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Abstract. This research examines the process of learning problem solving with minimal requirements for
a priori knowledge and teacher involvement. Experience indicates that knowledge about the problem
solving task can be used to improve problem solving performance. This research addresses the issues of
what knowledge is useful, how it is applied during problem solving, and how it can be acquired. For each
operator used in the problem solving domain, knowledge is incrementally learned concerning why it is
useful, when it is applicable, and what transformation it performs. The method of experimental goal
regression is introduced for improving the learning rate by approximating the results of analytic learning.
The ideas are formalized in an algorithm for learning and problem solving and demonstrated with
examples from the domains of simultaneous linear equations and symbolic integration.

1. Introduction

Although the earliest successful research in AI was on problem solving (Newell and
Simon, 1961) and learning (Samuel, 1959) the symbiotic relationship between the two
areas was not exploited until recently (Anzai, 1978; Brazdil, 1978; Neves, 1978). This
paper presents a learning method for automating the acquisition of knowledge for
problem solving which requires few instances, minimal teacher involvement, and on-
ly a weak theory of the domain. A major issue in this research is the integration of
learning and problem solving. This integration permits the learner to use the problem
solver as an evaluator and reduces both the role of the teacher and the requirement
for a priori knowledge.
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Assumption of a highly cooperative teacher or extensive a priori knowledge limits
the applicability of machine learning algorithms. In particular, within the context of
improving problem solving performance by learning rules or heuristics for guiding
the choice of an appropriate operator or sequence of operators, we have found that
many common assumptions are unnecessary. More specifically, our learning
algorithm does not rely on the following:

* a benevolent teacher to carefully order and select training examples;

¢ extensive searches of the problem state-space in order to assign credit or blame
to particular operations;

* 2a large number of training examples to guide an induction algorithm;

¢ astatic evaluation function to evaluate the quality of states in the problem state-
space;

* a STRIPS-like ““transparent’’ representation of operators.

¢ definitions of operator inverses.

To a large extent, our learning method reduces reliance on the teacher and a priori
knowledge by a technique that we call experimental goal regression. Experimental
goal regression (EGR) approximates the results of analytic goal regression, which is
an important technique for explanation-based learning (Mitchell, Keller and Kedar-
Cabelli, 1986). The technique enables back-propagation of goal conditions to guide
the learning of search heuristics. This improves the learning rate while reducing
reliance on the teacher to provide training.

Analytic and experimental goal regression are both knowledge intensive learning
techniques. One essential difference between the two is that the analytic approach
relies on a strong a priori domain theory, while experimental goal regression requires
little a priori knowledge and is guided by the knowledge acquired during the normal
process of learning. EGR requires a few training examples from the teacher and an
a priori concept hierarchy which decomposes the examples into features and relates
features to generalized categories.

PET is a Prolog implementation of this learning method, and has been applied to
learning to solve simultaneous linear equations and problems in symbolic integra-
tion. PET, named for the idealized student who learns conscientiously and forgets
nothing, has allowed us to test our learning method and to compare it with other
learning methods applied to similar tasks.

2. Overview of the learning system

PET can be viewed as a learning apprentice system, which Mitchell, Mahadevan, and
Steinberg (1985) have defined as:
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““... aknowledge-based system that provides interactive aid in solving some problem, and that acquires
new domain knowledge by generalizing from training examples acquired through the normal course of
its use.””

PET consists of a user-interface, a simple problem solver, and a learner. A problem
domain for PET is represented as a state-space. For each problem domain, there is
a fixed set of operators and a fixed goal. During the solution of a problem, the user
can suggest operators to apply. The problem solver is able to apply operators to prob-
lems and to detect goal states. The learner forms heuristic rules from the user’s sug-
gestions, and these are used to guide the problem solver on subsequent problems. A
high-level description of the flow of control in PET is:

LOOP UNTIL teacher satisfied
Get problem from teacher
LOOP UNTIL problem solved
IF learned knowledge applies to the current problem
THEN apply it (no learning)
ELSE
Ask teacher for advice
Learn from advice (if possible)
Integrate new knowledge
Apply operator
REPEAT
REPEAT

Notice that PET learns only when it cannot decide what to do next. At such an indeci-
sion point, PET asks for advice from the teacher. If PET is unable to understand
why the advice is useful, then the advice is followed but nothing is learned or record-
ed. As with other inductive learning algorithms, PET generalizes the specific advice
given by the teacher to extend its applicability.

The remainder of the paper describes the knowledge that PET learns, the
mechanisms for acquiring the knowledge, and the use of the knowledge to guide fur-
ther learning. For clarity, we introduce the learning components incrementally,
although the PET system is an integration of the components. For each component,
we present algorithms which expand upon the high-level description given above.

Section 3 describes episodic learning, which segments a sequence of operator ap-
plications into useful subsequences. These subsequences, or episodes, are used to
guide subsequent problem solving and learning. Learned episodes guide problem
solving by (effectively) introducing macro operators. Episodes guide learning by pro-
viding explicit solution paths to goals.

Section 4 describes perturbation, which is used to generalize the rules formed by
episodic learning. Perturbation is an automatic example generation technique. Given
a single training example from the teacher, perturbation generates near-examples by
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making small changes to the original ‘“‘seed.”” The problem solver reapplies the
teacher’s suggested operator to the new examples and classifies each of the generated
examples as positive or negative. An example is positive if the operator suggested for
the original problem begins a successful solution of the generated problem. The set
of positive examples is generalized to form a heuristic for suggesting the operator.
The main contribution of perturbation for learning search heuristics is the substantial
reduction in the role of the teacher.

Section 5 describes relational modeling, which is a technique for learning a
STRIPS-like operator description given a procedural operator representation.
STRIPS-like, relational descriptions are useful because they make explicit the
transformation performed by the operator. In fact, a relational model is a more
detailed representation of an operator than provided by a STRIPS-like definition in
that it hypothesizes linkages between the PRE and POST conditions of the operator.
While relational descriptions are extremely useful for learning and problem solving,
PET learns these representations rather than assume that they are a priori knowledge.

Section 6 describes experimental goal regression, which is the integration of these
techniques into an efficient learning and problem solving system. The role of ex-
perimental goal regression is to associate constraints from goal states with partially
learned subgoal descriptions and to use these constraints to guide perturbation in
generalizing search heuristics. Experimental goal regression relies on the problem
solving paths which are made explicit in learned episodic segments and relational
models.

Section 7 is a brief comparison of this learning method with both analytic and em-
pirical learning techniques. Section 8 summarizes our findings and identifies three
limitations of this (and other) research on learning problem solving,

3. Episodic learning

Episodic learning (Kibler and Porter, 1983b) is a technique for acquiring and order-
ing heuristic rules so that they recommend operator sequences for problem solving.
Episodes learned from the solution of a problem are used to improve subsequent
problem solving and learning. This section describes the episodic learning method
and its implementation in PET.

Many researchers have recognized the need for macro operators. MACROPS
(Fikes and Nilsson, 1971) remembers and generalizes robot plans generated by the
STRIPS planning system so that they can be reused. Unfortunately, the operators
in a MACROPS plan are not segmented into meaningful sequences. Any sequence
of operators can be extracted from the plan and used as a macro. Since the most
useful sequences are not identified, MACROPS suffers from a combinatorial explo-
sion of (macro) operators to apply.

Recent research has addressed the issue of selective learning of macros. In the con-
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text of a problem solver guided by a heuristic evaluation function, Iba’s (1985) pro-
gram automates the search for useful macros by choosing only those sequences that
move from one peak in the evaluation function to another peak. Similarly, Minton’s
(1985) MORRIS program acquires two types of useful macros. The first type are s-
macros, which are generalizations of operator sequences that occur frequently during
problem solving. The second type are t-macros, which record useful sequences of
operators that violate the advice of the heuristic evaluation function. The emphasis
in this research by Iba and Minton is the use of heuristic guidance to selectively learn
useful macros.

Episodic learning in the PET system also constructs useful operator sequences,
which we call episodes. Unlike macros, which are rigid sequences of operators,
episodes do not enforce a strict sequencing of operators. Instead, episodes are in-
dependent heuristic rules whose sequencing in only suggested. Since each heuristic
rule recommends an operator to apply, an episode of rules reccommends an operator
sequence.

A ““loose packaging”’ of heuristic rules in an episode permits incremental learning
of new rules. As the result of incremental training, new rules are constantly being in-
tegrated into existing episodes. This integration modifies the operator sequence
recommended by the rules in an episode and permits the learning of shorter solution
paths.

A macro is not as easily modified as an episode because it is a sequence of operators
rather than a sequence of heuristic rules. Each of the steps in a macro cannot ‘‘stand
onits own’’ as an independent piece of problem solving advice. Instead, macros must
be viewed as non-divisible operators. Since it is difficult to interlace a new macro into
an existing macro, incremental learning of search heuristics complicates macro for-
mation. We now examine the process for learning and applying operator sequences
represented as episodes.

3.1 The episodic learning method

This section describes the method for learning and applying episodes in the PET
system. Episodic learning constructs sequences of heuristic rules, where each rule is
of the form state-description — operator. These rules are learned incrementally and
integrated into episodes. Learned episodes are then applied by the problem solver to
guide the search for problem solutions.

PET builds episodes by learning heuristic rules and assigning scores to each rule.
The score for a rule is the distance from a problem state in which the rule is applied
to a known goal. The first rule learned by PET is one which recommends an operator
for immediately achieving a goal. This rule is assigned a score of one since it applies
to a problem state which is a distance of one from the goal. PET extends this episode
of length one by learning a rule which recommends an operator for reaching this
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problem state. This recursive process constructs episodes of arbitrary length.

The left hand side of a heuristic rule formed by episodic learning can be viewed
as a description of a subgoal in the state space. Because of the incremental growth
of episodes, if the subgoal is reached during problem solving then it is guaranteed
that an episode of heuristic rules has been learned to guide the problem solver to the
goal. With this viewpoint, the score of a heuristic rule corresponds to the evaluation
of the subgoal described with the left hand side of the rule. This evaluation is the
length of the shortest episode, or known solution path, from the subgoal.

Learned episodes are used by the problem solver to suggest solution paths. When
presented with a problem to solve, PET searches for an applicable rule. Conflicts are
resolved in favor of the rule with lowest score. Application of the operator recom-
mended by the rule results in a new problem state, and the process is repeated until
a goal is reached. Notice that the problem solver is not constrained to follow a fixed
sequence of rules. The learned sequences are loosely packaged so that multiple tracks
through the state-space are possible. This internal flexibilty in operator sequences
greatly reduces the combinatorial growth of macros while simplifying the incremen-
tal learning of operator sequences.

The PET algorithm for learning and applying episodic segments is formally
described below. We will incrementally extend this description as we introduce the
additonal components of the PET learning system in the following sections.

GIVEN an initially empty rulebase of heuristics
LOOP UNTIL teacher satisfied
get problem from the teacher
LOOP UNTIL problem solved
IF some rule € rulebase matches problem
THEN apply.episode (rulebase, rule, problem) with no learning
ELSE
ask teacher for recommended operator
Sorm.rule (rulebase, problem, operator, newrule)
IF newrule # @ THEN integrate.rule (rulebase, newrule)
REPEAT
REPEAT

Apply.episode (rulebase, rule, problem-state)

S « score of rule

problem-state — APPLY (RHS(rule), problem-state)
(apply operator at head of episode)

LOOP UNTIL problem-state matches GOAL (apply rules in remainder
of episode to achieve goal)

SELECT rule € rulebase with score < S which matches problem-state
(resolve conflicts in favor of rule with smallest score)
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problem-state — APPLY (RHS(rule), problem-state)
S « score of rule
REPEAT

Form.rule (rulebase, problem-state, operator, newrule)
IF APPLY (operator, problem-state) yields a state which matches GOAL
THEN newrule < (problem-state = operator) with score 1
ELSEIF APPLY (operator, problem-state) yields a state S which
enables R € rulebase AND apply.episode (rulebase, R, S) matches GOAL
THEN newrule < (problem-state — operator) with score of (score of R)+ 1
ELSE newrule < # (no rule formed since reason for operator application is not
understood)

Integrate.rule(rulebase, newrule)
ADD newrule to rulebase
(Note: This function is the main topic of section 4, which discusses how rules are
generalized and integrated into the rulebase.)

Table 1. Operators in the domain of simultaneous linear equations.

Operator Semantics
combinex (Eq) Combine x-terms in equation Eq.
combiney (Eq) Combine y-terms in equation Eq.
combinec (Eq) Combine constant terms in equation Eq.
deletezero (Eq) Delete term with 0 coefficient or
0 constant from equation Eq.
sub (Eqi, Eq2) Replace Eq2 by the result of
subtracting Eql from Eq2
add (Eql, Eq2) Replace Eq2 by the result of
adding Eql to Eq2
mult (Eq, N) Replace Eq by the result of multiplying
Eq by N

3.2 Examples of episodic learning in simultaneous equations

This section presents examples of episodic learning by PET in the domain of
simultaneous linear equations. These examples will also be used in later sections to
demonstrate the other components of the PET system.

PET starts with a problem to solve, a goal to be achieved and a set of operators
which can be applied to the problem. In the domain of simultaneous linear equations
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the goal is to simplify the problem-state by reducing the number of terms in the equa-
tions. This ‘“improvement in state evaluation function’ form of goal allows the
problem solver to recognize progress without completely solving the problem. The
problem solving operators are listed in Table 1. Initially, there is an empty rule base
of knowledge concerning when to apply each operator.

Problems are presented to PET by the teacher in the familiar form of simultaneous
linear equations. For example:

-1
10

a:2x — Sy
b:3x + 4y

where @ and b are labels for the equations in the problem state. However, PET
represents these equations internally as:

{term(a,2 * x),term(a, —5 * y),term(a,l),
term(b,3 * x),term(b,4 * y),term(b, —10)}

For descriptive purposes, we will use the more familiar form whenever possible.
In our first example, PET is presented the following training example by the
teacher:

a:6x+ 3y =12
b:6x + 4y = 14

(State 1)

with the advice to apply operator sub (a,b). PET applies the operator, which yields
the state:

a:6x + 3y =12
(State2) . 6x - 6x+ 4y — 3y = 14 — 12
The operator did not simplify the problem state since the number of terms increased
from six to nine. Furthermore, the operator did not enable any rules in the (currently
empty) rule base. PET is unable to understand why the operator is useful. No learn-
ing takes place and PET must ‘‘bear with’’ the teacher.

Now the teacher suggests that operator combinex (b) be applied to the current
state. PET applies the operator, yielding:

a:6x + 3y =12
(State 3) b:0x+4y -3y =14 - 12

This state is a simplification since the number of terms is reduced to eight. PET can
now add knowledge to the rule base.



EXPERIMENTAL GOAL REGRESSION 257

From this training, PET learns a solution path from state 2 to the goal of reducing
the number of terms. The evaluation of the learned subgoal (state 2) is based on the
distance to the goal, which in this case is one. The solution path is the single operator
combinex (b). Consequently, the following heuristic (with a score of one) is added
to the knowledge base:

State 2

term(a, 6 * x),term(a, 3 * y),termfa, — 12),
term(b, 6 * x),term(b, — 6 * Xx),term(b, 4 * y), — combinex (b)
term(b, — 3 x y),term(b, — 14),term(b, 12)
Now the teacher suggests the operator sequence combiney (b), combinec (b), and
deletezero (b). The operators are applied sequentially to state 3 and the resulting state
is:

a.6x + 3y =12
(State 4) bily =2
Each operator achieved a state simplification, so rules (of score 1) are learned which
are similar to the previous rule for combinex(d).

Once these heuristics are acquired by the system, the original training instance for
the subtraction operator can be understood. Assume that the training instance for
sub (a,b), which is labelled state 1, is re-presented by the teacher. (Note that PET
could remember past training instances which were not understood in anticipation
that subsequent learning will make them understandable.) As before, PET applies
the sub (g, b) operator to state 1, yielding state 2. The episode learned previously ap-
plies to state 2 and achieves the goal of simplifying the problem. Therefore PET is
able to understand the transition from state 1 to state 2 caused by sub (a,b).

From this training, PET learns a new heuristic rule:

State 1

/W\
termfa, 6 * x),term(a, 3 * y),term(a, — 12),
{term{b, 6 * x),term,(b,4 * y),term(b, — 14) sub(a,b)

This rule is assigned a score of two based on the local observation that the evaluation
of state 1 is one plus the evaluation of state 2.
3.3 Examples of episodic learning in symbolic integration

In the domain of simultaneous linear equations, PET was given the goal of reducing
the number of terms. In the domain of solving symbolic integration problems, PET
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is given a more usual form of goal which requires a complete solution for its satisfac-
tion. In particular, the goal is a problem-state which is free of an integral. The PET
learning method works for both forms of goals.

We now present a short example of episodic learning in the domain of symbolic
integration. As before, PET starts with a set of operators and knowledge of how to
apply them, but an empty rulebase of heuristics to control when they are applied.
While PET uses eighteen operators for problem solving in this domain, for present
purposes, assume there are only two:

n+1

+ C

OP1: Sx"dx-* d
n+1

OP2: S a poly(x) dx = a S poly(x) dx

OP1 integrates a term consisting of the variable of integration, x; OP2 extracts a con-
stant, a, from the expression being integrated.
Suppose the teacher presents the training instance:

(State 1) S7x2 dx

with the advice to apply OP2. PET follows the advice by binding a to 7 and poly(x)
to x?, yielding:

(State 2) 7sz dx

Since state 2 is neither a goal state nor a state that PET knows leads to a goal state,
nothing is learned from this piece of advice.

‘“Bearing with’’ the teacher, PET is advised to continue problem solving by apply-
ing OP1 to State 2. This yields:

3
(State 3) Zg‘—

which satisfies the goal. Consequently, PET is able to learn the following heuristic
rule (with score of one):

State 2
v~

7Sx2dx—»0P1

PET can now learn from the original training example. Applying OP2 to state 1
yields state 2, which is a recognized subgoal, i.e., a state which enables a known
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episode for achieving the goal. From this PET learns the following heuristic rule
(with score of two):

State 1
A

S 7x dx - OP2

With further experience this overly-specific rule will be replaced by a more general
heuristic.

3.4. Summary of experience with episodic learning

Episodic learning is a method for acquiring sequences of heuristic rules for problem
solving. In addition to improving problem solving efficiency, learned episodes span
solution path segments which appear to be deviating from the goal. In the domain
of simultaneous linear equations, PET formed a lattice of rules for the operators
multiply, subtract, add, combine x-terms, combine y-terms, combine constant terms,
and delete zero terms. The longest episode was seven rule applications from initial
state to goal state. The ““head’’ rule in this episode recommended ‘“cross multiply,”’
which requires two successive multiply operations. As this episode demonstrates, a
technique for recording the sub-goals achieved by each operator is essential for our
method. As discussed in the previous section, the problem is that some of the in-
termediate states in the solution path appear to be moving away from the goal.

We have considered adopting a more liberal learning policy in PET. Currently,
PET does not form a heuristic rule unless that rule can be integrated into an existing
episode by assigning it a score. The advantage of this conservative policy is that only
those rules with known utility are added to the rule base. A more liberal learning
policy allows rules to be learned from training even though their role in episodes is
not known. While we believe that this policy could be adopted, we are concerned
about a proliferation of rules which are not associated with known solution paths.
Furthermore, by only learning heuristic rules which are known to lead to the goal,
PET is not confused by bad advice from the teacher.

In the domain of symbolic integration, PET formed heuristics for its eighteen
primitive operators. The longest episode was eleven rule applications from the initial

state of | sin’ x dx to the goal state of — 1(x~ 22;- + -’f—). As in the domain of simul-
taneous linear equations, the intermediate states in the sequence appear to diverge
from the goal state. Episodes bridge these necessary ‘‘digressions.”’

It is important to note that learned episodes are loosely packaged. During problem
solving, rules from the rule base can be applied in any order if the scores of the rules

in the sequence are non-increasing. Episodes suggest solution paths while permitting
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‘“‘short cuts’’ to be pursued. During learning, the episode representation for operator
sequences allows incremental learning of heuristic rules and integration of new rules
into learned sequences.

The major limitation of episodic learning is that the heuristic rules are overly-
specific. The next section discusses a technique for generalizing rules so that they
apply to a class of problems. The technique uses the structures built by episodic learn-
ing to partially automate the role of the teacher.

4. Perturbation: antomatic generation of training examples

Episodic learning forms heuristics with overly-specific left hand sides. Rather than
rely on a teacher to provide additional appropriate examples for generalization, ex-
amples are generated automatically by perturbation (Kibler and Porter, 1983a).
These examples are classified, as positive or negative, by the problem solver. Pertur-
bation reduces the role of the teacher.

Typically, the teacher has two responsibilities in the learning process: generating
training instances for a concept and classifying them as positive or negative examples
of the concept. From this, the learner forms a general concept description which is
complete and consistent with respect to the training set. Often the teacher has had
to be careful in selecting training instances to ensure that the learner will succeed
(e.g., Winston, 1975; Sammut, 1983).

integer

— O\

=X

tive negative 0 a x y

Figure 1. Concept hierarchy trees for simultaneous linear equations.

n variable

Perturbation automates the generation of training instances by making small
changes to a single teacher supplied training instance, 1. Each change is the result of
applying a perturbation operator to I. A perturbation operation selects a single
feature fin 7 and slightly modifies it. Modifications are of two types:

1) Replace f by the null feature, effectively removing the feature altogether.

2) Replace f by a sibling of fin a concept hierarchy tree for the problem solving
domain. This type of modification generates a set of perturbation operators since
S may either have multiple siblings or be in multiple trees. Figure 1 gives the con-
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cept hierarchy trees used by PET in the domain of simultaneous linear equations.
Similar trees are used for symbolic integration.

By applying these perturbation operators to the ‘‘seed’’ instance /, a set of instances
which is ‘‘minimally different”’ from [ is generated.

Now, each instance I’ generated from [/ is classified. When 7 was presented by the
teacher, with the advice to apply operator OP, it was (implicitly) classified as a
positive example of the concept ‘‘states in which OP is effective.”” PET classifies I’
as a positive example of the same concept if and only if the application of OPto I
yields the same subgoal (enables the same episodic segment) as the application of OP
to 1. In the terminology of explanation-based learning (Mitchell, ez al., 1986), I' is
a positive example if the explanation that justified the classification of I as a positive
example is also valid for I'. Here, the explanation is the sequence of operator ap-
plications, or episode, which leads to goal fulfillment.

An important advantage of the PET perturbation technique is that examples are
generated and classified efficiently. Perturbation generates examples by selecting a
feature of a given instance, finding it in the concept hierarchy tree (a linear search
of the leaves, at worst) and selecting a sibling (requiring two arc transitions). Pertur-
bation classifies examples by using the problem solver to apply a learned episode.
This amounts to performing a highly directed search. The LEX system (Mitchell, et
al., 1983), by contrast, does not learn episodes. Therefore, the problem solver must
perform an n-level expansion of the search space which is guided by (partially) learn-
ed search heuristics and terminates when a goal is reached. If the example lies on the
shortest solution path then it is classified as positive. Negative examples are more dif-
ficult to classify. LEX performs exhaustive search to classify an example as negative
(to ensure that the heuristic search did not miss a good solution path). While PET
could also adopt this approach for classifying negative examples, we chose to ignore
suspected negative examples and to reduce over-generalization by using small-step,
conservative generalization operators. Relational models, which are discussed in Sec-
tion 6, also reduce over-generalization errors.

In summary, perturbation tests the relevance of each feature of an example by col-
lecting examples in which each feature is separately varied. In an empirically-based
learning system, examples are provided by some undirected process. However, there
is no assurance that the examples represent a useful coverage of the space of
possibilities. By directing the generation of examples via perturbation, examples are
systematically generated. This guarantees that a large and important class of ex-
amples will be considered. The role of experimental goal regression, as we discuss in
Section 6, is to further improve data collection by guiding the application of pertur-
bation operators.
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4.1. The PET learning cycle with perturbation

This section describes the incorporation of the technique of perturbation into the
PET learning cycle presented in Section 3. The only change is to the procedure in-
tegrate.rule, which generalizes a rule and adds it to the rulebase. The important
feature is that PET uses perturbation to generate examples from those provided by
a teacher. These examples are then classified and a general rule is learned by
induction,

PET generalizes a rule of the form problem-state & OP in four steps. First, pertur-
bation generates multiple training instances by making small changes to problem-
state. Second, the operator OP s tried on each generated example. Third, each exam-
ple is classified as positive or negative with respect to the effectiveness of OP. An ex-
ample is classified as positive if OP allows the problem solver to complete a solution
using learned episodes. Otherwise the example is classified, perhaps erroneously, as
negative. Fourth, standard generalization operations are applied to the positive ex-
amples. These operations involve dropping conditions, turning constants to variables
and climbing concept hierarchy trees, as defined by Michalski (1983).

The resulting generalized rule is then integrated in PET’s rule base. This integra-
tion involves generalizing the new rule with existing rules which recommend the same
operator OP. At this time, the allowed generalization operations are turning con-
stants to variables and climbing concept hierarchy trees. If generalization cannot be
performed then PET simply adds the new rule to the rulebase. Multiple rules which
recommend the same operator correspond to a disjunctive description of the states
in which the operator is effective,

The following is a more formal description of the rule generalization process which
builds on the algorithm given in Section 3.1.

Subroutine integrate.rule (rulebase, newrule)
Decompose newrule into components:
problem-state +— LHS (newrule)
OP +— RHS (newrule)
Generalize newrule using perturbation:
currgen < problem-state
LOOP UNTIL all perturbation operators have been applied
SELECT perturbation operator P
APPLY P to problem-state, yielding problem-state’
IF apply.episode (rulebase, newrule, problem-state')
matches either a goal or the left hand side of rule (a subgoal)
THEN currgen + minimal generalization of problem-state’ and currgen
REPEAT
(now currgen is a description of a state cluster of positive
examples of the concept ‘‘states in which OP is effective.’’)



EXPERIMENTAL GOAL REGRESSION 263

Integrate the new rule into the rulebase:
genrule « (currgen — OP) with score of newrule
IF a member of rulebase can be generalized to cover genrule,
THEN replace member by generalization
ELSE add genrule to rulebase

4.2. Example of perturbation in simultaneous linear equations
This section illustrates the role of perturbation in forming heuristics. Recall that the

first rule learned by PET for solving simultaneous linear equations recommends the
operator combinex () in the state:

a:6x + 3y =12
State(l) b:6x—6JC+4y—3y= 14 — 12

From this, episodic learning forms the following rule (with score 1):

State 1

P
term(a, 6 * x),term(a, 3 *» y),term(a, — 12),

{ term(b, 6 * x),(term(b, — 6 * x),term(b, 4 » y),} — combinex (b)
term(b, — 3 » y),term(b, — 14),term(b, 12)

Perturbation is used to discover a general description of the states in which com-
binex (b) is effective. This single positive example provided by the teacher does not
adequately restrict the space of candidate concept descriptions. From the example
provided by the teacher, literally millions of different generalizations are possible.
Perturbation helps guide the search by conducting a series of controlled experiments.
Each experiment isolates a feature of the example while holding other features cons-
tant. An experiment is formed by a perturbation operator which selects a feature and
either deletes it or replaces it by a sibling of that feature in a concept hierarchy tree.

In the domain of simultaneous linear equations, perturbation generates some 30
different near-examples, four of which are listed below. The boxed term indicates the
feature that has been deleted or changed.

a:6x + 0 =12 a:éx + 3y =12

b:6x—6x + 4y — 3y = 14-12 b:[ x - 6x+ 4y-3y=14-12
E, E

a:6x + 3y =12 a:6x + 3y =12

b:6x— O +4y-3y = 14-12 b:6x—6x +4y — 3y = 1 - 12

Es Es
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The second step is to classify each state as a positive or negative instance of the
concept being learned. In this case, the concept is “‘states in which combinex (b) is
effective.” Effectiveness of combinex (b) is determined for each of the generated ex-
amples. The score of the rule for combinex (b) is one. This indicates that combinex
(b) directly achieves the goal of reducing the number of terms in any problem for
which the rule is applicable.

PET applies this effectiveness criterion to each of the four generated examples
above. FE| is classified as a positive example because combinex(b) reduces the number
of terms in the expression. PET minimally generalizes the state description of the cur-
rent rule for combinex with E;, yielding a new rule:

term(a, 6 x x), ____1, term(a, — 12),
term(b, 6 * x),term(b, — 6 * x),term(b, 4 * y), — combinex(b)
term(b, — 3 x y),term(b, — 14),term(b, 12)

The major effect is to delete the condition on the y-term of equation ¢. This is a
spurious detail which is irrelevant to the general concept.

Generated example E: is also classified as positive. The minimal generalization of
the state description of the current rule with E; yields the new rule:

term(a, 6 * x),termf(a, — 12),

term(b,[positive | x),term(b, — 6 * x),term(b, 4 * y), — combinex(b)
term(b, — 3 = y),term(b, — 14),term(b, 12)

The major effect of this learning is to recognize that one of the x-coefficients of equa-
tion b can be any positive integer. Notice that the constraint on this coefficient is still
overly constrained, since negative integers are excluded. Negative integers are not
tested by perturbation in this example because they are not immediate siblings of the
original coefficient 6. ‘‘Distant”’ siblings can be tested at the expense of an increase
in the number of perturbation operators. Rather than incur this expense, PET relies
on the teacher for subsequent training to further define the rule. This is one of many
instances in which PET would benefit from intelligent selection of perturbation
operators. This need is addressed by experimental goal regression (described in Sec-
tion 6), which allows PET to test distant siblings with some assurance that the test
will be fruitful.

Generated example E; is classified as negative because the combinex(b) operator
is ineffective. This negative information is not used by the PET induction algorithm,
since PET may have incorrectly classified the example. In many learning systems,
negative examples are used for correcting over-generalization in concept definitions.
PET avoids this problem by making conservative, minimal generalizations.

Example E, is classified as positive. This yields the concept description:
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term(a, 6 * x),term(a, — 12),
term(b, positive * x),term(b, — 6 * x),term(b, 4 + y), — combinex(b)

term(b, — 3+ y),[ |, term(b, 12)

After the perturbation process, the heuristic rule for the operator combinex(b) is
highly refined. For the single training instance in state 1, there are thirty perturbation
operators. Fifteen of these test if a feature can be removed and fifteen test if a rele-
vant feature can be generalized. The result of minimally generalizing over the
generated positive examples is the rule:

{ term(b, positive, * x),term(b, positive, * x)} — combinex(b)

where positive, and positive, denote two positive integers.

This rule is significantly more refined than the original. One rough measure is the
number of constraints in the state description. This count is reduced from nine to two
by the perturbation process. Moreover, the two remaining constraints are quite
general. More importantly, this learning does not involve teacher participation.

4.3. Examples of perturbation in symbolic integration

For the sake of clarity and completeness we illustrate the process of perturbation and
subsequent generalization in the domain of symbolic integration. Since these ideas
require no change, we will be brief. Consider the following operator:

n+1

OPI:Sx"dx—’ d
n+ 1

+ C

The first rule formed by episodic learning in Section 3.3 is:
7 S x* dx - OP1

In order to generalize from this instance, perturbation operators are applied to
generate a set of examples. Four of these examples are:

Ojx2axr 7§0adax @ §x?ax 7§ ax
E, E, E; E,

E,, E; and E, are classified as positive examples of the concept ‘‘states in which
OP1 is effective.’”’ Since the current heuristic rule for OP1 has a score of 1, effec-
tiveness is determined by a state transition to a goal state (a state not containing an
integral). A minimal generalization of the state description of the current rule for
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OP1 with E,, E; and E, yields the new rule:
S xposiu‘ve dx — OP]

where positive represents any positive integer.
Only one more teacher supplied training instance is required for PET to converge
on the final heuristic rule for OP1. Given the positive example:

S x™3 dx
PET minimally generalizes to:
S xnonzero gy OP1

This generalization is errorful, as it would incorrectly suggest OP1 in the case of
§ x ~ 1. The faulty generality is the result of an insufficiently precise concept descrip-
tion language. Within the given concept description language, the heuristic gives the
best coverage of when to apply OP1. The last defense of this over-generalization is
that heuristics are no guarantee of correctness.

4.4. Review of example generation with perturbation

We have found that perturbation is an effective technique for guiding generalization.
In the domain of simultaneous linear equations, PET formed an effective set of
heuristics for solving any problem. Perturbation uses a single training example pro-
vided by the teacher as a ‘‘seed” for automatic example generalization. Each
generated example is a slight variant of the original training example and tests the
relevance of an individual feature. Generated examples are then classified by guiding
problem solving with rule sequences acquired by episodic learning.

While perturbation efficiently generates training examples, the process would be
improved if useful perturbation candidates could be identified. This would increase
the learning rate, since examples which most advance the search for a generalized
concept description would be generated first. As we describe in Section 6, the role
of experimental goal regression is to guide the perturbation process.

5. Relational models
The methods of the previous sections have made no assumptions about the represen-

tation of operators. In particular the techniques will work if operators have opaque
representations, such as provided by procedures. However, in order to better direct
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the learner, a more detailed representation of an operator is needed than that given
by procedures. A relational model for a procedurally defined operator OP is an ap-
proximation of OP with a STRIPS-like rule. The advantage of this transparent
representation is that the transformation performed by the operator is explicit. In
particular, PET uses the relational model representation of operators in two ways:
to detect and recover from over-generalization of heuristic rules and to guide the
selection of perturbation operators.

STRIPS-like rules are commonly used in Al systems for learning and problem
solving because the system can reason using the operator definitions (Minton, 1984;
Waldinger, 1977). Rather than assume that transparent operator definitions are a
priori knowledge, PET uses relational modeling to learn them from procedural
operator definitions. Procedural representations simplify the user’s task of defining
operators and relational modeling allows the learner to accept the responsibility of
shifting representation.

PET determines the input/output behavior of each procedurally-defined, opaque
operator by applying the operator to a set of states. A relational description of this
behavior is induced from the input/output examples. The search for this description
requires incorporating domain-specific background knowledge into the evolving
relational description. This section reviews related work on learning in the presence
of background knowledge and discusses PET’s algorithm for learning relational
models.

5.1. Background knowledge

Vere’s experiments with learning in the presence of background knowledge (Vere,
1977) are directly related to learning relational models. Vere demonstrates the use of
background knowledge to restrict over-generalization of learned concepts. For exam-
ple, in the domain of the card game poker, it is necessary to apply the background
knowledge of card ranks in order to learn the concept of a *‘straight.’’ Langley (1980)
uses this method in the ACTG learning system. In particular a rule is recognized as
an over-generalization if the right hand side contains variables which are not bound
in the left hand side. In this event, ACTG conducts a search through a space of rela-
tions to find a path which links the left hand side of the rule to the right hand side.
An earlier version of PET addressed the same over-generalization problem (Kibler
and Porter, 1983b).

The contribution of this research is the test for over-generalization and the use of
background knowledge to add needed constraints. A shortcoming of the approaches
is that they provide little guidance of how much knowledge to incorporate. Vere
allows only one predicate in background knowledge while ACTG searches through
all relations. PET uses relational models to control the amount of background
knowledge applied. Incorporating too little knowledge results in an overly-general
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rule. Incorporating too much knowledge results in an overly-specific rule. PET uses
perturbation to determine if a rule has become too specific.

Relational models extend Vere’s and Langley’s approach to rule augmentation by
representing the transformation performed by an operator. Background knowledge
is used to relate terms in the preconditions of the operator to terms in the postcondi-
tions of the operator. Multiple relations are usually required to define this transfor-
mation. As we describe in Section 6, these relations also serve to guide experimental
goal regression.

5.2. Representing operators with relational models

PET’s method for building relational models relies on background knowledge to
connect hypothesized pre and post conditions of operators. In addition to augment-
ing concept descriptions to prevent over-generalization, relational models approx-
imate the transformation performed by operators. In this section we formalize the
notion of a relational model, which relies on a variant of typical production rules.
Then we illustrate the use of relational models on several examples from the domain
of symbolic integration.

A relational model of an operator OP is built on a heuristic rule for OP. This rule
is a variant of the production rule representation for heuristics presented in section
2. Previously, we used heuristic rules of the form:

PRE state description = OP

with the interpretation:
If the current state S matches PRE
then operator OP is recommended in S.
A relational model is of the form:

L 4 ..
PRE state description = POST state description

with the interpretation:
IF the current state S matches PRE and
the state resuiting from applying OP to PRE matches POST
THEN OP is recommended in S.

This form of a rule was first proposed by Amarel (1968) and has two advantages.
By explicitly representing the effect of an operator, any difference between the
desired outcome and the actual outcome can be noted. This is important in PET
because relational models of operators are approximations which might be only par-
tially learned. The Amarel-style rule allows for checking the post-conditions of an
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operator application before recommending that the rule be used. The second advan-
tage is the reduction in the size of the search graph generated during problem solving.
Amarel-style rules offer one-step look ahead during the search. Rules which recom-
mend operators that do not yield the desired POST conditions are pruned from
consideration.

In the domain of symbolic integration, PET represents the PRE and POST state
descriptions as parse trees. For example, the rule which recommends the operator

xn +1
OP: S x" dx — + C
n+1
in state § x* dx is:
M\ ¥
/ \
" dz ) - 3

/ \ / \
X 2 X 3

where ““+ C”’ is dropped for simplicity. Note that the state resulting from the
operator application, POST, is explicitly represented in the right hand side of the
rule.

This form of heuristic rule is generated using ‘‘standard’’ generalization tech-
niques. For example, the induction algorithm used with perturbation forms
generalized rules of the form PRE — OP. Applying the same algorithm to states
resulting from OP’s application yields a generalization of POST. More specifically,
PET generalizes PRE and POST by either removing conditions or replacing them by
ones higher up in the concept hierarchy tree.

However, this generalization scheme can yield unusable rules. For instance, the
rule above can be generalized with the positive training example { x? dx. This yields
the rule:

f +
\
‘/ \d:z: —°P A/ P
/ \ / \

pos pos

08

This rule is over-generalized since the critical relations are lost. There are two
essential constraints in the original, instantiated rule that are lost in the
generalization:
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1) the x exponent in POST is one more than the x exponent in PRE.
2) the denominator in POST is one more than the x exponent in PRE.

Further generalization with a third positive example, § y* dy, yields the rule:

f +
‘/d}var) — 9P “/ >7os
/ \ /\
var pos var pos

and a third essential constraint is lost:
3) the variable in the numerator of POST is the variable of integration in PRE.

Table 2. Background knowledge for symbolic integration.

Relation Semantics

eq (X, Y) X and Y are equal

suc (M, N) N is the integer successor of M
sumof (L, M, N) sumof Land Mis N

product (L, M, N) product of L and M is N
power (L, M, N) L raised to the M-power is N
derivative (M, N) derivative of M is N

Relational models provide an elaboration of this form of heuristic rule. In con-
structing a relational model for an operator, the descriptive language is augmented
with background knowledge to explicitly represent constraints between terms in PRE
and POST so that they are not lost during generalization. The background
knowledge for symbolic integration is the set of relations listed in Table 2.

The augmentation is a list of relations from background knowledge which is in-
stantiated with terms from the heuristic rule. These relations represent constraints
between the terms so that they are not lost during rule generalization. For example,
an augmentation of the rule given above forms the following relational model:

J +
SN\ . /

GQ(x’x)
suc(2,3)
suc(2,3)

Diagram 1.
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Now, if the rule is generalized as above, the constraints are not lost. The generalized
augmented rule is:

f +
/ N\

var

| eg(var,var)
suc(posy, poss)
suc(posy, pos3)

Diagram 2.

Augmentation extends the interpretation of a heuristic rule for operator OP. If the
augmentation is instantiated with terms from PRE and POST, the resulting rule is
interpreted as:

IF the current state, S, matches PRE and
the state resulting from applying OP to S matches POST
such that the relations in the augmentation hold,

THEN OP is recommended in S.

With this intuitive understanding, relational models can be formally defined. A
relational model is a 4-tuple (OP, PRE, POST, AUG). The augmentation, AUG,
is a set of relations {rel,rek, ..., rely} from background knowledge. Each relation,
rel; € AUG has a relation name, or functor, and m = 2 arguments, {a1, @2, ..., @m}.
The purpose of the augmentation is to relate subexpressions of PRE with subexpres-
sions of POST, thereby “‘linking”’ PRE to POST. To establish these links, each a;
is constrained to be a subexpression of either PRE or POST, such that not all q; are
from the same source.

Actually, this is an over-simplification. By allowing g; to be a subexpression of an
argument of another relation in AUG, composites of relational descriptors can be
formed by ‘‘daisy-chaining” a link between PRE and POST through multiple
descriptors. For example, the relation that PRE is the double derivative of POST is
represented by:

derivative (PRE, X), derivative (X, POST).
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5.3. Learning relational models

In earlier research (Porter and Kibler, 1984) we developed an algorithm for learning
relational approximations of procedural operators. This algorithm is integrated into
the PET system so that there are no a priori restrictions on the representation of prob-
lem solving operators. The input to the algorithm is an unaugmented heuristic rule.
The learner then searches for the ‘‘best’’ augmentation of the rule. The output of the
learner is a relational model in which the augmentaton is instantiated with terms from
the original rule.

Augmentations are rated by measuring the coverage of PRE and POST by AUG.
Intuitively, coverage is a measure of the number of nodes of PRE and POST which
are arguments in A UG. The augmentation which achieves the best coverage is chosen
for the relational model of the operator.

Given an unaugmented heuristic rule R = {(OP, PRE, POST), a relational model
of R is constructed by searching for the set of instantiated augmentation relations,
AUG, which best covers R. This search is implemented in PET as a beam-search
through the space of candidate augmentations. In this space, nodes are represented
by the tuple (AUG, Pool) where Pool is the set of subexpressions of PRE and POST
not covered by AUG. In particular, the initial state is {nil, [ PREU POSTY}). There
is one operator in this search, which is described by:

Given a state (AUG, Pool),
SELECT a relational descriptor, D, from the set of background concepts .
INSTANTIATE D with members of Pool or their sub-expressions
REMOVE selected Pool members from Pool, yielding Pool’
ADD instantiated descriptor to AUG, vyielding AUG'.

Generate new state (AUG ', Pool').

This search ends when coverage fails to improve.

Built-in biases reduce the branching factor of the search for an augmentation with
maximal coverage and minimal complexity. In the selection of a relational descrip-
tor, preference is given to more primitive relations, such as equal and suc, over more
complex relations, such as product. Further, there are semantic constraints on the
subexpressions selected to instantiate a relation, For example, the first parameter in
the derivative relation must contain a variable of differentiation. Finally, note that
the algorithm tries large subexpressions from PRE and POST before small subex-
pressions, thereby maximizing the coverage of the augmentation. If two relational
models have the same coverage, then the one with fewer relations is preferred.
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5.4. Examples of relational models in symbolic integration

Relational models were not needed in the domain of simultaneous linear equations
because all the operators had natural relational descriptions. However, in the domain
of symbolic integration the operators are difficult to define relationally. For exam-
ple, the operator which substitutes a new term for an expression in an integral ap-
pears to be most naturally defined procedurally. Given this procedural representa-
tion, PET learns a relational model which approximates the procedure. This section
presents several of the generalized relational models learned by PET which corre-
spond to operators in symbolic integration. The reader is directed to Porter (1984)
for additional examples.

Each of the relational models uses generalized descriptors from the concept hierar-
chy tree for symbolic integration. This relational model illustrates PET’s bias
towards selecting large sub-expressions of PRE and POST when instantiating
augmentation relations. In general, PET seeks an augmentation with maximum
coverage of PRE and POST.

opéd [s) 4
fetdu ~e var P2,
eq(ezp"“',ezp"“')
Diagram 3.

In the next example, | 2x + 3)* dx, PET deals with the substitution operator,
which seems to require a procedural definition. Here the advice is to substitute u
for 2x + 3. In order to carry out this substitution, one must also divide the inte-
grand by the derivative of 4, namely 2. The state resulting from the substitution
is { ¥4u* du. The relational model built by PET for the operation is:
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]

/
N /\

O / N\

‘ subst(2z + 3, té)z]d )
z

derivative(2z + 3,
eq(4,4)

Diagram 4.

Notice that the relational descriptor subst, which describes the fact that u has re-

placed 2x + 3, is distinguished from the general substitution operator, denoted by
subst.

PET generalizes this relational model using perturbation and further teacher train-
ing. The generalized rule is:

S poly™ dx — S gy
poly’

More completely, the rule is:

subst(polyy, u
derivative(polyy,| poly: [dz)
eq(int,int

Diagram 5.
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The relational model explicitly represents the constraint that poly; is the derivative
of poly:. The derivative relationship between these polynomials is not represented ex-
plicitly in LEX (Utgoff, 1983). Instead, the derivative relationship is hidden in the
code for the substitution operator and constraint back propagation through the
operator is impossible.

5.5. Summary of relational models

The advantage of representing operators relationally is that the transformation per-
formed by the operator is explicit. In particular, PET uses relational models in two
ways: to detect and recover from over-generalization of heuristic rules and to guide
the selection of perturbation operators. The latter use is the topic of Section 6.

Much of the work in learning search heuristics assumes that operators are defined
with transparent, STRIPS-like rules. Relational modeling extends the applicability
of this work by removing a priori constraints on the form of the operators. Our
algorithm for learning relational models has successfully learned a representation for
each of the eighteen symbolic integration operators used by PET.

6. Experimental goal regression

This section describes a technique for improving the rate at which problem solving
heuristics are learned. We call the technique experimental goal regression (EGR).
EGR is an experientially based approximation to Waldinger’s (1977) analytic goal
regression. Goal regression is used to back-propagate goal conditions through
operators to form sub-goal descriptions. Given a goal state G and an operator OP,
a goal regression product is a description of a sub-goal state S, such that OP applied
to S achieves G. The goal regression product corresponds to Dijkstra’s (1975) notion
of weakest pre-condition. According to Dijkstra, wp (OP, G) is the weakest con-
straint on a state S which guarantees that the application of OP to S yields a state
satisfying G.

We first describe the roles of episodic learning, perturbation, and relational model-
ing in EGR. Then we present multiple examples of the application to EGR to im-
proving the learning rate of search heuristics.

6.1. Integrating episodic learning, perturbation, and relational models
The rate at which problem solving heuristics are learned is improved by using rela-

tional models to select appropriate perturbation operators. As described in Section
4 PET applies perturbation operators to a single teacher-supplied training instance
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to generate multiple similar examples. Perturbation automates part of the teacher’s
role, but not the task of selectively generating training instances which are most
useful for concept convergence.

Experimental goal regression uses learned relational models and episodic segments
to guide perturbation. Using EGR, perturbation candidates are generated which test
specific features of a concept description that are believed to be overly specialized.
Consider an episode E consisting of rule applications ry, r2, ..., r». Each rule r; is
represented with relational model (OP;, PRE;, POST;, AUG;). AUG represents the
‘““intra-rule’’ links between PRE; and POST;. ‘‘Inter-rule” links are implicit in E. As
described in Section 3, r; is added to an episode if it enables r; . 1. This establishes an
implicit link between POST; and PRE; , ;. Constraints imposed on r; by rj, i < j, are
discovered by following inter-rule links through E and intra-rule links through rela-
tional models. These constraints suggest perturbation operators for r;.

6.2. Examples from symbolic integration
Weillustrate experimental goal regression in the domain of symbolic integration with
an example from Utgoff (1983). The example demonstrates how PET automatically
selects the single perturbation candidate from the space of possibilities which enables
useful concept generalization.
Assume that from prior training for the operator:

OP! :sin? x = 1 — cos® x
PET has formed the following relational model:

Ssin x(sin? x)* — S (1 — cos® x)" sin x dx

summarizing the rule:
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/' \ + x

./ \ /“ sin
/ l| —opl_ - )‘c

/' \ 1
sin 2 / \

| cos 2
x —eq(xx)— |
+~—eq(2,2)— x
eq(n1,n1)
+eq(sin z,8in z)—
—eq(x,x)—

Diagram 6.

Note that this model has been generalized from instances such that PRE,,; matches
states of the form | (sin? x)""“™°" €8¢ sin x dx.

Now PET is presented the training instance § sin® x sin x dx with the advice to apply
the opaque operator:

OP2 : sin® x = (sin? x)?
PET applies the operator, yielding § (sin? x)* sin x dx. As described in Section 3, PET
can only learn a rule for this training instance if it achieves a known (sub)goal (allow-
ing the rule to be integrated into an existing episode). In this example, the training

instance achieves the subgoal defined by PRE;;;. The following relational model for
the training instance is built by the beam-search algorithm of Section 5:

g sin® x sin x dx — S (sin? x)? sin x dx

which is more accurately described by:
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J
] /\

X
* X / \

*  sin
sin —°P-2—> /

sin 0 x /
| sin
x |
—eq(sinzsinz)— x
product(2,3,8)
+—eq(sin z,8in z)—
+—eq(x,x)—

Diagram 7.

Now that episodic learning has associated the relational models for OP1 and OP2,

perturbation operators are applied to generalize the model for OP2. The relaxed con-
straint in PRE,p; (i.e., ‘‘nonzerointeger’’) is regressed through the episode with the
potential of identifying a feature of PRE,;> (i.¢., ‘6’’) which can be generalized. The
inter-rule link implicit in episodes connects the relational model of OP2 with the rela-
tional model of OP1. Matching POST,p; with PRE,,: binds variable n; with 3. This
suggests that the relational model for OP2 is overly-specific. Perturbation tests relax-
ing this constraint by generating a training instance with this feature slightly
modified. This is done by traversing intra-rule links represented by the augmenta-
tion. Specifically, PET generates a useful training instance by the following steps:

1.

2.

Locate the relation r € AUG,p; with argument of 3 from POST,p;. In this case,
r = product (2, 3, 6).

Perturb r to generate a slight variant, /. This is done in three steps: First, replace
the argument with a neighboring sibling in a concept hierarchy tree. In this case,
replace 3 with 4. Second, locate an argument p in r such that p is a sub-expression
of PRE,p; and replace it by free variable x. In this case, p = 6. Third, evaluate
the resulting partially instantiated descriptor to uniquely bind x to p’. In this ex-
ample, p’' = 8 and ' = product (2, 4, 8).

. Generate PRE' 52, a perturbation of PRE,;», by replacing p by p’. In this exam-

ple, PRE}p; = | sin® x sin x dx.

. Classify PRE¢p; as an example or near-miss of a state in which op2 is useful. As

discussed in Section 4, PRE/;, is an example if apply (OP2, PRE/,) achieves the
same subgoal as apply (OP2, PRE,;;). In this example, PRE/,, is an example
which achieves the subgoal of PRE,p;.
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Finally, PET generalizes the original training instance with examples generated by
perturbation. The following relational model is the minimal generalization of these
instances:

S sin™ x sin x dx — S (sin® x)™ sin x dx

or, more precisely:

~ sin —°p<, 2
sin x /

| sin

+—eq(sinzsinz)— x

product(2,n1,n3)

~—eq(sin z,sin z)—
+—eq(xx)—

Diagram 8.

Note that the product (2, n;, nz) augmentation descriptor corresponds to the con-
cept of even-integer (n2). This is the correct constraint on the heuristic since this
episode is only effective on integral expressions of the form { sin” x sin x dx, where
n is even. As demonstrated with this example, constraint back-propagation through
episodes and relational models can discover generalized descriptors which suggest
new concepts, While it is not the focus of this research, these concepts could augment
the description language for subsequent learning (see Utgoff, 1984).

We now present a second example of using relational models to guide the selection
of perturbation operators. This example demonstrates that spurious features are easi-
ly identified in the relational model representation of heuristic rules. A spurious
descriptor for a heuristic which recommends operator OP is one which is irrelevant
to the effectiveness of OP. As with overly-specific features, perturbation can detect
spurious features but the search is unguided.

Relational models allow PET to selectively guide the search for spurious descrip-
tors. Rather than test the relevance of every descriptor, PET heuristically selects can-
didates. Given relational model (OP, PRE, POST, AUG) the heuristic states:
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Descriptors of PRE which are not transformed by OP may be irrelevant to the rule
recommending OP.

Those descriptors of PRE which are not transformed are exactly those linked by the
eq relation to descriptors of POST. This heuristic identifies candidate irrelevant
descriptors which can be tested with perturbation. Consider the training instance:

7Sx2dx

for the operator:
OP n+1

gu"du—v

n+1

PET forms a relational model for the rule:

3
7szdx-+7x?

The heuristic for selecting perturbation candidates focuses on descriptors in PRE
which are augmented with eq relations. With this guidance, perturbation generates
two examples: sz dx and 7 | dx. Of these, the first is classified by perturbation as
a positive example and the second is classified as a negative example. The leading 7
is thereby recognized as a spurious descriptor and removed, yielding the generalized
rule:

3
szdx—>-)L
3

Of course, this technique is more useful on large rules with multiple spurious
descriptors.

6.3. Review of experimental goal regression

Experimental goal regression is an experientially based approximation to analytic
goal regression. In PET, experimental goal regression guides the selection of pertur-
bation candidates. Candidates are selected which test features of heuristic rules which
appear to be over-specialized. These features are found by back-propagating goal
conditions to subgoal descriptions. This back-propagation is possible due to the ex-
plicit links in learned episodes relational models. This technique is especially effective
at improving the learning rate as episodes grow in length since experimental goal
regression may take place through episodes of arbitrary length.
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7. A brief comparison

In this section we briefly compare PET both with learning programs that are based
on an empirical or data-intensive mechanism and programs that are based on a
reasoned or analytical mechanism. From this comparison we suggest that PET lies
between empirical and analytic learning mechanisms on several dimensions.

7.1. Empirical learning methods

Methods that depend on large amounts of data typically share many characteristics.
These systems have been called similarity-based learning systems (Mitchell, et a/,
1986), but we prefer to use the term data-based or empirically based, since Langley’s
Sage.2 (1983) and Quinlan’s ID3 (1986) are both data-intensive but focus on dif-
ferences or discriminations rather than similarities.

Quinlan’s (1986) ID3 program builds decision trees from numerous training in-
stances to classify new instances. All states for which the application of operator OP
leads to a solution are classified as Good-OP-states. Given training of this form, the
decision tree learned by the ID3 algorithm represents a heuristic description of the
general class of problems for which OP is effective. Since ID3 uses an attribute-value
representation scheme, extensions would be required to represent operators for sym-
bolic integration. However we guess that with appropriate data, much larger than
PET would require, ID3 could form problem solving heuristics for simultaneous
linear equation and symbolic integration.

Unfortunately, empirically based methods require huge numbers of data points,
which are collected in an undirected and uncontrolled way. If the observed instances
are representative of all instances, learning will be effective. However, a large
number of. training instances does not guarantee that the necessary examples for the
correct generalization have been observed. In the end, the final generality of the
learned concept relies on a fortuitous selection of training instances.

7.2. Explanation-based learning

Explanation-based learning systems accept a single instance of a concept (or a good
application of an operator) and construct an explanation (often a proof) of why the
instance satisfies the concept. The explanation is then used to form a generalization
of the given instance. A number of explanation-based learning systems have been
built and demonstrated in a variety of task domains (Mitchell, et al., 1986; Minton,
1984; DeJong, 1981; DeJong, 1983).

Constructing a proof or an explanation takes different forms in the various
systems. One form, which we call analytic goal regression, depends on computing,
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as accurately as possible, the goal regression of a goal or subgoal through the
operator. However, we have identified three requirements that limit the application
of analytic goal regression (Porter and Kibler, 1985). These requirements are:

* Procedural descriptions of goals — In order to compute the inverse image of a
goal with respect to an operator, the goal description must be a pattern, a relation,
or a predicate. To our knowledge there is no means to compute the goal regression
of a goal which has a procedural definition. Unfortunately, procedural descrip-

tions abound (e.g. the definition of checkmate in chess).
¢ Operator invertibility — Even if the goal has a simple description, it is also

necessary that the operator be described non-procedurally. STRIPS-like operator
definitions are suitable candidates for goal regression. Unfortunately, many
operators are best represented procedurally (e.g., an operator which replaces all

occurrences of term T by term T').
¢ Relative closure of concept language — Finally, assuming the goal and operator

have simple descriptions, the computed goal regression may involve disjunctions
or negations., For STRIPS-like operators this only occurs when the operator is not
fully instantiated. The appearance of disjunctions or negations in the goal regres-
sion result usually takes the expression outside the original concept description
language.

Each of these difficulties has been partially addressed by explanation-based tech-
niques. In particular, one can approximate the procedural description of a goal by
a pattern or relational description which satisfies the procedure. If the operators do
not have computable inverses, one can provide the system with explicit definitions
of the inverses, as is done in LEX2 (Utgoff, 1983). Finally, the problem with disjunc-
tions is mitigated by choosing that disjunct which matches the current instance, as
is done by Minton (1984) and Mahadevan (1985). Note that none of these difficulties
occur with experimental goal regression as discussed in more detail by Porter and
Kibler (1985).

8. Final remarks

In this paper we have described a collection of techniques which are integrated into
a single, effective mechanism for learning problem solving heuristics. More
specifically, we use perturbation to learn when operators should be applied, episodic
learning to understand why operators are applied, and relational modeling to con-
struct what the operator does and how the preconditions relate to the postconditions.
This integration of techniques, which we call experimental goal-regression, lies bet-
ween empirically and explanation-based learning on a number of dimensions.
Experimental goal regression achieves its power through directed experimentation
rather than by summarizing massive amounts of data with empirically-based
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methods or by careful and costly analysis with explanation-based methods. With
respect to background knowledge, experimental goal regression requires a stronger
domain theory than empirical learning methods, but a weaker domain theory than
that required by explanation-based or analytic techniques. On this dimension, em-
pirical methods are least restrictive in their domains of applicability, explanation-
based methods are most restrictive, and experimental goal regression holds an in-
termediary position. With respect to the number of instances required to learn a
heuristic, EGR requires more examples than explanation-based methods, but much
less than that required by an empirical method. Finally, with respect to correctness
of the heuristics formed, only explanation-based methods are guaranteed to produce
correct heuristics, but EGR usually produces good heuristics. The effectiveness of
EGR and the rules it generates has been demonstrated by the PET learning and prob-
lem solving system in the task domains of simultaneous linear equations and sym-
bolic integration.

There are a number of serious questions about the learning of problem solving
which this paper and other research on machine learning have not addressed. In par-
ticular, machine learning has not successfully dealt with:

e Organization of knowledge — Most systems have constructed few rules
(heuristics) and have not needed to address the problem of organizing learned
knowledge into a coherent, efficiently accessible whole.

¢ Concept Language — All learning systems depend on having the right, or nearly
right, conceptual vocabulary. A search for a concept description is conducted
through a space of combinations of these primitives. But where do these primitives
come from? Analytical goal regression suggests one approach to this problem, but
more work is called for.

e Strategy Acquisition — Nearly all research in learning problem solving has con-
centrated on generalizing state descriptions, typically forming heuristics for when
an operator should be applied. While some work has been directed at forming se-
quences of operators, little work has focused on acquiring strategic and tactical
knowledge.

The problem of concept formation, organization and integration is the focus of our
further research. In particular, we are considering an exemplar based representation
of concepts (Smith and Medin, 1981) which is organized in a hierarchy of frames.
In this context, learning is the evolutionary addition and modification of slots, slot-
fillers, and frames. This network of concepts will be used by an expert problem solver
as we believe that the structure and content of knowledge both determines and is
determined by its use.
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