a subset of the event
space that is described by some predicates. Usually these are conjunctions of
selectors, i.e., of formulas represented as

(attribute-name # attribute-value)

The symbol # stands for a relational operator (cf., Michalski et al., 1983). In an
extreme situation a concept can be described by one selector.

Concept learning can occur under several different forms:

• deciding which attributes and values are irrelevant/relevant to the concept
• generating a description for a new relevant attribute
• combining the selectors into a logical formula (such as conjunctions, dis-

junctions, etc.)

In this paper we focus on the first two categories of concept learning. We assume
here that, in the data presented to the learning system, some of the attributes are
relevant to the domain, some are irrelevant, and some relevant attributes are
missing (not known to the system). The goal of the learning system is to decide
which of the arguments are irrelevant (and eliminate those from consideration),
to decide whether there are some arguments missing and, if so, to generate the
descriptions of the missing arguments.

Any concept learning system must be provided with certain kinds of infor-
mation. One of these is a language in which the concept descriptions can be
expressed. Moreover, the system must have some feedback from the environment
that tells which events are instances of the concept and which are not. One source
of such information is a teacher who classifies events as examples or nonexamples
of the concept. This approach is called 'learning from examples' and has been
widely studied within machine learning. In this paper we address the more
difficult task of 'learning from observation.' In this paradigm, events may span
many different concepts, and the learner itself must assign events to appropriate
classes. This is very similar to the task of 'conceptual clustering' described by
Michalski (1980). Earlier work in this area has dealt almost exclusively with
symbolic concepts, while our concern is with functional descriptions whose
arguments, and formulas relating the arguments, fulfill some syntactic require-
ments.

2. Functional descriptions

A functional description maps the values of one or more independent attributes
(or arguments) onto the values of some dependent attribute (or argument).
Mathematically, a set of events represents a function (fulfills the condition of
functionality) if, for all events having the same value of the independent argu-

DETERMINING ARGUMENTS 405

ments, the value of the dependent argument is constant. Thus, a functional
description gives a rule for predicting the values of the dependent argument from
events expressed in terms of the independent arguments. Such a rule constitutes a
generalization of the given set of events.

Physical laws constitute a significant class of functional descriptions. For in-
stance, the law of conservation of energy

and Bernoulli's law

both represent functional descriptions. We will return to the second of these
examples later in the paper.

We will say that a set of arguments of the function is complete, if any set of
events described by this function fulfills the condition of functionality. However,
such a set may include irrelevant arguments in addition to relevant ones. We will
use the term necessary to refer to a complete set of relevant arguments.

With these definitions, we can now state the problem formally:

Given:

• An initial set of independent arguments.
• A dependent argument.
• A set of rules of generating descriptions of independent arguments.
• A set of events expressed in terms of the initial arguments.

Goal:

• Select the relevant arguments and eliminate the irrelevant ones.
• Generate additional relevant arguments. The resulting set must be a neces-

sary set of arguments of the functional description.

2.1 Testing the functionality of descriptions

It seems straightforward to test whether a given set of events satisfies the con-
dition of functionality. To check this, we simply subdivide the events into classes
that have the same values of the independent arguments. If the value of the
dependent argument is constant for each such class, then it would seem safe to
assume that the set of arguments is complete. If not, then the condition of
functionality is not fulfilled and some new argument should be generated.

Unfortunately, the situation is not so simple as it first appears. It is quite
possible that the function depends on some unknown argument, but that the

406 M.M. KOKAR

values of this argument have remained constant for all observed events. In this
case the events will seem to satisfy the functionality condition (and thus the
known arguments will appear to be complete, when they are in fact not). Thus we
need some more robust method for determining completeness.

The other situation, when the condition of functionality for a given set of events
is not fulfilled, is also problematic. Even if we can detect when the set of
arguments is incomplete, we still require some means for determining the missing
argument(s).

In the following pages, we focus on the first of these problems, describing a
method that lets us test the relevance and completeness of a set of arguments
when only some of the arguments are varied. We then show how one can apply
this method to select new arguments to fill out an incomplete set.

Our basic approach relies on the notion of invariant meaningful functions; these
are functions which are invariant under transformations of the arguments by the
generation rules of the description space. For such a function, one can show that
knowing all its arguments, and their values, for one point (event) lets one predict
the corresponding values for a whole class of events (orbit). Note, however, that
we know some values of the function from observation. If the predicted values do
not agree with the observed ones, then we can infer that the condition of
completeness is not fulfilled and some arguments are missing. The important
feature of invariant functions is that the predictions can be made without knowing
what the functional formula is and, moreover, that to move from one point on the
orbit to another, not all arguments have to be changed. This lets one test the
relevance of arguments without varying their values. However, this requires
knowledge of the generation rules for the description space and their effect on
arguments. We consider the nature of the description space and its transformation
rules in the following section.

2.2 The space of descriptions

The space of descriptions we are interested in consists of physical quantities as, for
instance, 3 m, 5 kg/m2, 7 s, etc. This space can be generated out of a few
primitives (m, kg, s, and a real number) by two operations — multiplication and
raising to a real power (Drobot, 1953; Whitney, 1968). These operations can be
applied to any element of the description space. In addition, because real numbers
are a subset of the physical quantities, any operation admissible for real numbers
can be applied to the elements of this subset (e.g., addition, logarithm). Every
physical quantity can be represented in terms of these four primitives as

Where a0, al, a2, a3 are real numbers. For example, if the exponents have the
values: a1 = 1,a2 = 0, a3 = -1, then the resulting description, numbera ()m lkg0s - 1 ,

DETERMINING ARGUMENTS 407

represents the physical quantity of 'velocity.' By assigning a value to the 'number'
in the above expression, we obtain one particular value of velocity, such as
3 m 1 s - 1 (usually represented as 3 m/s). By fixing the exponents al, a2, a3 to the
above settings and by varying the exponent a0, we can generate a subset in the
description space representing the value set of an argument called velocity. In a
similar way we can represent any other argument and its value set. Normally, we
do not use the exponential representation of the real numbers and write simply:
F=e fm

1kg1s - 2 to represent an argument of 'force,' where ef stands for a real
number.

In general, any argument (of a physical law) can be characterized by the
exponents on the generators (in physics, the generators are called measurement
units) and by numbers which distinguish particular argument values from among
all the elements of the value set for the argument.

Elements of a description space can be represented not only in terms of the
primitive generators but also in terms of several derived descriptors from the
same space. For instance, consider the four physical quantities

representing velocity (V), area (5), force (F), acceleration (a), and a number,
say 2. Acceleration (a) can be expressed in terms of V and S as:

However, none of the three descriptors V, S, and F can be expressed in terms of
the remaining two. We will say that such a set of descriptors is syntactically
independent, and we will use the term base to refer to any maximal set of
syntactically independent descriptors. According to this definition, the above
descriptors (V, S, and F) are syntactically independent and constitute a base.
Adding any descriptor to this set would make it syntactically dependent.

Just as we can define the notion of a base for descriptors (values of the
arguments), we can introduce the concept of base arguments. We will say that a
set of arguments is syntactically independent if none of these arguments can be
expressed solely in terms of the other arguments in the set. Otherwise, the set will
be a dependent set of arguments. Any maximal set of independent arguments will
be called a base. Thus the arguments V, S, and F constitute a base, while V, S, F,
and a do not.

One can show that any descriptor from a given description space can be
expressed in terms of any base, and that the representation is unique (in the given
base). This means that, if we have a mapping of one base onto another base, then
this mapping defines a transformation of the space. This lets one easily transform

408 M.M. KOKAR

arguments and events based on one representation into corresponding arguments
and events based on another representation. For a description space representing
physical quantities, selecting another base means selecting another system of
measurement units, and transforming the space means expressing all physical
quantities in another system of units.

Since we are concerned with the automatic generation of bases, it is important
to know how many elements a base should contain. Fortunately, it is easy to see
that, if a space has n generators, then the number of descriptors (arguments)
in a base is also n. In the case of physical quantities, one of these will be a
real number, since numbers are common to any description space for physical
quantities.

We have barely touched on the problems that arise with transformations of
description spaces, but the reader can find more detailed discussion in publi-
cations on dimensional analysis (Luce, 1978; Drobot, 1953; Causey, 1969).

2.3 Invariant functional descriptions

In the previous section we described the space of arguments in which we are
interested. Now let us turn to the form of the functions involved and discuss the
property of invariance of functional descriptions.

In this paper we are concerned with functions that are invariant. In short, this
means that, if the arguments of the function are changed according to the rules of
generation of the description space, then the values are changed according to the
same rules. The practical implication is that, if we know that a function is
invariant and we know the value of the function for one point, then we can easily
calculate its values for many other points. We can compute these values from the
starting point using transformations, even without knowing the formula that
describes the function.

Luce (1978) has linked the notion of invariance with a more elementary notion
of meaningfulness of functions. Meaningful functions utilize only the operations
which define the decription space. In the case of physical laws, these are multi-
plication and exponentiation (applicable to all arguments) and other operations,
as addition or logarithm, applicable to those arguments which are purely numerical.
Under this interpretation, addition of two arguments of the same kind (e.g.,
velocity to velocity, force to force) is understood as multiplication of one of them
by a number. Such an interpretation cannot be applied to addition of velocity to
force. Thus it is meaningful to add two forces, but it is not meaningful to add
distance to mass, or velocity to force.2 Moreover, nonnumerical arguments can be
combined into monomials that are purely numerical, and then any numerical
operation can be applied to these transformed arguments. One can transform

2 We refer the reader to Luce (1971, 1978), Causey (1969), Krantz, Luce, and Suppes (1971), and
Kokar (1985) for a fuller discussion of invariance and the meaningfulness of functions.

DETERMINING ARGUMENTS 409

arguments of a meaningful function into a (smaller) number of numerical argu-
ments simply by dividing a derived argument by its representation in a selected
base. For instance, division of acceleration (a) by its representation in the base
(V,S)

results in a purely numerical (dimensionless) value (see section 2.2).
Invariance is a very important property of the meaningful functions. It lets us

predict the value of the function for some values of its arguments, provided we
know the value of the function for another point related to the second one
through the generating transformations. We will rely on this property in our
methodology for determining functional descriptions.

2.4 Invariant functions and orbits

Now we are ready to show how the notion of invariance can be used to determine
the completeness of a set of arguments.

Suppose a functional description has n arguments. As we found in section 2.2,
we can then select m of them as base arguments (provided they are syntactically
independent) and express the remaining r = n — m in terms of this base. In doing
so, we would use the generating operations of the language, multiplication and
exponentiation in the case of physical quantities. For instance, if the base argu-
ments are length (m) and time (s), then the derived argument acceleration (m/s2)
can be expressed in terms of the base descriptors as

acceleration = number • length • time -2

By varying the numerical values of the base arguments in the same formula, we
can express the same value of derived argument in terms of the base arguments in
many ways. We will use the term orbit to describe a set of points for which the
derived arguments are constant and the base arguments are varied in such a way
that they fulfill the equations relating the two sets of arguments.

In the above example, the points (8 m, 2 s, 2 m/s2), (18 m, 3 s, 2 m/s2) and
(32 m, 4 s, 2 m/s2) would belong to the same orbit, for all of them the above
formula has the value of 2 m/s2.

Let Z represent a dependent argument, and let A1, . . . , Am, B1, . . . , Br
represent independent arguments of the functional description F. If we choose
A1, .. .Am as our base arguments, then we can represent the value of Bl, . . . ,
Br in terms of A1, . . . , Am values in many ways. Moreover, we can design
experiments in such a way that the Bl, .. .Br values are constant for several
combinations of A1, ..., Am (points of the same orbit). Therefore, for these
observations, Z will depend only on A1, . . . , Am and we can predict the changes

410 M.M. KOKAR

of Z for each orbit, given the value of the function for one point in each orbit.
This is true provided that A1, ..., Am, B1, ..., Br are the only arguments of

the function. If there exists another relevant argument, Bk, of which we are not
aware, then our predictions will not agree with the observations of Z's values.
This is because we did not take the argument Bk into consideration when de-
signing the experiments (the orbits), and because the changes in Z caused by
changes in A1, . . . , Am can be predicted only if the arguments of the function are
in the same orbit. This is not the case when Bk remains unchanged (or if its
changes are beyond our control) and A1, . . . , Am change their values inde-
pendently of Bk.

Based on this reasoning, we can introduce a measure of disagreement, or
nonconformity, between the predicted values of a function and the observed ones.
We define this measure as the average difference between observed and predicted
values. Complete agreement can be achieved only if one takes into account all the
relevant arguments of the function in predicting the values of that function. A
high value of the nonconformity measure indicates that some of the arguments are
missing, and including an additional relevant argument will improve (lower) this
measure.

This gives not only a method for testing the completeness of a function's
arguments, but also suggests a method for deciding which argument should be
included as relevant (or excluded as irrelevant). The important point here is that
we do not need to alter the values of an argument in order to test its relevance.
On the other hand, if the argument is changing without our control, it will affect
our predictions of the function's value, since we are not able to stay within an
orbit. In such cases, the value of the nonconformity measure will be high. Thus,
the nonconformity measure can be utilized as an indicator of incomplete relevance
both when the unknown argument is constant and when it is changing without
one's control.

3. COPER: A methodology for determining invariant functional descriptions

The above reasoning suggests a method for identifying relevant arguments and for
discovering descriptions of new arguments, even when the values of these argu-
ments remain constant throughout one's observations. This procedure can be
described in the following steps:

1. Determine the base descriptors (generators) and the syntactic rules for
generating new descriptors.

2. Determine the initial independent arguments and the dependent argument
of the function.

3. Select the base arguments from the set of independent arguments.
4. Express the rest of the arguments in terms of the base arguments (using

the rules of generation); these are the derived arguments.

DETERMINING ARGUMENTS 411

5. Design experiments (orbits) in which the base arguments are changed in
such a way that the values of the derived arguments, when expressed in
terms of them, will remain constant.3

6. Calculate the predicted values of the function for each orbit and compare
these values with the observed ones.

7. If the difference between the predictions and observations (nonconformity
measure) is significant, then generate a new descriptor to be taken into
consideration in the functional description. To this end perform a search of
the description space, looking for that descriptor which minimizes the
measure of nonconformity. The new descriptor will produce a new partition
of the observations into orbits, so repeat steps 5-7.

We call the above method COPER, and we have implemented the algorithm as a
running computer program. We have tested the system on its ability to discover
physical laws, to which we now turn.

3.1 The law of falling bodies

To better explain the COPER method let us consider its application to redis-
covering the arguments of a well-known physical law. The law of falling bodies
can be represented by the following function

where 5 stands for the distance, V for the velocity, t for time, and g for the
acceleration of gravity. We will assume that COPER is given a set of events
(experimental data), stated as the values of the independent arguments and of the
dependent argument. In this example we will consider three different situations:

• When all argument descriptors are known, we will show that the COPER
method confirms that the set of arguments is complete.

• When one of the descriptors (the gravity acceleration g) is missing, we will
see that the method correctly determines that the set of arguments is
incomplete.

• When the system generates a candidate descriptor which is irrelevant, we
will see that its nonconformity measure is high; this means that the method
can eliminate irrelevant descriptions.

Note that the input data will be generated (from the above equation) in such a

3 One can apply a similar strategy to nonplanned experimental data by subdividing the observed
events into orbits.

412 M.M. KOKAR

way that the argument g will be constant. Consequently, there will be no indication
about nonfunctionality of the data.

Let us follow the steps described in the previous section.

Step 1. The discovery system must first identify the primitives (generators) of the
description space and the rules for generating derived descriptors (cf., section
2.2). This information is provided by the user. In this case the primitives are m
(meter) and s (second), representing length and time respectively. The generating
operations for this description space are multiplication by another descriptor and
exponentiation (raising to a power). This means that every descriptor can be
represented4 as X =ea0malsa2, or after replacing ea0 with a real number ex as
X =e fma1Sa2A — exma1 sa2 .

Step 2. In the second step, the system must identify the dependent argument and
the known independent arguments. Again, the user provides this information. In
this example we have the dependent argument S, which can be represented as:

the values of which are 3 m, 5 m, 6 m, . .., etc. The independent arguments are

Thus, the function relating these terms has the form:

Step 3. At this point the system must select a base. Since we have two primitive
generators (besides a numeral) the base should consist of two arguments, and this
means that the system must find such two arguments that are syntactically in-
dependent. One can test syntactic independence for physical quantities by com-
puting the determinant of the arguments' exponents. For the arguments V and t,
the determinant of the matrix

is 1, and since it is non-zero, we can conclude that the terms are independent. In

4 In this example, we have at most two syntactically independent descriptors (not counting
numbers), e.g., (3 m1s-1', 5 m3). The descriptors 5 m1s-1 and 6 m-1s1 are not syntactically in-
dependent because one of them can be expressed in terms of the other, e.g., 3 m1s-1 = 18(6 m - 1 s 1) - l .

DETERMINING ARGUMENTS 413

this example the system has three choices for the base arguments: (V, t), (V, g),
and (g, t). All these pairs fulfill the condition of syntactic independence. Suppose
the arguments t and V are selected for this purpose.

Step 4. Now the arguments g and S need to be expressed in terms of the chosen
base arguments, giving: g = bgV1t -1 , and S = bsV

ltl. Note that in expressing
these arguments, we have used only the rules of generation: multiplication and
exponentiation. Also, it is important to realize that the formula for 5 does not
represent the functional dependency which is the goal of the discovery process; it
is merely a syntactic expression useful for the purposes of prediction.

Step 5. Suppose the values of the arguments are: V = 6 m/s, g = 10 m/s2, t = 2s,
and in this situation we observe S = 32 m. The goal at this point is to design an
experiment in which the values of V and t are varied, but in which the value of g,
expressed in terms of V and t using rules of generation, remains constant. The
first three columns of Table 1 present some values of these arguments. Recall that
in the base we have selected, g = b g V l t - 1 , and from values of V and t in the
Table we can compute that the value of g is always 10.

Step 6. The next step is to calculate the predicted values of 5. This requires that
we take into account the changes in the base arguments V and f, using the formula
S = bs V

ltl that we identified in step 4. We know the value of S for the first point,
and from this we can calculate the value of bs = 32/(6 • 2) = 2.67. The values for
other points can be predicted by multiplying bs by the new values of V and t.
These predictions are shown in the fourth column of Table 1.

Step 7. As Table 1 shows, the predicted and observed values of 5 are identical,
telling us that our set of arguments is complete. This shows the strength of the
invariance assumption; using this constraint, we can determine the completeness
of the argument set even when we have no idea of the function that relates these
terms.

In this example, because the predicted values agreed with those obtained by
observation, there is no reason to search for a new argument. We can conclude

Table 1. Predicted and observed values for the law of falling bodies.

V(m/s)

6
9

12
15
18
21

t(s)

2
3
4
5
6
7

g(m/s2)

10
10
10
10
10
10

S-predicted

32
72

128
200
288
392

S-observed

32
72

128
200
288
392

414 M.M. KOKAR

that the behavior of falling bodies can be expressed in terms of the four argu-
ments S, V, t, and g. But can the method also reveal when the one of the
arguments is missing?

3.2 Inferring the descriptor of gravity

To analyze the situation when the set of arguments is incomplete, let us take the
same example but with different starting information. Assume that we do not
know about g, the argument for acceleration due to gravity. Instead, we assume
the functional description of falling bodies has the form S = F(V, t).

From a purely mathematical point of view this is very nearly true, because it is
very difficult to alter g under typical circumstances (such as on earth). More
precisely, let us assume that we can only observe situations in which the acceleration
due to gravity, g, is the constant 10 m/s2 (for simplicity we will use 10 instead of
9.81). Using the method described earlier we will show that the set of arguments
composed of V and t is not complete, and that this state of affairs can be detected
even when the unknown term g is constant.

However, we will review only steps 5, 6, and 7 of the method in this context.
The first four steps remain essentially the same, with the exception that the
argument g is not taken into account. This means that in step 3 we have no
flexibility in choosing the base; the only base consists of V and t, and these are the
only known arguments as well.

Step 5. We are not limited in the design of our experiment because there are no
arguments besides the base. Therefore, any values for V and t are acceptable.
Obviously, this is a very simple example, and if we were dealing with a more
complex physical law we would have to take more arguments into account. The
first two columns of Table 2 show some possible values of V and t.

Step 6. We calculate the predicted values in the same way as before. First, we
compute the value of bs from the first experimental point for which the value of 5
is known; this gives bs = 32/(5-2) = 3.2. We then compute the predicted values

Table 2. Predicted and observed values for falling bodies with g unknown.

V(m/s)

5
10
15
20
25
30

t(s)

2
12
10
8
6
4

S-predicted

32
384
480
752
480
384

S-observed

32
840
650
480
330
200

DETERMINING ARGUMENTS 415

Table 3. Results of an experiment testing the relevance of X(m2).

V(m/s)

1
2
4
8

16
32

t(s)

32
16
8
4
2
1

*(m2)

1
1
1
1
I
1

S-predicted

5152
5152
5152
5152
5152
5152

S-observed

5152
1312
352
112
52
37

of S, using the definition S = bs V
1 t1. The last two columns of Table 2 present the

results of these predictions and the corresponding observations.

Step 7. As one can see, this time the predicted values significantly differ from
the observed ones. This indicates that the complete relevance condition was not
fulfilled, and this is because we did not group the experimental points into orbits,
having not known about the argument g. Notice that we arrived at this conclusion
without changing the value of the missing gravity argument.

Now, let us consider how the COPER method can be used to generate the
missing argument. We have already seen that it can recognize g as an acceptable
candidate, and we will shortly see that it can eliminate other arguments. These
two features make it possible to perform a systematic search through the space of
argument descriptions.

Take as an example the candidate argument X = exm
2s0, which represents an

argument of type 'area.' In step 4 this argument would be represented in terms of
the base as

According to step 5 of the method, we design an experiment such that for any
orbit, V2 • t2 remains constant. Table 3 presents the results of such an experiment,
including the predicted and observed results for the arguments. Again, we assume
here that the value of the function for the first point is known.

As we can see from the Table, the predicted and the observed values do not
agree, and this would lead the method to reject X as a candidate argument.
However, recall that m and s are generators for the description space, and we can
use these to consider systematically the set of possible arguments. COPER uses
this approach to generate all such arguments (up to a given level of complexity),
and uses the above method to evaluate arguments in turn. Of all such generated
arguments, g = b g V l t - 1 gives the lowest measure of nonconformity, so this term
is selected to complete the set of functional arguments.

416 M.M. KOKAR

3.3 Bernoulli's law of fluid flow

As our second example, we will consider the more complex functional description
known as Bernoulli's law. This function describes the nonviscous, steady, in-
compressible flow of a fluid through a pipeline. The pipeline has a crosssection
A1, located at an elevation h1 from some level of reference, and a crosssection
A2 at an elevation h2. Let p1 be the pressure at A1, and V1 be the speed of flow
at A1, p2 be the pressure at A2, and V2 be the speed at A2. Using these terms,
Bernoulli's law can be expressed as:

where p represents density of the fluid, and g stands for acceleration of gravity.
In this example we will constrain our attention to testing the complete relevance

condition and to discovering missing arguments if the complete relevance condition
is violated. In particular, we will see how the COPER method can be used to
discover the arguments p and g, even if the values of these terms never change
during the experiment.

The generators of the description space in this example are m (meters),
s (seconds), kg (kilograms), and the real numbers. We will treat the variable
p2 = ep 2kg1m - 1s - 2 , as the dependent argument, and we will assume that the
system knows about five independent arguments; these are: pl = e p 1kg 1m - 1s - 2 ,
h1 = eh1m1, h2 = eh2m

l, Vl = e v l m
l s - l , and V2 = e v 2 m l s - l . The system must

infer the arguments p and g on its own initiative, since these are not provided as
input.

Thus, at the outset COPER's default assumption was that the function had the
form p2 = F (p 1 , h1, h2, V1, V2), and it set out testing that belief. The first step
in this process involved reexpressing the independent arguments and the de-
pendent argument in terms of a set of base arguments. In the actual run COPER
selected p1, h1, and V1 as the elements of the base, giving the derived definitions
p2 = bp2p1, h2 = bh2h1, and V2 = bv2V1. The system's next action was to gen-
erate an experimental plan involving 1024 observations (16 orbits with 64 points in
each of the orbits), and in which the values of h2 and V2 remained constant on
each orbit.5

Upon comparing the predicted and observed values of the argument p2,
COPER computed a nonconformity measure of 141.5. On this basis, the system
concluded that its set of arguments was incomplete, and it initiated a systematic
search of the description space to remedy this problem.6

5 In this example, we provided the system with idealized data based on Bernoulli's law. The actual
data would involve a certain amount of noise, and extending the method to handle such noise is an
important direction for future research.

6 COPER can also operate in an interactive mode, accepting candidate arguments from the user
and returning an evaluation of their usefulness. However, our focus here is on the automatic gen-
eration of arguments.

DETERMINING ARGUMENTS 417

This search process involved generating candidate arguments using the general
form exkgalma2sa3, and calculating the nonconformity score for each candidate.
COPER generated different descriptors by varying the exponents al, a2, a3 in
the above formula (in the range between -3 and 3). The best of these descriptors
was exkg1m-3s0, which corresponds to the p term in Bernoulli's law. However,
introducing this argument did not lower the nonconformity measure to zero, so
COPER recursively applied its method to the revised set of data. The lowest
scoring of the remaining descriptors was exkg0m1s-2, which corresponds to the
term for gravity in Bernoulli's law. Taken together, the p and g terms let COPER
perfectly predict the values of p2; this gave a nonconformity measure of zero, and
the system halted, having generated a complete set of arguments.

In summary, COPER can be viewed as carrying out a heuristic search through
the space of argument sets. The operator for this space involves adding an
argument to the existing set (according to the generation rules for the language of
descriptions), and the branching factor is quite large (37 = 2187 for the Bernoulli's
law example). This is offset by the nonconformity measure, however, which acts
as an evaluation function to select the best state (argument set) at each step in the
search. This measure also acts as the termination condition, when its value
reaches zero. Using this approach, COPER can discover complete sets of argu-
ments for complex functions like Bernoulli's law.

3.4 Generating a functional formula

This paper is primarily concerned with the COPER's ability to discover arguments
of functional descriptions, but this system also can generate functional formulas
relating arguments of the functions (cf., Kokar, 1978, 1979, 1986). The method
for discovering functional formulas employed in COPER is based on three main
principles: the meaningfulness of functions, the Weierstrass theorem, and the
ability to change the representation base.

In section 2.3 we stated that meaningful functions are those which can be
expressed solely in terms of the defining operations of the description space. In
the case of physical laws these are multiplication and exponentiation (applicable
to any argument), and any numerical operation (applicable to numerical argu-
ments only). One can transform all derived arguments into numerical arguments
by dividing them by the respective formulas representing the derived arguments in
a base. In the theory of dimensional analysis, the Pi theorem states that any
invariant function can be represented as a function of such transformed numerical
arguments. The principle of meaningfulness lets one use any numerical operations
in the search for a functional formula and lets one reduce the dimensionality of
the search space. Given n arguments and b base arguments, we need only search
for a function of n - b arguments (the number of derived arguments).

In the current implementation, COPER searches the space of polynomial
functions. This stems from the second principle — the Weierstrass theorem —

418 MM. KOKAR

which says that any function (fulfilling some formal conditions) can be approxi-
mated with any degree of accuracy by a polynomial. A simple-minded application
of this theorem to function discovery leads to two problems: it may generate
formulas that have no physical meaning, and it may result in formulas much more
complex than the physical laws we are seeking. Fortunately, the principle of
meaningfulness lets one avoid the first problem, and the problem of complexity
can be solved by changing the representation base.

There are usually many ways to subdivide a set of arguments into a base and a
set of derived arguments. Each base leads to a different 'language' for stating a
functional relation, and COPER takes advantage of this fact. The system first
iterates through each base looking for a simple functional formula (a low-degree
polynomial). If none of these give satisfactory results (high approximation errors)
it reconsiders each base using more complex polynomials.

In the case of Bernoulli's law, COPER discovered the exact functional formula
using a polynomial of the second degree and using a base composed of p1, p,
and g.

4. Discussion: COPER, BACON, and ABACUS

Although the basic goal of COPER is similar to the goals of BACON (Bradshaw,
Langley, & Simon, 1980; Langley, 1981; Langley, Bradshaw & Simon, 1981,
1982) and ABACUS (Falkenhainer, 1985; Falkenhainer & Michalski, 1986), its
approach to solving the problem is totally different. Below we briefly characterize
BACON and ABACUS, point out some of drawbacks of those systems, and
discuss how COPER deals with these problems.

The activities performed by BACON can be summarized by the following
points:

1. BACON generates functions y = f (x 1 , x2, ..., xn) that describe a set of
data.

2. The system holds n - 1 variables constant (at some level) and varies only
one term, xl. Therefore it analyzes a function y =/!(x1) when x2, ..., xn
are held constant.

3. It assumes that f1 is either a linear or a hyperbolic function (y = Cx or y =
C x - 1) , where C depends on the variables x2, . . . , xn.

4. If one of these assumptions fits the data then BACON derives the hy-
potheses y / x 1 = C or y .x1 = C respectively, where y/xl = C (or y - x 1) is
called a 'theoretical term.' If the independent variable xl is of nominal
type and y changes when xl changes, then an 'intrinsic property' is pro-
posed whose values are set initially to the values of y.

5. The system treats y / x 1 (or y .x1) as a new yariable dependent on x2, ...,
xn.

6. BACON then postulates that C = y / x 1 = C'x2 (or C'/x2) and repeats the

DETERMINING ARGUMENTS 419

entire procedure again, having reduced the problem size by one variable.
The method of reduction is decomposition of a function into a product of
functions, each of them is dependent on one only variable,

Despite its successes, BACON's ability to discover physical laws is limited along a
number of dimensions:

1. BACON generates hypotheses by taking into consideration only one
hypersurface in the experimental space (varies one variable while holding
the rest of them constant). It ignores all cross-impact effects (for a dif-
ferent values of the constants x2, ,. .,xn the hypothesis could be different)
and, moreover, it does not take into consideration all the information
available to it at the moment. AH this makes BACON highly vulnerable to
errors.

2. The system is not able to make any decisions about arguments that have
not been changed in the experiments. For instance, if the resistance of the
wires stayed constant for all cases it would not be able to test the relevance
of this variable.

3. BACON does not have provisions for testing the completeness of argu-
ments. If one or more relevant arguments stay constant in the experiments,
the system cannot detect that arguments are missing from the description.

4. The program treats physical arguments as strictly numerical, and hence-
forth can generate relationships that have no physical meaning, such as
mass = time-1.

ABACUS incorporates most of the methods used by BACON, as well as several
new abilities:

1. The system does not require the user to distinguish between independent
and dependent arguments.

2. ABACUS constrains the search for functional dependencies by analyzing
the units of the arguments.

3. The program has the ability of subdividing the domain and fitting a func-
tion to each of the subdomains separately.

4. ABACUS generates logical expressions describing each of these sub-
domains; these expressions serve as preconditions for the functional
descriptions.

These additional capabilities make ABACUS more powerful than BACON.
Nevertheless, it shares many of the limitations we have already listed for
BACON.

In contrast to these systems, the COPER method has several advantages:

420 MM. KOKAR

1. Most important, COPER can reason about those arguments which have
not changed in an experiment. The system can test relevance of such
arguments and it can discover arguments, such as acceleration due to
gravity (g) or density in Bernoulli's law (p), which were not varied in the
observations.

2. Another advantage is that COPER can test whether a set of arguments
satisfies the condition of complete relevance. If this condition is violated,
COPER can generate new descriptions (dimensional formulas) for the
missing arguments.

3. COPER bases its conclusions on the entire data that are available, making
it less vulnerable to errors.

4. Physical quantities are treated not as numbers but rather as elements of the
'physical quantities space' used in the theory of dimensional analysis. Thus,
the COPER method takes both syntactic and observational information
into account. The powers in dimensional formulas are not derived by
experimentation, but are instead generated by the syntactic rules for the
language of physical quantities.

In summary, the COPER method has a number of advantages over other machine
discovery systems. Of course, more work remains to be done, but we feel the
current system provides a solid base for this research.

5. Conclusions

In this paper we have focused on testing and generating arguments of functional
descriptions from observation. We described COPER, a system that accepts as
input an initial set of arguments expressed in terms of the description language,
along with a set of observations (values of the arguments). The goal of the system
is to test whether the set of arguments is complete and, if not, to generate
descriptions for additional relevant arguments. COPER uses the functionality of
an event set to decide whether to include a particular argument in the set of
relevant arguments, and to determine whether that set is complete. The observed
events fulfill the condition of functionality if the dependent argument is constant
for all events having the same values of the independent arguments.

For purely numerical functions, detecting nonfunctionality of an event set does
not aid the search for missing arguments. Moreover, if a relevant argument does
not change in the observed events, then the functionality condition is not violated,
and one cannot detect that an argument is missing. In this paper, we showed that
for a special class of functions — known as invariant functions — one can detect
missing arguments even when functionality is satisfied.

Invariance of functions is closely linked to the notion of meaningfulness.
Functions are meaningful in a language if they are expressed solely in terms of the

DETERMINING ARGUMENTS 421

syntactic operations of the description space. Such meaningful functions are also
invariant.

We have seen that, if a function fulfills the invariance condition, then one can
predict its values for a class of events (orbit), provided that the value of the
function for one event from this class is known. This feature lets one test whether
a given set of arguments is complete and whether a particular argument is
relevant. Moreover, one can reach conclusions about completeness and about
relevance of an argument even from observations in which its value did not
change.

Based on this insight, we described COPER, a system for testing the complete-
ness of an argument set and the relevance of a particular argument. The system
requires a set of observations that can be classified into orbits, and for which it is
possible to predict the value of the function. If the predicted values are equal to
the observed ones, then there is no reason to search for additional arguments.
However, if the observed values differ significantly from the predictions, then
COPER carries out a search for additional arguments. The system adds that
argument which causes the greatest improvement in predictive ability, and the
process is repeated until the data have been completely predicted.

Thus, COPER has the ability both to evaluate existing arguments and to
generate new terms. We have tested these abilities on a number of physical laws,
including the law of falling bodies and Bernoulli's law. Also, because the as-
sumption of invariance is epistemological in nature, we should be able to use the
same approach for discovering arguments of nonphysical functional descriptions.

The ultimate goal of COPER is similar to the goal of BACON (Bradshaw
et al., 1980; Langley, 1981; Langley et al., 1981, 1982) and ABACUS (Falkenhainer,
1985; Falkenhainer & Michalski, 1986), but the approach is quite different. First,
COPER makes use of invariance to direct the search for new arguments. Another
difference is that the search is not purely data driven. The methodology takes into
account syntactic knowledge and observational information. This gives COPER
the ability to discover new arguments such as gravity and density, even though
these terms were not varied during the experiment. In this paper we focused on
methods for discovering the arguments of a functional description, but COPER
includes also methods for discovering sophisticated functional forms such as
Bernoulli's law (cf., Kokar, 1986).

Acknowledgments

The author wishes to thank Ryszard S. Michalski for his helpful suggestions and
remarks concerning this work. His comments, criticism and encouragement have
been most helpful for the author. The author also wishes to express his sincere
gratitude to Pat Langley for his very detailed and constructive comments and
suggestions, as well as for reformulation of many complex sentences and para-
graphs in two drafts of this paper.

422 M.M. KOKAR

References

Bradshaw, G.L., Langley, P., & Simon, H.A. (1980). BACON.4: The discovery of intrinsic prop-
erties. In Proceedings of the Third National Conference of the Canadian Society for Computational
Studies of Intelligence (pp. 19-25). Victoria, BC, Canada.

Causey, R.L. (1969). Derived measurement, dimensions and dimensional analysis. Philosophy of
Science, 36, 252-269.

Drobot, S. (1953). On the foundations of dimensional analysis. Studia Mathematica, 14, 84-89.
Falkenhainer, B. (1985). Proportionality graphs, units analysis, and domain constraints: Improving the

power and efficiency of the scientific discovery process. In A. Joshi (Ed.) Proceedings of the Ninth
International Joint Conference on Artificial Intelligence (pp. 552-554). Los Angeles: Morgan-
Kaufmann.

Falkenhainer, B.C. & Michalski, R.S. (1986). Integrating quantitative and qualitative discovery: The
ABACUS system. Machine Learning, 1, 367-401.

Kokar, M.M. (1978). A system approach to a search of laws of empirical theories. In J. Klir (Ed.),
Current topics in cybernetics and systems, Berlin: Springer-Verlag.

Kokar, M.M. (1979). The use of dimensional analysis for choosing parameters describing a physical
phenomenon. Bulletin de l'Academie Polonaise des Sciences, Serie de Sciences Techniques, XXVII,
5/6, 249-254.

Kokar, M.M. (1985). On invariance in dimensional analysis (Technical Report MMK-2/85). Boston:
Northeastern University, College of Engineering.

Kokar, M.M. (1986). Discovering functional formulas through changing representation base. In
Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 455-459). Philadelphia:
Morgan-Kaufmann.

Krantz, D.H., Luce, R.D., & Suppes, P. (1971). Foundations of measurement. New York: Academic
Press.

Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 31-54.
Langley, P., Bradshaw, G., & Simon, H.A. (1981). BACON.5: The discovery of conservation laws.

In Proceedings of the Seventh Joint International Conference on Artificial Intelligence (pp. 121-126).
Vancouver, BC, Canada: Morgan-Kaufmann.

Langley, P., Bradshaw, G., & Simon, H.A. (1982). Data-driven and expectation-driven discovery of
empirical laws. In Proceedings of the Fourth National Conference of the Canadian Society for
Computational Studies of Intelligence (pp. 137-143). Saskatoon, Canada.

Luce, R.D. (1971). Similar systems and dimensionally invariant laws. Philosophy of Science, 6,
157-169.

Luce, R.D. (1978). Dimensionally invariant physical laws correspond to meaningful relations.
Philosophy of Science, 45, 1-16.

Michalski, R.S. (1980). Knowledge acquisition through conceptual clustering: A theoretical frame-
work and an algorithm for partitioning data into conjunctive concepts. Policy Analysis and Infor-
mation Systems, 4, 219-244.

Michalski, R.S., Carbonell, J.G., & Mitchell, T.M. (Eds.). (1983). Machine learning: An artificial
intelligence approach. Palo Alto, CA: Tioga.

Whitney, H. (1968). The mathematics of physical quantities. American Mathematical Monthly, 75, 115-
138 and 227-256.

Winston, P.H. (1975). Learning structural descriptions from examples. In P.H. Winston (Ed.), The
psychology of computer vision. New York: McGraw-Hill.

