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Abstract. In this paper we consider the problem of tracking a subset of a domain (called the
target) which changes gradually over time. A single (unknown) probability distribution over the
domain is used to generate random examples for the learning algorithm and measure the speed
at which the target changes. Clearly, the more rapidly the target moves, the harder it is for
the algorithm to maintain a good approximation of the target. Therefore we evaluate algorithms
based on how much movement of the target can be tolerated between examples while predicting
with accuracy (.. Furthermore, the complexity of the class H of possible targets, as measured by
d, its VC-dimension, also effects the difficulty of tracking the target concept. We show that if
the problem of minimizing the number of disagreements with a sample from among concepts in a
class H can be approximated to within a factor k, then there is a simple tracking algorithm for
H which can achieve a probability f of making a mistake if the target movement rate is at most
a constant times e2/(k(d + k) In j), where d is the Vapnik-Chervonenkis dimension of H. Also,
we show that if H is properly PAC-learnable, then there is an efficient (randomized) algorithm
that with high probability approximately minimizes disagreements to within a factor of 7d + 1,
yielding an efficient tracking algorithm for H which tolerates drift rates up to a constant times
e2/(d2 In i). In addition, we prove complementary results for the classes of halfspaces and axis-
aligned hyperrectangles showing that the maximum rate of drift that any algorithm (even with
unlimited computational power) can tolerate is a constant times f2/d.

Keywords: Computational learning theory, concept drift, concept learning

1, Introduction

In the fairy tale, Rip van Winkle slept for 20 years and when he finally woke up,
he discovered that he was out of step with the world. Presumably, Rip would have
been much better off if he woke up every day. However, if he woke for only one day
each week or month or year how comfortable would Rip be with the world after his
20 year slumber? This leads to the question "How long can one nap before losing
touch with the world?" which is the subject of this paper.

More formally, let D be a probability distribution on some set X and H be a
class of {0, l}-valued functions defined on X. In the sleeper example, each h € H
represents a possible state of the world. When Rip van Winkle wakes for the rth

time, the world is in some state ht €H. Rip gets xt, a randomly drawn (w.r.t. D)
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element of X, and is asked for the value of ht(xt). One interpretation is that xt is
a possible course of action, and ht(xt) = 1 when xt is appropriate in the current
world state. Just before Rip goes back to sleep, he is told the value of ht(xt).

In other words, given ( x 1 , h 1 ( x 1 ) ) , ( x 2 h 2 ( x 2 ) ) , . . . , (x t - 1 ,h t - 1(x t - 1)) , and a
point Xt, Rip is asked to predict the value of h t ( x t ) . If Rip's prediction is incorrect
we say that he makes a mistake on Xt. If Rip rarely makes mistakes, then he
successfully tracks the state of the world. In our model, an adversary chooses the
probability distribution D and the sequence of functions ahead of time, before the
Xi's are generated.

The sequence of examples could be uninformative for two different reasons. First,
x1 through xt-i may come from an uninteresting part of the domain. Any learning
algorithm using randomly drawn examples must deal with this potential difficulty.
A more severe problem is that the ht chosen by the adversary may be unrelated to
the previous h i 's. If the adversary randomly chooses ht to be either the constant
function 1 or the constant function 0, then no algorithm can expect to predict h t ( x t )
correctly more than half the time. We deal with this problem with an assumption
that the state of world evolves slowly. Thus the adversary must choose sequences
of functions where each hi is "close" to hi-1. This is made precise in Section 2.

Many readers will notice the similarity of our model to the prediction model
studied by Haussler, Littlestone and Warmuth (1988, 1990) and others. The key
difference is that in our model there is no single target function, but rather a
succession of related target functions. Since the learner may receive only a single
example before the target changes, it is unreasonable to expect that the hypotheses
converge to a target. However, it is possible to bound the probability of a mistake
on a trial in terms of how much the target is allowed to change between trials and
the complexity of H.

Our results include:

• a general-purpose algorithm which tolerates target movement rates up to
C1e2 /(dln^) (Theorem 1 and Corollary 3), and

• a possibly more computationally efficient variant of this algorithm which toler-
ates target movements of up to c 2 e 2 / (d 2 In |) (Theorem 5),

• bounds for the classes of axis-aligned halfspaces and hyperrectangles showing
that for all n and e < 1/12, no algorithm can tolerate target movement greater
than C3C2/n, where n is the dimension of the space from which examples are
drawn (Theorem 12).1

In the above, the Ci's are constants, e denotes the desired probability of error, and
d is the VC-dimension of H. The first general-purpose algorithm above is computa-
tionally efficient whenever the problem of finding a member of H which minimizes
the number of disagreements with a set of examples can be solved efficiently. Its
variant is computationally efficient whenever the problem of finding an element of
H consistent with a set of examples can be solved efficiently, as is the case with
both halfspaces and hyperrectangles.
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Our algorithms use only the most recent t examples (rather than the entire se-
quence) to make their predictions. They work by either minimizing or approxi-
mately minimizing the number of disagreements with the most recent examples,
and using the resulting hypothesis to predict the label of the next point. To ana-
lyze such algorithms, one might imagine applying the results of Vapnik and Cher-
vonenkis (1971) to show that if for each hypothesis h in the class, we estimate the
probability that h will make a mistake on the next trial by considering the fraction
of the last t trials on which h made a mistake, none of these estimates will be very
far from the true estimated probabilities. The movement of the target prevents us
from simply applying their results. To remedy this, we first bound the probability
that for any hypothesis h, the estimate we obtain is very far from the estimate we
would have obtained, had the target not been moving. Then we are ready to apply
uniform convergence results.

If we now apply the results of Vapnik and Chervonenkis, however, our analysis
indicates that these algorithms are more than a factor of e from the best upper
bounds we can prove on the maximum tolerable rate of drift. In the case of learning
stationary targets, it was observed by Blumer, Ehrenfeucht, Haussler and Warmuth
(1989) that uniformly good estimates of the quality of hypotheses were not required
for learning in Valiant's (1984) PAC-model. Instead, one only needed to bound the
probability that an "e-bad" hypothesis was consistent with a sequence of examples.
They were then able to shave a factor of 1/e off the bound on the number of
examples required for learning with accuracy e obtained by simply applying the
results of Vapnik and Chervonenkis (1971). However, in our case, there may not
be any hypothesis consistent with more than a few of the most recent examples.
Nevertheless, given reasonable restrictions on the rate of drift there is, with high
probability, some hypothesis having very few disagreements with a reasonable sized
suffix of a random sequence of examples. Thus, we are able to apply another of
the results of Blumer, et al (1989), which bounds the probability that any e-bad
hypothesis is consistent with all but a fraction e/2 of the examples. The number
of examples required to bound this "e-bad but highly consistent" probability by
6 is within a constant of that for the completely consistent case. Thus, ignoring
constants, the factor of 1/e savings is retained, reducing our tracking bounds by a
factor of 6.

The result of this analysis is a simple "minimize disagreements" algorithm which
is within a log factor of optimal for halfspaces and hyperrectangles. A slightly mod-
ified analysis holds for the case in which the tracking algorithm uses a hypothesis
which only approximately minimizes disagreements with a suffix of the examples.

In Section 4, we give a general purpose algorithmic transformation turning a ran-
domized polynomial time hypothesis finder A (as defined by Blumer, et al (1989))
which, with high probability, returns a hypothesis consistent with an input sam-
ple, into an algorithm which efficiently approximately minimizes disagreements to
within a factor of 7d + 1, where d is the VC-dimension of the target class. We use
a technique due to Kearns and Li (1988) and Abe and Watanabe (1992), working
in stages, where at each stage, we subsample according to the distribution which is
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uniform over the sample, hoping to get a subsample for which there is a consistent
hypothesis, so that we can successfully apply A. We then return the best hypothe-
sis of those produced by A during the various stages. We use the tightest available
PAC-learning bounds, due to Anthony, Biggs and Shawe-Taylor (1990), to argue
that with high probability, a hypothesis consistent with the subsample can't be too
bad on the whole sample.

Littlestone and Warmuth (1989) describe a variant of the weighted majority algo-
rithm where the weights are kept above some lower limit. This allows the weighted
majority algorithm to recover and adapt to changes in the target. However, if the
target changes k times, then their mistake bound for the weighted majority algo-
rithm goes up by about a factor of k. It is difficult to translate these bounds into
our model as our targets potentially change with each example.

Kuh, Petsche and Rivest (1990,1991) studied a variety of models in which the
target changes over time, including cases in which the target drifts slowly. For
many of their main results, it is assumed that the sequence of targets is produced
by an adversary which at each time has access to the earlier random examples seen
by the tracking algorithm. In contrast, we assume that the sequence of targets is
chosen by an adversary before any random examples are generated.

Aldous and Vazirani (1990) studied a different version of learning in a changing
environment. In their model the target concept is fixed, but the examples are
generated by a Markov process rather than from a fixed distribution.

The conclusions contain potential applications, observations, and a list of open
problems.

The results presented here improve on preliminary results described by the au-
thors (1991).

2. Notation and Mathematical Preliminaries

Let N denote the positive integers and Q denote the rationals. Let In denote the
natural logarithm, and log denote the logarithm base 2.

After Vapnik (1989), we will adopt a naive attitude toward measurability, assum-
ing that every set is measurable, and simply speak of probability distributions on
sets. This assumption is not unreasonable, since if a digital computer is to input or
output representations of arbitrary set elements, the set must be countable. If X is
a set, and D is a probability distribution on X, and if j ( x ) is some mathematical
statement containing x as a free variable, define PrxeD(0(x)) as D({x £ X : (f(x)}).
Define Ex£D similarly for expectations of random variables defined on X. We will
drop the subscripts where there is no possibility of confusion.

If X is a set and H is a family of {0,1} valued functions defined on X, then the
Vapnik-Chervonenkis (1971) (VC) dimension of H is

We will assume throughout that all classes discussed have at least two elements,
and thus have VC-dimension at least one.
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A tracking problem consists of a set (or domain) X and a family H of {0, l}-valued
functions defined on X, called the target class, A {0,1} valued function defined on
X is called a concept. We will speak of a concept and the subset of X on which
it takes value 1 interchangeably. An example is an element of X x {0,1}, and a
sample is a finite sequence of examples. A function h agrees (resp. disagrees) with
an example (x, p) when h(x) = p (resp. h(x) ^ p). A function is consistent with a
sample if it agrees with all examples in the sample. We often use the discrete loss
function, l ( a , b ) , defined to be 0 when a = b and 1 otherwise, to count numbers of
disagreements.

Let F be the set of all infinite sequences of bits, and U be the distribution which
sets each bit in the sequence independently with probability 1/2. A (randomized)
tracking strategy is a mapping from (Um(X x {0, l})m) x X x F to {0,1}.

If S = {ft}teN is a sequence of concepts and x e Xn with n > m, the m-sample
of S generated by x, written samm(S, x), is the sequence of pairs ( ( x 1 , /1(x1)),...,
( x m , f m ( x m ) ) ) - Informally, samm(S,x) is simply the first m examples which are
used by a tracking strategy to predict f m + 1 ( x m + 1 )

Let D be a probability distribution over X. If A > 0, a sequence (f t)t€N of
concepts is called (A, D)-admissible if for each t € N, P r x e D ( f t ( x ) ^ f t + 1 ( x ) ) < A.

Let A be a tracking strategy. We say that A (e, A)-tracks H if there is an mo 6 N
such that for all m > m0, for all probability distributions D on X, and for all
(A, D)-admissible sequences S = (ft)t€N of factions in H.,

We say that H is (e, A)-trackable if there is a tracking strategy which (e, A)-tracks
H.

To discuss issues of computational efficiency, we will need the following definitions.
We say that H = {Hn : n e N} is a stratified tracking problem if for each n € N,
(Qn,Hn) is a tracking problem.2 An algorithm for a stratified tracking problem
consists of a tracking algorithm An for each n. We assume that the random bits
are presented on an auxiliary tape, and thus accessing the next random bit in the
sequence takes unit time.

We say that A = {An} efficiently tracks H if there is a polynomial p and positive
constants c and k such that for all relevant e, n,

• each prediction is computed in time bounded by p(l/e, n, b), where b is the
number of bits needed to encode the "largest" example seen.

• at most p(l/e, n, b) space is required to store information between trials,

• if A < c(e/n)k, An (e, A)-tracks Hn.

Note that the bound on the space required is not allowed to grow with the num-
ber of trials. Thus an efficient tracking algorithm may not, in general, keep all
previously seen examples.
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3. Increasingly unreliable evidence and hypothesis evaluation

In this section we analyze a simple tracking algorithm which ignores all examples
beyond some time in the past and uses the hypothesis which disagrees with the
fewest remaining examples for prediction. The results of this section, together with
those of Section 5, show that this apparently naive algorithm is within a constant
times a log factor of optimal for the classes of halfspaces and hyperrectangles. We
also show that it is sufficient to only approximately minimize disagreements to
within a constant.

As discussed in the introduction, the fraction of the considered examples dis-
agreeing with a hypothesis can be viewed as an estimate of the probability that
the hypothesis will make a mistake on the next example. In the following series of
lemmas we bound the probability that there exists a hypothesis h in class H such
that the estimate of h's error is small but the true probability that h will yield an
incorrect prediction is large.

We will make use of the standard Chernov bounds, which we state here. This
form of the bounds appears in Angluin and Valiant (1979), Littlestone (1989), and
Hagerup and Rub (1990).

Lemma 1 Let t e N, and let r1, ...,rt be independent {0, l}-valued random vari-
ables. Choose a, 0 < a < 1. Let u = £t

i=1 Pr(ri = 1). Then

For each h e H , fe H, m e N, x € Xm, define

(D is to be understood from context), and define

Note that erf is the empirical estimate of the error of h obtained when the (un-
changing) target concept is /.

Our first lemma follows immediately from the results of Blumer, et al (1989).

Lemma 2 For any set X and concept class H over X, for any distribution D
on X, for any f £ H, for all 0 < e < 1/2, if m > ln, where d is the
VC-dimension of H, then

We are now ready to present the main result of this section. The following theorem
shows that if a randomized tracking strategy is likely to predict with a hypothesis
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that approximately minimizes disagreements on the previous examples, then the
probability that the algorithm makes a mistake on the next example is small.

Theorem I Let (X,H) be a tracking problem, d — VCdim(H), and choose e >
0. Suppose A is a randomized tracking algorithm which, with probability at least
1 — e/6, predicts using an h € H having at most k times the minimum number of
disagreements on the previous trials. Choose a distribution D on X and

Then if the sequence of targets from H, S = (fi}ieN, satisfies

the probability that A makes a mistake on the (m + I)st trial is at most e.

Proof: Fix m and k. For each x €. Xm, let mindis(x) be the set of all hypotheses
in H which approximately minimize disagreements with samm(S,x) to within a
factor of k.

Define F to be the event that the hypothesis chosen by A is not in mindis(x).
Define F' to be the event that there are more than twice the expected number of

disagreements between the previous trials and fm+1, i.e.,

Applying Lemma 1 (with a = 1), we have

since m> ^fUnf.
Define E = F U F'. Then Pr(£) < e/3.
For each x € Xm, a € F, let /ij.o- be A's hypothesis after seeing the sequence

(Xi,fi(xi)),..., (Xm, fm(xm})

of examples and the random sequence a. Let

be the set of sequences of points and random bits that cause A to produce an
inaccurate hypothesis.
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If mistake is the event that A makes a mistake on trial m + 1, we have

Next, we have

since fm+1 € "H and hx^ € mindis(x) implies that hx,a has at most k times as many
disagreements as fm+1 Recalling that k > 1 and applying the triangle inequality
for I, we have

by Lemma 2, since m > ^^L In Jjp Plugging in to (5) yields the desired result. D
If (fi) is a (A, D)-admissible sequence of functions, then

and

Thus we obtain the following corollary.
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Corollary 2 Let A be a tracking strategy that predicts using a randomly chosen
hypothesis which, with probability 1 — e/6, approximately minimizes the number of
disagreements on the first m trials to within a factor of k. Choose e and m as in
Theorem 1. Then if A < 12fc/^+1\, the probability that A makes a mistake on the
(m + l)st trial of a (A, D) -admissible sequence of functions is at most e.

Note that by ignoring (not counting disagreements with) examples beyond a cer-
tain point in the past we can, loosely speaking, make any later trial "look like" the
(m + l)st trial. This observation leads to the following Corollary.

Corollary 3 Let X be a domain, and H be a class of concepts over X of VC-
dimension d. Assume A is a randomized algorithm which with probability I — e/6
finds an h € "H which approximates, to within a constant factor k, the minimum
number of disagreements on a sample. Let A' be the tracking algorithm which pre-
dicts using the hypothesis produced by A from the most recent m = [(cid/e) log(l/e)~|
examples, where c1 > 0 depends on k. There is a positive constant 02, depending
only on k, such that for any 0 < A < e where

strategy A' (e,A.)-tracks H.

4. Efficiently Approximately Minimizing Disagreements

In this section we discuss the application of the techniques of Kearns and Li (1988)
to the problem of approximately minimizing disagreements from among the hy-
potheses in a class H, showing that if there is an efficient algorithm which returns
a hypothesis with no disagreements if there is one, then there is an efficient ran-
domized algorithm which with high probability returns a hypothesis that minimizes
disagreements to within a factor of a constant times the VC-dimension of H. Re-
sults very similar to those described here are implicit in the work of Kearns and Li
(Theorems 12 and 16), although some minor modifications are necessary.3 Also, we
make use of the techniques of Kearns and Li (1988) in our proof. Furthermore, al-
gorithm Min-Disagreements from Figure 1 is very similar to the Algorithm B given
in a recent paper by Abe and Watanabe (1992), which was described to us some
time ago by Abe. However, our applications appear to be substantially different.

First, the results of Anthony, Biggs and Shawe-Taylor (1990) may be applied4 to
obtain the following.

Theorem 4 (Anthony, et al (1990)) Let X be a set and let H be a concept class
over X of VC-dimension d. Let D be a probability distribution over X. Choose
f e H and t. < 1/2. Then ifm> (7d/e) ln(9/e),
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1. Algorithm Min-Disagreements
2. Inputs:
3. a sample 5 of m examples;
4. l, the number of iterations to run;
5. d= VCdim(Hn);
6. desired approximation factor 7 > 1.
7. Uses:
8. A randomized algorithm A for the consistency problem
9. associated with Hn.

10.
11. choose an h € Hn arbitrarily;
12. for opt := 1 to m/r do

r --•--. ^*~~~ ~~**~~ ~\
13. s := (7d(m - opt)/jopt) In(9(m - opt)/^opt) ;

14. for j := 1 to I do
15. draw S', an s-element subsample of 5 uniformly at random with
16. replacement;
17. run A on S' obtaining hypothesis h';
18. if h' has fewer disagreements with 5 than h, set h := h';
19. end for,

20. end for,

21. return h;

Figure 1. Algorithm Min-Disagreements

Now, we turn to the main result of this section. If H. is a concept class, then the
consistency problem associated with H is as follows:

Given a sample, find any hypothesis in H consistent with the sample if there
is one, otherwise return any h e H.

A randomized polynomial time algorithm for the consistency problem returns, in
time polynomial in VCdim(H) and the size of the sample, an h in H. If the sam-
ple is consistent with some hypothesis in H then, with probability q > 1/2, the
returned h will be consistent with the sample. Note that by repeatedly running
such an algorithm (and checking each result against the sample) an arbitrarily high
confidence can be acheived.

Algorithm Min-Disagreements (see Figure 1) uses a randomized polynomial time
algorithm for the consistency problem to approximately minimize the number of
disagreements.
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It should be obvious that if A runs in randomized polynomial time then the
algorithm Min-Disagreements runs in time polynomial in d, l and m.

Theorem 5 For any n e N, Hn Q 2^" of VC-dimension d, and set of m examples
S, if A solves Hn !s consistency problem with probability q > 1/2 and there is an
element of Hn consistent with all but opt of the examples in S, then Algorithm
Min-Disagreements with inputs S,m,l,d,r finds a hypothesis consistent with all but
(r + 1) opt examples in S with probability at least

Proof: Choose m € N and let S = {(xi,yi) : 1 < i < m} be a sample. Let

be the minimum possible number of disagreements between the sample and an
h € H. We focus our attention on the case where opt < m/(r + 1), since otherwise
the theorem is trivial as any hypothesis is consistent with all but (7+!)opt examples
of S.

Choose hopt from among those hypotheses in Hn which have opt disagreements
with S. Let bad C S be the subset of the examples in S with which hopt disagrees.
Let D be the uniform distribution over S, and let D' be the uniform distribution
over S — bad.

Consider the stage of the algorithm where opt = opt and a particular iteration
j of the inner loop where A produces hypothesis h'. Let clean be the event that
none of the examples sampled during iteration j are in bad and consist be the event
that h' is consistent with the subsample. By applying a standard approximation,
we have

Now define close to be the event that h' agrees with all but 7 opt of the examples
in S — bad, i.e. PrZ£iy(h'(z) ^ h o p t ( z ) ) < 7 opt/(m — opt). (Note that when close
occurs, h' agrees with all but (7 + l)opt of the examples in S.) We have

since the distribution obtained by conditioning Ds on clean is (D1)3 (recall that
U is the uniform distribution over sequences of bits, so that a represents the ran-
domization of consistency algorithm A). Note that if both clean and consist occur
then h' and hopt agree with the examples in the subsample. Thus,
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where the last inequality follows from Theorem 4 and the algorithm's choice of s.
Thus,

Now we can bound the probability of close.

Thus, the probability that the hypothesis returned after l iterations has more
than (7 + 1)opt disagreements with S is at most

This completes the proof.

Corollary 6 If r = 7d and I > (3m/(d(2q - l)))ln(l/<5) then with probability at
least 1 — 6 Algorithm Min-Disagreements returns a hypothesis consistent with all
but (7 + 1)opt of the examples in S.

Proof: If opt = 0, then the Corollary is trivial. Assume opt > 1. Then

This completes the proof. D
We can now take advantage of the following two theorems, which address learning

in Valiant's PAG model.
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Theorem 7 (Pitt and Valiant (1988)) If H C Un^n is properly PAC learn-
able, then there is a randomized polynomial time algorithm which solves the consis-
tency problem for H.

Theorem 8 (Blumer, et al (1989)) If H = Unftn, where each Hn C Qn is
properly PAC learnable, then there is a polynomial p such that for all n e N,
VCdim(Hn) <p(n).

Combining these with Corollary 6 we obtain the following.

Corollary 9 Let H be a stratified tracking problem. Then if the corresponding
learning problem is properly PAC learnable, H is efficiently trackable.

Combining Corollary 6 with Theorem 3, we obtain the following result for halfs-
paces and hyperrectangles in particular. Let HALFSPACESn be the set of indicator
functions for the following sets:

Let BOXESn be the set of indicator functions for the set of axis parallel hyperrect-
angles in n-dimensional space, i.e.

Corollary 10 There is a constant c > 0 and there are efficient tracking algorithms
for each of {HALFSPACESn : n € N} and {BOXESn : n e N} that (e, A)-track
these classes for

Finally, Kearns and Li (1988) showed that, loosely speaking, significantly im-
proving the factor of approximation of our algorithm for minimizing disagreements
for hyperrectangles (in particular, removing the dependence on d) would lead to
corresponding improvements on the approximation algorithm for set cover, which
has not been significantly improved since the 1970's. Nevertheless, it remains possi-
ble that, via other methods, one might obtain efficient algorithms that track these
classes at rates even closer to optimal. The results of this section have recently
been improved somewhat (Long, 1992), but the linear dependence on d remains.

5. Upper bounds on the tolerable amount of drift

In this section we prove upper bounds on the tolerable amount of drift for two
commonly studied concept classes: halfspaces and axis-aligned rectangles. Our
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upper bounds show that the algorithm of Section 3 is within a log times a constant
factor of optimal for each of these classes.

First, we will prove an upper bound for BASICn, the class of indicator functions
for the following family of subsets of the unit interval:

This class can be viewed as dividing the unit interval into n subintervals of equal
length. Every concept in the class is the union of an initial segment from each of
the subintervals. It is easy to see that VCdim(BASICn) = n.

Our argument for the upper bound on BASICn uses ideas from earlier arguments
by Ehrenfeucht, et al (1989) and Haussler, et al (1990) giving lower bounds on the
probability of a mistake when predicting a stationary target function.

The intuition behind the argument is as follows. Suppose there is a water truck
rolling down a section of dusty road at 10 kilometers per hour. Either the truck
is empty or it is spraying water (unknown to us, but both possibilities are equally
likely). Each minute a point on the road is picked at random and we predict whether
or not the point is wet before looking at it. If the point has not yet been passed
by the water truck, then we can safely predict that it is dry. If a previously picked
point had already been passed by the water truck when it was picked, then we
know whether or not the truck is spraying water and can always predict correctly.
However, our prediction always has a 1/2 chance of being wrong on the first point
which the water truck has passed. This idea can be extended to to n watertrucks
(each of which is independently spraying or empty) on n different roads. Whenever
a point on road i that has been passed by truck i is picked, and none of the previous
points had been passed by truck i when they were picked, we will make a mistake
with probability 1/2.

Proof: By contradiction. Assume that tracking strategy A (e, A)-tracks BASICn

for some 0 < e < 1/e2, n € N, and A > e4e2/n. Thus after seeing at least mo
examples drawn from distribution D and labeled by any (A, D)-admissible sequence
of targets, the probability that A makes a mistake on the next example is at most
e.

Without loss of generality, set A = e4e2/n. With the restriction on e, A < 1/n
(and n < 1/A). Also, since no non-degenerate class is (e, A)-trackable if A > e and
e < 1/3, we may assume that A < 1/e2.

Let t = L-^/n/AJ. Since e < Ve2n < \/n/A, we get frV
/n/A < t < y'n/A and

et < n/A. These inequalities will be used at the end of the proof.
For each z € {0,1}™ and 0 < i < t, define /2,i e BASICn as the indicator function

for
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Since t < 1/A (using n < 1/A), every interval in the union has length at most
1/n. Note that f2 ,0 is the function mapping everything to 0. Choose m such that
m > t + 1 and m > mo. Let S(z) be the sequence of m elements of BASICn

defined by S(z) = (fz,o,fz,o, • • - , fz,Q,fz,i, /*,2> • • •, fz,t)- Let U be the uniform
distribution on X = [0,1]. One can easily verify that for all z € {0, l}n, S(z) is
(A, E/)-admissible.

Let E be the event that for a random x e [0, l]m, xm is the first "passed" point
Inx I t A

in its subinterval. More formally, xm — < — and for all 0 < i < t, xm-t+i &

For each z e {0,1}", x € [0, l]m, <r € T, let mistake(z, x, a) be the event that

i.e. that strategy A incorrectly predicts the label of the mth example where a
represents the strategy's internal randomization. Finally, let U1 be the uniform
distribution over {0,1}". We have

since, when given E, it is equally likely that fz,t(xm) is 0 or 1, independent of the
previous examples. Now,
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Noting that | exp ( — 2 / e- i^ ) > ̂  yields

Since

there is a z for which

contradicting the assumption that that A (e, A)-tracks BASICn.O
Recall the definitions of HALFSPA CESn and BOXESn from the previous section.
The following theorem follows from the bounds for BASICn via a trivial embed-

ding of BASICn into HALFSPACESn and a similar embedding of BASIC2n into
BOXESn using a simplified version of the prediction preserving reductions (Pitt
and Warmuth, 1990). The same embeddings were employed by Haussler, et al
(1990). The details are omitted.

Theorem 12 For all e < 1/e2 and n 6 N, HALFSPACESn is not (e, &)-trackable
when A > e4e2/n, and BOXESn is not (e,A.)-trackable when A > e4e2/2n.

This theorem, along with the facts that the VC dimension of HALFSPACESn is
n+1 and that of and BOXESn is 2n, establishes that the general purpose algorithm
described in Section 3 is within a constant times a log factor of optimal for these
two natural concept classes.

6. Conclusions

We have defined a learning model in which the target concept is allowed to change
over time and discovered a general-purpose algorithm whose performance nearly
matches our lower bounds (on at least two natural target classes). However this
algorithm relies on a potentially expensive subroutine for minimizing disagreements
within a constant factor. To combat this difficulty, we have found an efficient way
to approximately minimize disagreements to within a factor that depends (linearly)
on the VC-dimension. This gives us a second generic algorithm which, although
not proven able to tolerate quite as much drift, is more likely to be computationally
efficient (as it is for halfspaces, hyperrectangles, and any other target class which
is properly PAC learnable).

Our algorithms are robust in the sense that they don't need to know the rate of
drift A ahead of time, although attempting to achieve an accuracy e amounts to
an implicit assumption of an upper bound on A.
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Although our results have usually been stated in terms of how much target motion
can be tolerated, they can viewed in other ways. Bounds like "all A < ce2/(d2 Ine)
are tolerated" are easily converted to "the error rate, e, is at most cad&l/('2~°'} for
arbitrarily small a." Also, our bounds indicate how frequently one must sample
to achieve a desired accuracy when given a bound on the continuous rate of target
drift. This interpretation may be the more useful one.

Consider an assembly line process where the machines slowly drift out of align-
ment, gradually increasing the defect rate. One wants to sample the finished prod-
ucts in order to determine when an adjustment is required. It is often infeasible to
inspect each item produced as the inspection process might be very expensive or
even destroy the good. Thus a more complicated inspection plan indicating when
to inspect and how to evaluate the inspection results is needed. The results in
Section 3 are applicable to this problem.

Intuitively, the following approach seems as if it should lead to improved track-
ing algorithms. Instead of simply minimizing the number of disagreements with
a suffix of the previous examples, an algorithm might weight previous examples
with gradually decreasing nonnegative weights which sum to one. Then for each
hypothesis h in the target class, the algorithm might use the sum of the weights of
the examples with which h disagrees as the estimate of the probability that it will
make a mistake on the next trial, then use the hypothesis which minimizes this,
possibly more accurate, estimate. One wonders whether such an algorithm might
significantly improve on the simple "minimize disagreements" algorithm analyzed
in this paper.

It is easy to see how to alter our arguments to obtain results in a related model
(often called "agnostic learning") in which the algorithm doesn't know a priori a
class which contains each of the sequence of targets, and tries to predict nearly as
well as possible using hypotheses in a certain class H. More formally, suppose for
a worst case sequence of concepts f1, f2,... (not necessarily in the hypothesis class
Ti), for each t we defined Kt to be min^-H Pr(h(x) ^ f t ( x ) ) . It can be shown by
modifying the proofs of Section 3, that for A < ce3/(d In(l/e)), an algorithm can
achieve probability of mistake at most Kt + e for all large enough t (Helmbold and
Long, 1991). One wonders whether these results can be improved.

Haussler (1991) has generalized the results of Blumer, et al (1989) to apply to
learning in many frameworks, one of which is the learning of real valued functions.
Using Haussler's results, the techniques of Section 3 can trivially be extended to ap-
ply to uniformly bounded classes of real valued functions (e.g., feed forward neural
networks of a particular architecture which has one output node), where, in place
of the Vapnik-Chervonenkis dimension, we use Pollard's (1984) pseudo-dimension,
and instead of wanting to make the probability of mistake small, we want to make
the expectation of the absolute value of the difference between our prediction and
the truth small. In place of an algorithm for minimizing disagreements, we require
an algorithm for minimizing the sum of absolute errors on a sample. It would be
interesting to obtain results for more general loss functions, e.g. the square loss.
Also, we have no general lower bounds for the tracking of real valued functions.
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Other natural problems include: optimizing the constants and removing the
1/ In \ gap between our bounds on A.
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Notes

1. Since, in both the case of halfspaces and that of hyperrectangles in n-dimensional space, the
first algorithm above tolerates drift rates up to a constant times £ 2 / ( n l n j ) , these bounds
establish the fact that the first algorithm is within a constant times a log factor of optimal.

2. We assume rationals are encoded by encoding both the numerator and the denominator in
binary.

3. The difference between the result trivially obtainable by combining Theorems 12 and 16 of
Kearns and Li (1988) and our result is that in the former, the sample is restricted to have the
same number of positive and negative examples.

4. For d > 1, use Theorem 2.1 of their paper with 6 = 1/2, and for d = 1 a simple argument
along the lines of the proof for their Theorem 2.1 suffices.
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