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Abstract. We present two related results about the learnability of disjunctive normal form (DNF) formulas.
First we show that a common approach for learning arbitrary DNF formulas requires exponential time. We
then contrast this with a polynomial time algorithm for learning "most" (rather than all) DNF formulas. A
natural approach for learning boolean functions involves greedily collecting the prime implicants of the hidden
function. In a seminal paper of learning theory, Valiant demonstrated the efficacy of this approach for learning
monotone DNF, and suggested this approach for learning DNF. Here we show that no algorithm using such an
approach can learn DNF in polynomial time. We show this by constructing a counterexample DNF formula
which would force such an algorithm to take exponential time. This counterexample seems to capture much
of what makes DNF hard to learn, and thus is useful to consider when evaluating the run-time of a proposed
DNF learning algorithm. This hardness result, as well as other hardness results for learning DNF, relies on
the construction of particular hard-to-learn formulas, formulas that appear to be relatively rare. This raises the
question of whether most DNF formulas are learnable. For certain natural definitions of "most DNF formulas,"
we answer this question affirmatively.
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1. Introduction

In a seminal paper, Valiant (1984) introduced a computational model for learning (later
termed "PAC", or probably approximately correct, learning). This model captures many
common intuitions about learning, and is a useful abstraction for developing provably
correct and efficient learning algorithms, as well as for arguing against the existence of
such algorithms.

Since the model has been introduced it has been shown that, while the most general
classes of boolean formulas are not learnable in polynomial time, a wide variety of
restricted classes of formulas are (Angluin, 1992). However, there is still a large gap
between these positive and negative learnability results, and lying in this gap are some of
the most natural classes of formulas. Principal among these is DNF: disjunctive normal
form formulas.

A DNF formula is a boolean formula in which the and's and the or's cannot be
arbitrarily nested, but instead can be nested only one level deep — it is the disjunct
(or) of a group of conjuncts (ands). For instance, the concept "family pet" might be
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described using the DNF formula "(small and dog) or (large and docile and dog) or
(declawed and cat) or (with-claws and docile and cat)". As argued by Valiant and others
(Valiant, 1985; Michalski et al., 1983; Michalski et al., 1986), DNF is a natural class of
formulas, one with which people seem comfortable expressing real concepts. Perhaps
due to its naturalness, DNF and its variants have gained wide use in computer systems
(i.e., production systems and expert systems), and have been used in many heuristic
machine learning systems (Michalski et al., 1983; Michalski et al., 1986). Consequently,
it is no surprise that the learnability of DNF has been well-studied.

Although the learnability of general DNF formulas remains open, there are polynomial
time algorithms for learning various restricted subclasses of DNF. These subclasses typ-
ically arise by limiting various parameters associated with the DNF formulas (Angluin,
1987a; Shackelford & Volper 1988; Angluin & Slonim, 1994; Hancock, 1991; Aizen-
stein & Pitt 1991; Angluin et al., 1992; Blum & Rudich, 1992; Goldman & Mathias,
1992; Aizenstein & Pitt 1992; Berggren, 1993; Bshouty, 1993; Kushilevitz & Roth,
1993; Pillapakkamnatt & Raghavan, 1993; Blum et al., 1994), or by assuming particular
distributions on the input examples (Pagallo & Haussler 1989; Verbeurgt 1990; Han-
cock & Mansour, 1991; Flammini et al., 1992; Hancock, 1993; Kushilevitz & Mansour,
1993; Khardon, 1994; Jackson, 1994). Valiant (1984) and Angluin (1988) have described
polynomial-time algorithms that use queries to learn monotone DNF — disjunctive nor-
mal form formulas that contain no negated variables. The same natural approach is used
in both cases — the algorithm learns by greedily collecting the prime implicants of the
unknown formula. This approach is also natural for learning arbitrary DNF, and is at the
heart of several conjectured DNF learning algorithms. Further, the underlying goals of
several existing machine learning systems appear to be motivated by this greedy search
for a small number of prime implicants sufficient to describe the data (Michalski et al.,
1983; Michalski et al., 1986; Clark & Niblett, 1988; Clark & Boswell, 1991).

Because it is simple, and because it exactly embodies this natural approach, the algo-
rithm described by Valiant (1984) is of particular theoretical interest. This algorithm,
which we call learn-DNF, uses subset queries (i.e., it asks whether or not hypothetical
terms are implicants of the unknown function) to collect prime implicants.

Although no one has shown whether any of the DNF learning algorithms run in time
polynomial in the length of the unknown formula (a standard learning parameter), Valiant
has considered more generous parameters for which learn-DNF might run in polynomial
time. In particular, Valiant suggests that learn-DNF runs in time polynomial in the
length of the largest reduced DNF expression equivalent to the unknown formula. This
parameter is referred to as the degree of the unknown formula.

In Section 3 we give a counterexample, a target DNF formula that forces any algorithm
(even a probabilistic one) using this approach to take time exponential in the length of the
target formula, and even in the degree of the unknown formula — thus contradicting the
claim made by Valiant.1 While our counterexample does not directly show that machine
learning systems such as AQ, etc., provably require exponential time to PAC-learn DNF,
we suspect that arguments similar to those contained here could be employed to that
effect.
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The counterexample presented here, as well as other recent results (Angluin and
Kharitonov, 1991; Aizenstein, Hellerstein, and Pitt, 1992), suggests that arbitrary DNF
formulas are not learnable. These results, however, rely on the construction of particular
hard-to-learn DNF formulas, formulas that seem to be relatively rare. This raises the
question (which we consider in Section 4) of whether most DNF formulas are learnable.
For some, seemingly natural, definitions of most DNF formulas the answer to this ques-
tion is trivially "yes". We show that for other, more robust, definitions the answer is also
"yes".

The main contributions of this paper appear in Sections 3 and 4, following Section 2,
which contains basic definitions and problem statements.

2. Definitions

A literal is either a variable v or its negation v. For a set of variables {v1,v2,.. .vn],
an assignment a is a function a : {v 1 , v 2 , . . . v n } —> {0,1} and extends to all literals
(i.e., a(v i) = 1 - a(vi)). A term is a conjunction (•) of literals. A DNF formula is
a disjunction (+) of terms. Sometimes, to express relationships between literals, terms,
and formulas, we will use standard set notation and treat a term as a set of literals and
a DNF formula as a set of terms. Assignment a satisfies term t (also written t(a) = 1)
iff (VI € t) a(l) = 1. Assignment a satisfies DNF formula / (written /(a) = 1) iff
(3t € /) t(a) — 1. A term t is an implicant of a DNF formula / if every satisfying
assignment for t is also a satisfying assignment for /. An implicant t for a DNF formula
/ is a prime implicant if no proper subset oft is also an implicant of /. A DNF formula
/ is reduced if every term in / is a prime implicant of /, and every term is necessary
(for every term t in /, the formula / - {t} expresses a different function than /). A
reduced DNF expression is also referred to as an irredundant sum of prime implicants.

Let t\ and t% be terms of a DNF formula / such that there is exactly one literal /
such that I is in t1 and lis in t2. The consensus of t1 and t2 (denoted by £10*2) is the
term consisting of all literals in t1 except l, and all literals of t2 except I. For example,
xyQxzw = yzw. The consensus of two terms is only defined when there is exactly one
literal that appears negated in one of the terms, and unnegated in the other. Let t3 be
the consensus of t1 and t2- It is easily argued that the term t3 is an implicant of / and
thus can be added to / without changing the function computed by /. If we could form
the consensus of £3 and another term of /, this would give us yet another implicant of
/ that we could add to /. A repetition of this process is called iterated consensus of
the terms of /. We will use the fact that every prime implicant of a formula / can be
obtained by iterated consensus of the terms of / (Muroga, 1990).

Notice that if / is a monotone DNF formula (a DNF formula in which no variable
appears negated) then consensus is not possible between any two terms of /. Further,
if we assume that / is reduced, then / is exactly the sum of the prime implicants of
/ : the sum of prime implicants is the unique reduced DNF representation for /. This
is the basis of Valiant's monotone DNF learning algorithm. However, when / is a
reduced non-monotone DNF formula, iterated consensus may derive additional prime
implicants not in /. For example, iterated consensus on the reduced DNF formula
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f = xy + xz + yz derives the additional prime implicants xy, yz, and xz. Furthermore,
in the non-monotone case, unlike in the monotone case, there is not a unique reduced
DNF representation, and the different reduced DNF formulas need not have the same
number of terms: both xy + xz + yz and xy + xy + yz + yz are reduced DNF formulas
for the same function.

2.1. The learning models

The two standard learning models we consider in this paper are the PAC model (see
Valiant 1984) and the exact model (see Angluin 1988), In one regard, these two learning
models are the same: in each of these models a class of formulas F is defined to be
learnable when there is an efficient (i.e., polynomial time) algorithm that can learn every
particular formula in F. The learning models differ, however, in what it means for an
algorithm to learn a particular formula /. Below we define, for these two models, what
it means to learn a particular formula / (chosen from a known class F).

The size of a boolean formula, denoted by ||f||, is the length of its representation
in some natural encoding. Often, we use a more parsimonious size measure for DNF
formulas: if / is a DNF formula, then we define the length of / to be the number of
terms in / (i.e., |/|). Since the learning models we consider allow time polynomial in
n (as well as in ||/||), it follows that, with respect to polynomial time learning, the size
measures |f| and ||f|| are equivalent. Throughout this paper we assume the standard
random access machine (RAM) model of computation, augmented to allow queries (see
Angluin, Hellerstein, and Karpinski, 1993).

2.7.7. The exact learning model

The exact learning model (Angluin, 1988) requires that after time polynomial in the
number of variables n and in the size of /, the learning algorithm A outputs a boolean
formula /' in F that is equivalent to /. That is, / and /' are satisfied by the same
assignments to the variables. In this model, A learns by asking equivalence queries
about the target formula: it asks whether a formula /' from the class F is equivalent to
/. If the two formulas are equivalent, then the equivalence query oracle responds "yes,"
and A has successfully learned /. Otherwise, the oracle responds with a counterexample,
an assignment that satisfies f or f', but not both.

2.1.2. The PAC-learning model

The PAC-learning model (Valiant, 1984) requires that, on input of any parameters e, 6,
and s (such that 0 < e,6 < 1 and s > \\f\\), the learning algorithm A outputs, with
probability at least 1 - 6, a boolean formula /' from the class F that e-approximates f:
the probability that an assignment (chosen from an arbitrary unknown distribution D)
satisfies / or /' but not both is at most e. Further, A must output /' in time polynomial in
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the number of variables n, 1/e, 1/6, and s. In this model, rather than asking equivalence
queries, A is supplied with a source of assignments randomly chosen from D, each one
labeled as to whether it satisfies the target formula /.

2.1.3. Membership queries

For many natural classes of formulas, such as DNF, there are no known positive learn-
ability results in either the exact model or the PAC model. Consequently, it is common
to enhance these models in a natural way by also allowing the algorithm to ask about
particular assignments. Here, in addition to the randomly generated labeled examples or
the equivalence queries, we also allow the algorithm to ask an oracle whether a particular
assignment satisfies the target formula. We refer to these queries as membership queries,
and we refer to the enhanced models, as the PAC+membership and exact+membership
learning models.

2.1.4. Relationships between the models

Angluin (1987b) has shown how equivalence queries can be replaced with randomly
generated labeled examples, thus transforming an exact learning algorithm into a PAC-
learning algorithm. So any class of formulas learnable in the exact learning model is
also learnable in the PAC model. Further, this reduction also works in the presence of
membership queries, so any class of formulas that is learnable in the exact+membership
learning model is also learnable in the PAC+membership learning model.

2.1.5. Other learning models

A number of variations on the above learning models have also been considered (Haussler
et al., 1991). Of note is the variation where the learning algorithm is not restricted to
output a hypothesis from the target class (learning a class "in terms of" another (cf. Pitt
& Valiant (1988))). For instance, when learning DNF, the algorithm might be allowed to
hypothesize a general boolean formula, or perhaps a neural network, rather than being
restricted to hypothesizing DNF formulas. The nonlearnability result we present applies
only to a particular approach for learning DNF — we defeat algorithms that work by
collecting and hypothesizing sets of prime implicants (i.e., DNF formulas). Our result
makes no claims about the difficulty of learning DNF using other approaches, such as
those which hypothesize from different classes.

3. DNF cannot be learned by greedily collecting prime implicants

Here we show that the approach to learning boolean functions of greedily collecting
prime implicants does not work for learning arbitrary DNF formulas. We first illustrate
this approach to learning, in Section 3.1, using a well-known, straightforward algorithm
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for learning monotone DNF. In Section 3.2 we describe the natural extension of this
algorithm, learn-DNF, that ostensibly learns the more general class of arbitrary DNF
formulas; this is essentially Valiant's (1984) DNF learning algorithm. The following
section (Section 3.3) introduces our counterexample DNF formula /. We then use / in
Section 3.4 to defeat learn-DNF, as well as to defeat certain simple deterministic variants
of it. We extend this argument, in Section 3.5, to defeat a wider class of algorithms.
This class includes learn-DNF, as well as some probabilistic variants. In Section 3.6 we
discuss some implications of these results.

3.1. Learning monotone DNF

As mentioned in Section 2, if / is a reduced monotone DNF formula then the sum of
all prime implicants of f is its unique reduced DNF representation. Hence, learning
monotone DNF by collecting its prime implicants seems like a natural approach, and in
fact is the approach used by Valiant (1984) (see also Angluin, 1988, for an analogous
algorithm in the exact+membership learning model). Here we briefly describe Valiant's
algorithm (Figure 1) and in the following section we describe a generalization of this
algorithm that attempts to learn an arbitrary DNF formula.

Suppose the target formula /* (a reduced monotone DNF formula) is denned over the
set of variables V = {v1,... ,vn}. At every iteration of the main loop, the algorithm
receives a randomly generated example a. If a is a negative example (f*(a)=0), then the
algorithm ignores it. But if a is positive example, then it iteratively flips the values of
the variables in a from 1 to 0 to find a minimal positive assignment a': an assignment
such that no variable assigned 1 can be flipped to 0 without changing the value of the
function from 1 to 0.

Let variables(a'} denote the term consisting of exactly those variables that are assigned
1 by a'. It is straightforward to show that, since /* is monotone, variables(a'} is a prime
implicant of f*. At all subsequent iterations in which a positive example a is obtained
that is not covered by any prime implicant previously found, the algorithm adds a new
prime implicant. Together with the fact that the total number of prime implicants of
the reduced monotone DNF formula f* is |f* , this can be used to show that learn-
monotone-DNF can learn the target formula in the PAC+membership learning model.

3.2. Learning arbitrary DNF

The key idea in the above algorithm is to use membership queries to reduce every positive
example to a prime implicant of the target formula. This works because, in the monotone
case, variables(a) is an implicant of f* exactly when a satisfies /*. Thus we can test
whether a term is an implicant by asking membership queries. Moreover, variahles(a) is
a prime implicant whenever a is a minimal positive example (no "1" bit can be changed
to a "0" and still satisfy /). So, in the monotone case, by iteratively asking a series of
membership queries we can reduce a positive example to a prime implicant.
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learn-monotone-DNF

1. h<-0
2. a <— a randomly generated labeled example
3. IF label(a) = 1 THEN

(* If a is a positive example then reduce a to a minimal positive assignment. *)
4. FOR i = 1 TO n
5. IF MEMBERSHIP(A with Vi set to O)=true THEN
6. a <— a withVi set to 0
7. t <— variables(a)
8. H <- H U {T}
9. GOTO 2

Figure 1. Algorithm Jearn-monotone-DNF

However, in the non-monotone case a might satisfy F* even when variables(a) is not
an implicant of F*. But what if instead we allow the algorithm to ask directly whether a
term t is an implicant of F? This is a special type of subset query (Angluin, 1988). In a
subset query we allow the algorithm to ask an oracle whether a particular formula implies
the target formula (i.e., is the set of satisfying assignments of the hypothesis a subset of
the set of satisfying assignments of the target?). If it does, then the oracle responds "yes";
otherwise it responds "no". In the genera] subset query model the algorithm can ask about
any formula from the target class, but here we are concerned with only a special class
of subset queries, those in which the algorithm can ask only about terms. Using these
subset queries instead of membership queries, we can now reduce the positive examples
to prime implicants as in the monotone case, giving us a general algorithm, learn-DNF
(Figure 2), which attempts to learn arbitrary DNF. This is essentially Valiant's (1984)
DNF learning algorithm.

Suppose the target formula F* (a reduced DNF formula) is defined over the set of literals
L — {V1,..., vn, v 1 , . . . , vn}, and let literals(a) be the set of literals in L assigned 1 by
a. As in the monotone case, at every iteration of the main loop the algorithm receives a
new example a. If a is a negative example, then the algorithm ignores it. If a is a positive
example, then the algorithm reduces it to a prime implicant of F*. But as mentioned
earlier, unlike in the monotone case these prime implicants are not necessarily terms of
the target DNF formula. Thus it is unclear how many of these prime implicants the
algorithm needs to process before learning the target formula. This makes it difficult to
argue that the algorithm learns /* in time polynomial in |/*|.

As mentioned earlier, in the non-monotone case, unlike in the monotone case, there
is not a unique reduced DNF representation, and the different reduced DNF formulas
need not have the same number of terms. This suggests a different learning parameter,
the length of the largest reduced DNF formula that expresses F*. Valiant refers to this



190 AIZENSTEIN AND PITT

learn-DNF

1. h < - 0
2. a <— a randomly generated labeled example
3. IF label(a)=l THEN

(* If a is a positive example then reduce a to a minimal positive assignment. *)
4. t <— literals(a)
5. FOR i = 1 TO n
6. IF SUBSET (t- {Vi,VI}) = true THEN
7. £< - t -{Vi, Vi}
8. h<-hU{t}
9. GOTO 2

Figure 2. Algorithm learn-DNF

parameter as the degree of F* and claims that learn-DNF runs in time polynomial in the
degree of F*. Notice that the degree of /* is at least as large as the length of the smallest
DNF formula that expresses F*; thus it is at least as generous a parameter. But it is not
known how much larger the degree of /* is than the smallest DNF formula for F*. If the
degree of /* is polynomial in the length of the smallest DNF formula, then presumably
learn-DNF would also learn DNF in time polynomial in the standard parameters.

Here we show that, with respect to learning DNF, the relationship between the degree
of /* and the size of the smallest DNF for /* does not matter: the algorithm cannot
even learn in time polynomial in the degree of F*. We describe a reduced DNF formula
/, which has only one reduced representation, but which has an exponential number of
additional prime implicants that do not appear in any reduced DNF representation for /.
We then show how any algorithm (even a probabilistic one) that uses the above approach
of greedily collecting prime implicants can be forced to collect these additional prime
implicants. This forces the algorithm to take time exponential in the length of the target
formula, and even exponential in the more generous parameter, the degree of /.

3.3. The counterexample

We construct a formula with 2m + 1 variables V = { x 1 , . . . , x m , y 0 , y 1 , y 2 , . • • ,ym}-
The formula / constructed is defined by:

For notational convenience we denote the term in / containing yI as ti. Below we
prove some lemmas that characterize the set of prime implicants of /. These are used



ON THE LEARNABILITY OF DNF FORMULAS 191

later to argue that some natural DNF learning algorithms can be forced to find an ex-
ponential number of useless prime implicants of /: prime implicants that cover only an
exponentially small region of the distribution of positive examples.

LEMMA 1 Every term in f is a prime implicant of f.

Proof: Clearly every term in / is an implicant of /. Thus, it suffices to show that every
term in / is prime — no proper subset of a term is also an implicant.

To see that to = xix% ... xmyo is prime, notice that the assignment with all the y's set
to 0 and all the x's set to 1 is a negative example of the function; thus t0 - {y0} is not
an implicant of /. To see that no other proper subset of to is an implicant of /, notice
that the assignment with all the y's except yo set to 0 and only m - 1 of the x's set to
1 is a negative example of the function.

Similarly, to see that for every i between 1 and m - 1, the term ti = XiXi+\... xmyi
is prime, observe that

1. the assignment with all the y's set to 0 and all the x's except Xi set to 1 shows that
ti - {yi} is not an implicant of /,

2. the assignment with all the y's except yi set to 0 and all the x's set to 1 shows that
ti — {x i } is not an implicant of /, and

3. the assignment with all the y's except yi set to 0 and all the x's except x1 and Xj
(for some j between i + 1 and m) set to 1 shows that ti — {xj} is not an implicant
of f.

To complete the proof notice that the first two cases above also show that tm, the only
remaining term of /, is prime. D

LEMMA 2 Any sum of prime implicants logically equivalent to f must contain every
term in f.

Proof: For every term t in / we will construct an assignment a that satisfies t, but that
does not satisfy any other prime implicant of /. Thus, t must be in every sum of prime
implicants that expresses /.

For every term t in /, consider the assignment a that satisfies t and in which every
variable not in t is assigned 0 by a. Since for every other term t' in / - {t} there is a
variable y set to 0 by a, t is the only term in / satisfied by a.

To see that no other prime implicant of / is satisfied by a, observe that every other
prime implicant T of f must be produced by iterated consensus on some set of at least
two distinct terms {t^,^ ... ,t^} of /. Since no variable y appears negated in /, T
must contain every y that appears in t^ U tiz U ... U t^. Thus, T must contain at least
two distinct y's, and thus T will not be satisfied by a. D

Definition. Let Sm the set of terms given by Sm = {bib2 ... bmy0 : h = x^ or yi}.
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LEMMA 3 Every term in Sm is a prime implicant of f.

Proof: Let t be an element of Sm. First we argue, by induction on the number of y's
in t n { y 1 , y2, • • •, ym}, that t is an implicant of f.

Base case (\t n { y 1 , . . . ,ym}\ = 0): In this case t = x 1 . . . xmy0 is a term of /, and
thus by Lemma 1 t is a (prime) implicant.

Inductive step ( \ t < T \ { y 1 , . . . , ym}\ > 0): Supposed {y1, y2, -•• ,ym} = { y i l , y i 2 , • • y i j } ,
j > 1, and ij is the largest index in the set. Then by the inductive hypothesis the term
t' = (t — {yij}) U {x i j} (i.e. Xij replaces yij) is an implicant. To complete the inductive
step, notice that the consensus t = t'Qtij is an implicant of f — it is the consensus of
two implicants.

To complete the proof, we argue that every implicant t in Sm is also prime by showing
that the term t' formed by removing any single variable Vi from t is not an implicant of f.
First we show that no variable yj in t can be removed. The assignment a with all the xi's
except Xj set to 1, and with all the yj's except yj set to 1, satisfies this subset of t, but a
does not satisfy /: every term tl for 0 < l < j contains xl and thus will not be satisfied,
tj contains yj and will not be satisfied, and every term tl for j < l < m contains xl and
will not be satisfied. A similar argument shows that no variable Xj in t can be removed.

D

It follows immediately from Lemma 2 that / is the unique reduced DNF formula
expressing its function. Hence the degree of / equals |/|, which is m + 1. Further,
since \Sm = 2m, it follows by Lemma 3 that there are an exponential number of
additional prime implicants not in /. Notice that these prime implicants cannot appear
in any reduced DNF formula for f (because by Lemma 2 every term of / must be
included, rendering any additional prime implicants redundant). The central idea of our
counterexample is to force learn-DNF and similar algorithms to find these additional
prime implicants before finding the essential prime implicants in f. We first need the
following lemma.

LEMMA 4 Every prime implicant t of f not in Sm must contain a literal xi.

Proof: Let t be a prime implicant of f. We prove by induction on the minimum number
of consensus operations used to produce t from f that either

1. t e Sm, or

2. t contains at least one literal xi, and for every literal xi, in t the literal yi is also in t.

Base case: Suppose no consensus operations are used to produce t. Then t = to or
t 6 {t1,... ,tm}. In either case the inductive claim will be satisfied: if t = t0 e Sm,
then the first case of the inductive claim is satisfied, and if t = ti € { t 1 , . . . , tm}, then
the second case of the inductive claim is satisfied.
Inductive step: Suppose i consensus operations are used to produce t. Then t is produced
by the consensus of two implicants t' and t" such that each of t' and t" result from fewer
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than i consensus operations. Thus, by the inductive hypothesis, either both t' and t" are
in Sm, both t' and t" satisfy case 2 of the inductive claim, or one of t' and t" is in Sm

and the other satisfies case 2 of the inductive claim.
By assumption of this case, consensus must be possible between t' and t". However,

since the terms in Sm contain only positive variables, consensus is not possible between
any two terms from Sm. So t' and t" cannot both be in Sm,,

In the case where both t' and t" satisfy case 2 of the inductive claim, some literal
Xi must occur in t' and some literal Xj must occur in t". Further, since consensus is
possible between t' and t", there must be a choice of i and j such that i ^ j. Since the
consensus of two terms contains all but one literal from the union of the two terms, at
least one of xt or xj must appear in the resulting term t = t'Qt". Since no yi's occur
in /, all the yi's in t' Ut" must also appear in t, so for every literal xi in t the literal yi

is also in t.
To complete the inductive step, we consider the case where one of t' and t" is in

Sm and the other satisfies case 2 of the inductive claim. Without loss of generality,
assume that t' G Sm. By assumption of this case, consensus is possible between t' and
t". The case where yi e t' and yi e t" is not possible because no terms formed by
iterated consensus can include a negated y literal. Therefore, there must be a literal xi

in t' such that xi € t". Since t" satisfies condition 2 of the inductive claim, it must be
the case that t = t'Qt" = (f U t") - { x i , x i } contains the literal yi. Thus, t contains
(t' - {xi}) U {yi} (i.e., yi replaces xt), which is in Sm. Hence, either t is equal to
(t' - {xi}) U {yi ) and thus is in Sm , or else t properly contains (t' - {xi}) U {yi

(which by Lemma 3 is prime) and thus contradicts the assumption that t is prime.
n

3.4. Simple deterministic algorithms

Here we use the counterexample / to show that learn-DNF and certain simple variants
of learn-DNF are incapable of learning DNF in polynomial time. The simple variants
we consider are those identical to learn-DNF, but in lines 5-7 rather than testing and
eliminating the variables according to their standard ordering (which in this case we
assume to be x1 ,... ,xm, y0,, y1 ,... ,ym), they test and eliminate the variables using
some other fixed order. In the next section we consider a wider class of algorithms.

First we argue in Theorem 1 that, to achieve error less than e, learn-DNF must process
at least (1 - e)(£}^) examples. Since the length of / is linear in m it follows that the
algorithm requires exponential time. In Corollary 1 we extend the argument by analogy
to simple deterministic variants of learn-DNF.

Define the distribution of examples D to be uniform over the set A of assignments
a such that that a ( y 0 ) = a(x1) = a(x2 ) = ••• = a(xm) = 1 and for exactly half of
the other yi 's, a(yi) = 0. There are exactly (^2) assignments in A, and since they all
satisfy the term x1 . . . xmy0, they are all positive examples of /.

Our argument that learn-DNF requires exponential time relies on the fact that for every
assignment a in A, learn-DNF finds a prime implicant that covers only one assignment
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in A. This follows immediately from the following lemma about the prime implicants
found by learn-DNF.

LEMMA 5 Suppose f is the target formula and a e A is the assignment that learn-DNF
receives in line 2. Then in lines 5-7, learn-DNF finds the prime implicant b 1 . . . . bmyo in
Sm, where bi = yi if and only if a ( y i ) = 1.

Proof: Let a be an assignment in A. Let i be the term found in lines 5-7 of learn-DNF
(when a is received in line 2). Let Y1 = {yi : 0 < i < m A a(yi) = 1} and X0 = {xi :
1 < i < m A a ( y i ) = 0}. The lemma states that the algorithm rinds the prime implicant
X0 U Y1 (notice that y0 e Y1).

In line 4, t is initialized as an implicant of /. The variables are then sequentially
tested (in lines 5-7) and are removed from t only when the resulting term still implies
the formula. Thus, the final term, i, will be an implicant of /. Moreover, no unnecessary
variable will remain — so, t will be a prime implicant.

We complete the proof of this lemma by showing that t must contain X0 and Y1, and
thus must be the prime implicant X0UY1. Notice that i C literals(a). So, a must satisfy
i. Since a e A, a(x\) - • • • = a(xm) = 1. Thus, by Lemma 4, only prime implicants
in Sm are satisfied by a. It is straightforward to verify that of the prime implicants in
Sm, a satisfies only those of the form b1 . . . bmy0 in Sm, where bi = Xi if a ( y i ) = 0.
Consequently, i must contain X0.

Since the x variables are always tested before the y variables (in line 6), and since
X0U Y1 is an implicant of /, the algorithm will necessarily eliminate all of the x variables
that are not in X0 After testing the x variables in line 6, the resulting term t is implied
only by prime implicants that contain all the literals in Y1, So t must contain Y1.

D

THEOREM 1 learn-DNF must process (1 - e)2^m/2' examples of f from A to achieve
error less than e on f with respect to D.

Proof: Recall that A contains (^3) assignments, all of which are positive examples.
Thus to achieve error less than e with respect to D, learn-DNF must return a formula h
that covers at least (1 - e)(rT/2) assignments in A. By Lemma 5, the prime implicant
added to h due to example a is satisfied by only one assignment in A: the assignment a.
Thus to cover (1 -e) (^2) assignments in A, learn-DNF must process at least that many.

D

COROLLARY 1 Suppose Simple-Variant is a learning algorithm identical to the algo-
rithm learn-DNF, except in lines 4-6 rather than testing and eliminating the variables in
the order v 1 , . . . ,vn (the standard order), Simple-Variant tests and eliminates the vari-
ables in some other fixed order, g. Then there exists a function f and a distribution D'
such that Simple-Variant must process (1 — e)(nTJ2) examples of f from D' to achieve
error less than e on f with respect to D'.

Proof: We define the function /' and the distribution of assignments D' to be the same
as / and D except with variables (x 1 , . . . , xm, y0, • • •, ym) replaced respectively with
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the same variables, but reordered according to g. Notice that the behavior of learn-DNF
learning /' using the ordering g is the same as the behavior of learn-DNF learning /
using the original ordering. The corollary now follows from Theorem 1. D

The distribution D is surprising in that it generates only positive examples and hence
a minor modification of learn-DNF could learn this distribution by simply hypothesizing
"true". However, a simple modification of D could defeat the new algorithm. Yet,
there are numerous other ways that learn-DNF might be modified to learn the particular
distribution D. For example, the order of testing variables in line 5 can be modified so
that Lemma 5 no longer holds. In this case alternative distributions (variants of D) can
be constructed to defeat each of the new algorithms. In fact, in the following section
we show that distributions exist to defeat even a probabilistic ordering of the variables.
The arguments we give, however, do not intend to show that no algorithm can learn
DNF in polynomial time; rather we argue only that no algorithm using the same general
approach of learn-DNF (i.e., greedily collecting the prime implicants) can learn DNF in
polynomial time.

3.5. A wider class of algorithms

Our argument to defeat the previous algorithms took advantage of the fact that those
algorithms eliminated the variables in a fixed order. Typically randomized algorithms
are used to defeat worst-case scenarios such as this. The question arises whether a variant
of learn-DNF that finds prime implicants by eliminating the variables in a random order
could avoid the worst-case problem of finding useless prime implicants, and perhaps
even learn the general class of arbitrary DNF formulas.

Here we show that this is not the case. We consider a wider class of algorithms
where the order is not fixed, but is any probabilistic function of the current example. In
particular, we model a probabilistic choice of ordering by a deterministic function g that
takes as input a positive example a and a random string r (which has length at most
p(n) for some polynomial p), and outputs a permutation g(a, r) of the variables. For
any such g, the algorithm learn-DNFg (shown in Figure 3) is the same as the algorithm
learn-DNF, but replaces the ordering v1 , . . . , vn with a random ordering g(a, r).

The argument to defeat such a randomized algorithm is similar to the deterministic
case: now rather than constructing a counterexample / to defeat a fixed ordering, we
define a distribution of functions DF and argue that with high probability a function
randomly chosen from DF will defeat the algorithm, and now rather than arguing that
every prime implicant found is satisfied by only one example in A, we argue that with
high probability every prime implicant found is satisfied by only a small fraction of the
relevant set of assignments.

3.5.1. Definitions

Suppose V is the set of n variables { v 1 , . . . ,vn}. An ordering function g (with respect
to V) is a function that maps every assignment a and random string r (a string from
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learn-DNFg

1. h<-0
2. a <— a randomly generated labeled example
3. IF label(a) = 1 THEN

(* If a is a positive example then reduce a to a minimal positive assignment. *)
4. t <— literals(a)
5. CHOOSE a random bit string r of length p(n)
6. Sequentially, for every v in g(a,r)
7. IF SUBSET(t - {v, v}) = true THEN
8. t<-t-{v,v}
9. h ^ h U { t }
10. GOTO 2

Figure 3. Algorithm learn-DNFg

{0, !}P(n) for some polynomial p) to an ordering a of the n variables in V. Let £ =
{learn-DNFg : g is an ordering function and learn-DNFg is the algorithm shown in
Figure 3.}.

A variable-permutation T: of the set of variables V = { x 1 , . . . , xm, y0,..., ym }is a
one-to-one mapping of the variables { x 1 , . . . , xm, yo,.. .,ym} onto itself. If t is a term,
then r(t) denotes the term obtained by replacing every variable v in t with the variable
T(V). If / is a set of terms, then t ( f ) denotes the set of terms obtained by replacing

every term in / with the term T(£). A variable-permutation T of V is a "swapping"
variable-permutation if for every i between 1 and m, n(xi) = xi or yi and r(yi) = yi,
or Xi. We define the set of formulas F = { T ( f ) : T is a swapping variable-permutation
of V} and the distribution DF of formulas as uniform over the set of formulas in F.

We also define the distribution of assignments Dft as uniform on the set Av of as-
signments av such that a ( r ( y 0 ) ) = a ( r ( x 1 ) ) = a(7r(x2)) = .. .a(n(xm)) = 1, and for
exactly half of the other yi's, a( t (y i ) ) = 0. There are (^l/2) such assignments, and
since they all satisfy the term T ( X 1 ... xmyo), they are all positive examples of T ( f ) .

3.5.2. The argument

Consider the case where the target formula T ( f ) is randomly chosen from the distribution
Dp, and the assignments are randomly chosen from the distribution Dv(f). We show
that every learning algorithm learn-DNFg in £ is incapable of PAC-learning DNF in
polynomial time by arguing that for any polynomial < p ( \ V \ , \ f \ , l / e , I / 6 ) , and any 6
and c, with probability at least 6, learn-DNFg requires more than (p(\V\,\f\,l/t,l/6)
examples to achieve error less than e on r(f).
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First we establish in Lemma 6 that the probability that learn-DNFg reduces an example
a to a useful prime implicant (a prime implicant which covers more than an exponentially
small fraction of the assignments in Aw) is very small. From this we prove (Corollary 2)
that after processing a polynomial number of assignments there is only a very small
probability that learn-DNFs will have found a useful prime implicant. This is used to
prove Theorem 2.

LEMMA 6 Suppose g is an ordering function, the target formula T ( f ) is randomly
chosen from the distribution DF , and in line 2 of learn-DNFg the assignment a is
randomly chosen from the distribution Ar(f)- Then the probability that lines 6-8 of
learn-DNFg find a prime implicant that contains fewer than m/8 variables z such that
z €{t(y1), r(y2),. • •, t ( y m ) } is at most e-m/32.

Proof: Let I = {i : a(yi) = a ( x i ) = 1} (i.e. the set of indices i such that xi and
j/i are both set to 1). Using an argument analogous to that used to prove Lemma 5,
it is straightforward to show that lines 6-8 of learn-DNF9 find a prime implicant r =
y 0 b 1 . . . bm in { r ( t ) : t e Sm}, where bi = yi if and only if i e I and Xi appears before
yi in g(a, r). Thus, the probability that T contains fewer than m/8 variables z such that
z e {7r(yi),7r(j/2)i • • • i ( y m ) } is the probability that for fewer than m/8 indices i in /,
T ( x i ) appears before n(yi) in g(a,r).

Consider some integer i in I. We will show that the probability that i(xi) ap-
pears before n(yi) in g(a,r) is 1/2 by considering the distribution of possible variable-
permutations. It is clear that for a swapping variable-permutation K, xi occurring before
yicorresponds to ir(xi) appearing before r(yi,), exactly when 7r(x i) = xi. Further, it is
also clear that there are the same number of swapping variable permutations T such that
r ( x i ) = xi as there are swapping variable permutations T' such that T ' ( x i ) = yi. Thus,

since the swapping variable-permutations are randomly chosen from the uniform distri-
bution, there is an equal chance that a particular order of elimination g(a, r) corresponds
to a T ( x i ) being removed before a T(yi) as vice-versa. Similarly, if j e I-{i}, then the
event that T ( x j ) is eliminated before T ( y j ) also has probability 1/2 and is independent
from the event that r(xi) is eliminated before r ( y i ) .

To complete the proof of this lemma, we bound the probability q that for fewer than
m/8 indices i in /, r ( x i ) is eliminated before T ( y i ) . This is the probability that for
m/2 independent trials, each with probability of success equal to 1/2, there are fewer
than m/8 successes. It follows, using Chernoff bounds (see Angluin & Valiant, 1979,
Proposition 2.4(a)), that q < e"'3 m/8 where 3 is the fraction that the outcome deviates
from the expected. Since the expected number of successes is m/4, B = (m/8)/(m/4).
Thus, q < e-W<)(m/8) = e~m/32 n

COROLLARY 2 Suppose g is an ordering function, the target formula T(/) is randomly
chosen from the distribution Dp, (p(\V\, |/|, 1/e, 1/6) is a polynomial, M is a set of
<p(\V\, |/|, 1/c, 1/8) assignments randomly chosen from J X ( f ) . a n d the learning algo-
rithm learn-DNFg e C. Then the probability that some assignment a € M will result in a
prime implicant T being found in lines 6-8 of the algorithm such that T contains fewer than
m/8 variables z in { r ( y 1 ) , K ( y 2 ) , . . . , K ( y m ) } w at most ip(\V\, |/|, 1/e, l/6)e~m/32.
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Proof: By Lemma 6 the probability that any particular assignment in M results in a
prime implicant being found that satisfies the constraints of this lemma is at most e~m/32.
Since each assignment in M is chosen independently from Dr( / )> the probability of any
one resulting in a prime implicant satisfying the conditions of this lemma is at most
V.(|K|,|/|,l/c,l/fi)e-'»/32. D

THEOREM 2 There does not exist an algorithm learn-DNFg in L, that can PAC-learn
DNF in time polynomial in the length of the target formula, or even in the degree of the
target formula.

Proof: Suppose contrary to this theorem that some algorithm fearn-DNFg in £ learns
DNF in time <p(|V|, |/|, 1/e, 1/5), and let T T ( f ) be a formula randomly chosen from the
distribution DF. By Corollary 2, with probability at least 1 -<?(|V|, |/|. 1 A, l/<5)e~m/32

every prime implicant found by learn-DNFg has at least m/8 variables z such that
z 6 {TT(J/I), 7r(ya), ••••> f(ym)}- Since |V| = 2m + 1 and |/| = m + 1, this probability
can be rewritten as 1 - y(2m + 1, m + 1,1/e, l/6)e~m/32. Clearly for any 6 < 1 there
exists an m' such that for any m > m', l-<p(2m4-l,m+l, 1/e, l/<5)e~m/32 > 5. Thus
for sufficiently large m, with probability greater than S, every prime implicant found by
the algorithm has at least m/8 variables z such that z e {Tr(yi), ̂ (y^),..., ^(ym)}- The
number of assignments of A^ that satisfy such a prime implicant is at most

As in the proof of Theorem 1, to achieve error at most e with respect to D, learn-DNFp

must return a formula h that covers at least (1 - e)\Av\ assignments in D. Thus, with
probability greater than S, the algorithm requires at least (1 - e)|/l,r|/((7/8)m/'2|A,r|) =
(1 — e)(8/7)(m/2} examples to have error at most e. Thus learn-DNFg requires time
exponential in |/| = m + 1. Furthermore, by Lemma 2, the degree of / is equal to
|f|, so learn-DNFs also requires time exponential in the degree of /. Finally note that
not only does learn-DNFs fail to PAC-learn some particular function /, but with high
probability it fails to learn a randomly chosen one. D

3.6. Discussion

We have shown that in the PAC model the natural approach to learn DNF by collecting
prime implicants is bound to fail. Similar constructions show that this approach is
also bound to fail in the exact learning model (introduced by Angluin, 1988). Our
counterexamples, however, do not show that DNF is not learnable. Note that the class
F of hard to learn counterexamples is easily learnable by an algorithm that first looks at
a collection of examples to determine an appropriate ordering function, and then reduces
the examples using this ordering. This suggests that learning DNF requires a more global
approach, such as an Occam algorithm (see Blumer et al., 1987), which first collects a
large sample of examples and then tries to find a small formula consistent with them.
The general polynomial time learning of DNF, thus, remains a central open problem.
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It also still remains open whether DNF is learnable in time polynomial in its degree,
and it remains open whether the degree of a DNF formula is polynomial in its small-
est DNF representation — perhaps this is true only for DNF formulas whose smallest
representation is polynomial in the number of variables n. These learning problems are
open even if we allow the algorithm to ask subset or membership queries (in addition to
randomly generated labeled examples).

Initially we observed a slightly simpler version of this counterexample (x\ • • xm +
£ij/H Hxmj/m), which has many of the same properties as the formula discussed here,
but which defeats only those algorithms in £ having a constant ordering function. This
has proved to be a useful counterexample to various algorithms suggested by colleagues.
Our counterexamples seem to capture much of what makes DNF hard to learn. They
suggest that learning DNF, according to the standard definitions, may be even harder than
previously thought. In the following section we consider some alternative definitions for
which DNF is learnable.

4. Learning most DNF formulas

According to the standard PAC and exact learning models, for an algorithm to learn a
class of formulas, such as DNF, the algorithm must be capable of learning any particular
formula from the class. Thus, as was done in the previous section, one can show that
the class of DNF formulas is difficult to learn by describing a particular DNF formula,
or a set of DNF formulas, that is difficult to learn. Similarly, previous results supporting
the conjecture that DNF is not learnable, also relied on the construction of particular
hard-to-learn formulas. These hard-to-learn formulas seem to be somewhat contrived
and not representative of most DNF formulas. In this section we consider modifying
the standard exact learning model and we ask about learning most, rather than all, DNF
formulas.

What does it mean to learn most DNF formulas? One natural definition is to consider
the set Fn of all well-formed DNF expressions over some set of n variables, and ask
whether all but an exponentially small fraction of the formulas in Fn are learnable.
According to this definition, almost all of the formulas in Fn have an exponential (in n)
number of terms. Since the learning algorithm is allowed time polynomial in the size of
the target formula, it will now be allowed time exponential in n. This makes learning
essentially trivial: a simple, brute force equivalence query learning algorithm (discussed
in Section 4.2) can learn DNF in time polynomial in 2".

The problem with the above definition is that it allows the algorithm to ignore the
DNF formulas we are most interested in learning, DNF formulas whose number of
terms is a polynomial in n. One way to avoid this problem is to parameterize on the
number of terms, and ask about learning most DNF formulas with a bounded number
of terms. As before, by most formulas we mean all but an exponentially small fraction:
most formulas in a distribution of formulas Fn have a property if the probability that
a formula / randomly chosen from Fn does not have the property is at most l/2n'n\
Here we consider this alternate model, and we answer the question affirmatively. In
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Section 4.4 we present a membership and equivalence query algorithm for learning most
DNF formulas within this model, and we prove:

THEOREM 3 There exists a polynomial (p(n, s) such that if n and s are positive integers,
and X = { x 1 , . . . ,xn} is a set of variables, then for most DNF formulas with at most
s terms, learn-most-DNF (Figure 6) finds an equivalent DNF formula in <^(n, s) time.

This model, however, also has a limitation. Our proof of Theorem 3 relies on the
observation that essentially all terms have f(n) variables. Using this observation we
show that most formulas have a special property (they are distance-2), and are thus
exactly learnable in polynomial time. In our model most terms have Q(n) variables
since we randomly construct each term by flipping a coin to decide for every variable
v whether it is in that term, and then flipping a coin to decide whether to include the
literal v or the literal v.

The observation that most terms have fi(n) variables can also be used to show that for
any fixed distribution, with high probability (over choices of DNF formulas, made after
the distribution is chosen), the hypothesis "false" will be accurate — since with high
probability, most terms in the DNF formulas will have size f(n) and thus each DNF
will be satisfied by only few positive examples.

These observations suggest a more general definition for most DNF formulas that
parameterizes on the probability p that a particular variable is in the term. Thus, whereas
our model considers learning only formulas where p is set to 1/2, this new model
considers learning for arbitrary values of p; it asks whether for arbitrary values of p
(and s) most DNF formulas are learnable. This seems to more completely capture the
question about learning most DNF formulas; unlike the other models it does not take
undue advantage of the fact that most formulas are large or that most terms are long.
We do not, however, have a complete answer to this question. Instead we point out (in
Section 4.5) some values of p for which most DNF formulas are learnable.

The remainder of this section is organized as follows. First, we introduce some def-
initions and prove two key properties about certain DNF formulas (Section 4.1). Next
(Section 4.2) we present an algorithm, learn-large-DNF, for learning DNF formulas that
have an exponential number of terms. The algorithm learn-large-DNF exactly learns all
DNF formulas / in O(22nn) time (Theorem 4). Thus it learns, in polynomial time, DNF
formulas with an exponential (in n) number of terms. A different learning algorithm,
learn-distance-2-DNF, is presented in Section 4.3. This algorithm, suggested by Angluin
(1990), learns in polynomial time a special case of disjoint DNF (distance-2 DNF). Since
most not-so-large DNF formulas are distance-2 (Theorem 5), it follows that most not-so-
large DNF formulas are polynomial time learnable. The algorithms learn-large-DNF and
learn-distance-2-DNF are combined to form a general DNF learning algorithm, learn-
most-DNF, which is presented in Section 4.4. We then use the results of Sections 4
and 4.3 to prove Theorem 3. In Section 4.5 we conclude by discussing some limitations
and implications of this result.
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4.1. Some definitions and properties

Denote assignment a with literal x fixed to 0 as ax_o- Throughout, ax)_o will represent
a with the truth value of x flipped, since we will write "ax_0" only when a assigns x
to 1. The sensitive set (of literals for a) is defined by sensitive(a) — {x : a(x) = 1 and
/(a) ^ f(ax*-0)}, thus flipping the value of any x in sensitive(a) causes / to change
values. Observe that the sensitive set of an assignment can be found by asking n + 1
membership queries: With one membership query we find the value of f(a) and then
with n additional membership queries we ask for each literal x assigned 1 by a (i.e.,
literals(d)), whether changing the value assigned to x causes the value of the function
to change.

Let X — {x i , . . . ,xn} denote a set of variables. Define Tn as the set of terms over
X. For every subset of the variables X' C X, Tn contains each of the 21*'1 terms
composed of the variables in X' (e.g., 110:2, x1x2 , x1x2 , and x\x^ are the four terms
composed of variables in X' = {x1 ,x2}). As mentioned in Section 2, we sometimes
treat a term t as a set of literals; thus \t\ denotes the number of literals in t.

For every positive integer n, we define the distribution of terms D(Tn). A term t is
randomly chosen from D(Tn) by randomly choosing (with probability 1/2), for every
variable Vi, whether v^ is in t. If Vi is chosen to be in t, then whether the variable
v appears as the literal v or as the literal v is also decided randomly, with probability
1/2. Thus, if t is randomly chosen from D(Tn), then the probability that some literal /
appears in t is 1/4. This seems to be a fairly natural distribution of terms; it is the one
we will consider throughout most of this section. However, as pointed out previously, a
preponderance of the terms in Tn have fi(n) literals; thus this distribution allows us to
essentially ignore terms with fewer literals. In Section 4.5 we consider other distributions
that do not have this limitation: we consider a different distribution for every probability
p that a variable occurs in a term.

For every positive integer s, we form the distribution of formulas formulasng. A
formula / is chosen from formulasns by randomly choosing (with replacement) s terms
from D(Tn).

Let t and t' be terms. We define distance(t, t') to be the number of distinct variables
xi,...,Xk such that for each i, x, appears in one of t and t', and Xi appears in the
other. A DNF formula / is distance-};, if for every pair of distinct terms t and t' in /,
distance(t,t') > k. Notice that the class of distance-1 DNF formulas is the same as the
class of disjoint DNF formulas.

PROPOSITION 1 If f is any DNF formula and a is an assignment such that f(a) = 1,
then sensitive(a) C n{t: t(a) = I}.

Proof: Suppose to the contrary that, for some literal x in sensitive(a), there exists
a term t satisfied by a such that x is not in t. Then t would also be satisfied by
axt-o, which implies that /(ax_o) = 1, and which thus contradicts the assumption that
x € sensitive(a). D
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learn-large-DNF

1. #^0
2. LOOP until Equivalence-Query(-H) returns true

Let a be the (positive) counterexample returned by Equivalence-Query(H)
3. t <— literals(a)
4. H <- H U {t}
5. CONTINUE

Figure 4. Algorithm learn-large-DNF

PROPOSITION 2 Suppose f is a distance-2 DNF formula over the set of variables
X and a is a positive example of f. Then a satisfies exactly one term t of /, and
sensitive(a) = t.

Proof: Since / is a distance-2 DNF formula no two terms can be satisfied by the same
assignment. Thus, the assignment a satisfies exactly one term t of /. Furthermore, by
Proposition 1, sensitive(a) C t. To see that sensitive(a) = t, consider why some literal x
in t might not be in sensitive(a}. This can happen only if when we flip the value assigned
to x by a the value of the function does not become 0 (i.e., f(ax^o) = /(a) = 1). Clearly
t is no longer satisfied when we flip x (since x e t), so some other term t' ^ t must be
satisfied by ax*_0- But then distance(t,t') < 1, which contradicts the assumption that /
is a distance-2 DNF formula. D

4.2. Very large DNF formulas are learnable

In Figure 4, we present an algorithm learn-large-DNF, which (as argued in Theorem 4)
learns DNF formulas in 22nn time. This algorithm is later used as a routine by our algo-
rithm learn-most-DNF; it is used for learning, in polynomial time, those DNF formulas
that have more than 2n/64 terms.

THEOREM 4 If f is a DNF formula over the set of variables X — {x1 ,..., xn}, then
learn-large-DNF will find an equivalent DNF formula in O(22nn) time.

Proof: In each iteration the algorithm simply memorizes a new positive example (of
which there are at most 2") as an individual term. Hence there are at most 2n iterations.
Each iteration takes time O(n) plus the time to make an equivalence query, which may
vary from O(n) to O(2nn), depending on the computational model. D
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learn-distance-2-DNF

1. H-0

2. LOOP until Equivalence-Query(H) returns true
Let a be the (positive) counterexample returned by Equivalence-Query(H)

3. H <- H U {sensitive(a)}.
4. CONTINUE

Figure 5. Algorithm learn-distance-2-DNF

4.3. Most of the remaining DNF formulas are learnable

In Section 4.2 we presented an algorithm, learn-large-DNF, which learns DNF formulas
in time polynomial in 2n. Thus, for DNF formulas that have an exponential (in n) number
of terms, learn-large-DNF runs in time polynomial in the size of the target formula (one
of the standard learning parameters). Here we show that most of the remaining DNF
formulas can also be learned in polynomial time. We first show that distance-2 DNF
formulas are learnable in polynomial time (Theorem 5), and then we argue that most of
the remaining DNF formulas are distance-2 (Theorem 6 and Corollary 3).

THEOREM 5 If f is a distance-2 DNF formula over the set of variables X, then learn-
distance-2-DNF (see Figure 5) will find an equivalent DNF formula in time O(\f\2n).

Proof: As with algorithm learn-large-DNF, learn-distance-2-DNF continues running until
an equivalent DNF formula is hypothesized in line 2, so if it halts, then it is correct.
We bound the number of iterations of the main loop. Notice that the only terms ever
in H are those added in line 4 (when a is a positive example). By Proposition 2 these
must be terms from /. Thus H always contains a subset of the terms in /. So in every
iteration of the main loop the counterexample a must be a positive counterexample —
the assignment a satisfies a term t that is in /, but that is not in H.

Furthermore, by Proposition 2 the term sensitive(a), which is added to H in line 3,
is exactly the single term of / satisfied by a. Thus after at most |/| iterations of the
main loop, H will contain every term of /, and the subsequent equivalence query will
return true. The theorem follows from the observation that the sensitive set operation
requires time O(n), and thus every iteration of the main loop requires time 0(n|f|).

D
To prove Theorem 6 (that most DNF formulas with a bounded number of terms are

distance-2) we need the following claims. In Claim 1 we use Chernoff bounds to establish
that a preponderance of the terms in Tn have at least n/4 literals. Claim 1 is used in the
proof of Claim 2 to bound the probability that two terms, randomly (and independently)
chosen from D(Tn) have distance less than 2. The proof of Theorem 6 then follows.
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CLAIM 1 Let n be a positive integer, and t be a term randomly chosen from D(Tn).
Then the probability that \t\ < n/4 is at most e~n/16.

Proof: Suppose the term t is randomly chosen from the distribution D(Tn). We bound
the probability q that t contains fewer than n/4 literals. This is the probability that for
n independent trials (one for each of the n variables), each with probability of success
equal to 1/2, there are fewer than n/4 successes. It follows, using Chernoff bounds
(Angluin & Valiant, 1979, Proposition 2.4(a)), that q < e^2"/4 where /3 is the fraction
that the outcome deviates from the expected. In this case, /3 = (n/4)/(n/2). So
q < e-(l/4)(n/4) = e-n/16 n

CLAIM 2 Suppose n is a positive integer, and t and t' are two terms randomly (and
independently) chosen from D(Tn). Then the probability that distance(t,t') < 2 is at
mo5/2(e-"/16)+n(3/4)"/4-1.

Proof: First consider the case where both \t\ and \t'\ are at least n/4. Since t and t' were
chosen independently, for every variable x the conditional probability Pr(x e t'\x 6 t)
is at least 1/2 (it is not exactly 1/2 since we are considering only terms with more than
n/4 literals). Likewise, for every literal x the conditional probability Pr(x e t'\x & t)
is at least 1/4. Thus, the probability that for some set 5 of \t\ - 1 literals in t no literal
in 5 appears negated in t' is at most (3/4)t'"1. Hence, the probability that there exists
a set of \t\ - 1 such literals in t is at most |t|(3/4)lt^1 < n(3/4)n/4-1.

To complete the proof of this claim, we show that the probability that the above case
does not occur is at most 2e~n/16. Notice that the only remaining case is when at least
one of t and t' has length less than n/4. It follows from Claim 1 that the probability
that this happens is at most 2e~n/16. D

THEOREM 6 Suppose n and s are positive integers, and the formula f is randomly
chosen from formulasns. Then the probability that f is not distance-2 is at most
s2[2(e-"/16) + n(3/4)"/4-1].

Proof: Since each term in / is chosen randomly (with replacement) from D(Tn), we
can apply Claim 2 to bound the probability that any of the at most s2 pairs of terms
in / fail to be distance-2. Hence, the probability that / is not distance-2 is at most
s2[2(e"n/16) + n(3/4)n/4-1]. D

COROLLARY 3 Suppose n > 64 and s < 2n/64 are both positive integers, and the
formula f is randomly chosen from formulasn s. Then the probability that f is not
distance-2 is at most n2~("/32~"2).

Proof: The probability that / is not distance-2 satisfies the following bounds:
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4.4. The algorithm and proof of its correctness

Figure 6 gives the algorithm learn-most-DNF for learning most DNF formulas. To prove
Theorem 3, we exhibit a polynomial y>(n, s) such that for every s, most of the formulas f
in formulasns will be found by learn-most-DNF in p(n,s) time. First consider the case
where s < 2n/64. By Corollary 3 most of the formulas in formulasn ,s are distance-2;
thus by Theorem 5 these are learnable in time |f|2n. Since (for sufficiently large n)
22n > (2n/64)2n > |f|2n, it follows that most of the formulas in formulasn, s will be
learned in line 1 of learn-most-DNF in polynomial time.

Next we consider the case where s > 2n/64. It is straightforward to show that most
formulas in fn ,s contain at least 2n/128 variable occurrences. From Theorem 4 it follows
that if the algorithm has not learned the target formula in line 1 of learn-most-DNF, then
it must learn the formula in line 2. To complete the proof of the second case, and thus the
theorem, notice that the run-time of learn-most-DNF is bounded by the run-time of line 1
+ the run-time of line 2 = 0(|f|2n) + O(22nn), which is polynomial in |f| > 2n/128.

D

learn-most-DNF

1. Run learn-distance-2-DNF for at most 22n iterations or
until the equivalence-query returns true.

2. If an equivalent DNF formula was not found in line 1,
then run learn-large-DNF until an equivalent DNF formula is found.

Figure 6. Algorithm learn-most-DNF

4.5. Limitations and implications of this result

As mentioned earlier, this result is limited in that the distribution of formulas we consider,
formulas ,n ,s contains a preponderance of formulas whose terms all have size f (n) ;
formulas that contain terms of size o(n) are essentially ignored. One way around this
limitation is to consider instead, distributions that focus on a different average term size,
and then ask whether, with respect to each of those distributions, most DNF formulas
are learnable.

We construct these different distributions by parameterizing based on the probability p
that a particular variable occurs in a term. Thus, rather than resulting in an average term
size of n/2 (as was the case with D(Tn)), we now have an average term size of np.
For every probability p, we form the distribution of terms termsn#. A term t is chosen
from termsn,p by independently choosing, with probability p, for every variable x in X,
whether x 6 t. As before, if the variable x is chosen to be in t, then we randomly
choose (with probability 1/2) whether x or x e t. For every positive integer s, we form



206 AIZENSTEIN AND PITT

the distribution formulasn,s ,p of formulas as before, but now we choose from termsn,p'

rather than from D(Tn}.
It remains open whether a general theorem, analogous to Theorem 3, holds for this

new model. To prove such a theorem one would need to show that there exists a poly-
nomial time algorithm that learns most of the DNF formulas in each of the distributions
formulasn,s ,p. In Theorem 3 we only showed that this holds when we parameterize on
n and s but leave p fixed at 1/2. It is straightforward to generalize our theorem for any
constant probability p (in this case the algorithm is allowed time exponential in 1 /p ) .
Thus when the average term size is a constant fraction of n (i.e., np) most DNF formulas
are learnable.

Similarly, if we allow p to be any constant ratio of n (i.e., if for some constant c,
p = c /n) , then polynomial time learning is also possible. In fact, in this case we
can exactly learn in polynomial time with equivalence queries alone, without using
membership queries. This is possible because when p = c/n the average term size
is a constant, n(c/n) = c, and a polynomial time algorithm has been given, by Valiant
(1984), for learning the class of k-DNF (DNF formulas in which the term size is bounded
by the constant k).

Thus learning most DNF formulas is possible when the average term size is at most
a constant, or at least a constant fraction of n. It remains open, however, whether most
DNF formulas are learnable when the average term size is asymptotically larger than
a constant, yet smaller than a constant fraction of n (i.e., when p is chosen such that
w(l) <np< o(n}).
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Notes

1. If instead we slightly modify the definition of degree to be the length of the largest reduced DNF expression
that implies the target formula (an alternative definition suggested by Valiant, 1993), then it remains open
whether Valiant's conjecture holds. However, it is straightforward to show that the conjecture holds if
degree is defined to be the length of the sum of all the prime implicants implied by the unknown formula.
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