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Abstract. Reasoning from prior cases or abstractions requires that a system identify relevant similarities between
the current situation and objects represented in memory. Often, relevance depends upon abstract, thematic, costly-
to-infer properties of the situation. Because of the cost of inference, a case-retrieval system needs to learn which
descriptions are worth inferring, and how costly tht inference will be. This article outlines the properties that
make an abstract thematic feature valuable to a case-based reasoner, and recasts the problem of case retrieval
into a framework under which a system can explicitly and dynamically reason about the cost of acquiring features
relative to their information value.
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1. Retrieval, description, and learning

For a case-based reasoner to make effective use of recalled prior experiences, it must be
able to judge which of its cases are applicable to the current situation. This problem is
not new, nor is it unique to case-based reasoning: any system that reasons on the basis
of stored knowledge must determine when an element of that stored knowledge is relevant
to its current processing. Frame, script, and schema-based reasoning systems such as de-
scribed by Minsky (1975), Schank and Abelson (1977), and Charniak (1981) all must choose
among their knowledge structures on the basis of relevance to the current task.

1.1. The task of retrieval

Although the goal is to retrieve relevant knowledge structures or prior cases, the concept
of relevance is poorly understood and not easily described in computational terms. A major
goal in case-based reasoning is to redefine relevance in terms of better-understood and more
computational algorithms and representational constructs, or at least to find some comput-
able property that can be made to stand in for relevance.

Many case-based reasoning systems determine relevance on the basis of features shared
between the curent situation and prior cases in memory. A prior case sharing many features
with the current situation is considered more likely to be relevant than a prior case sharing
few features. Computationally, this means that a case-based reasoner needs:

• A vocabulary of features used to describe situations,
• A case library of data structures describing prior cases, each represented using features

from the system's vocabulary,
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• An inference mechanism for determining which features apply to newly encountered
situations, and

• A matcher or a lookup mechanism for finding prior cases that share features with the
current situation.

Case retrieval, under this view, is generally implemented as a process involving two dis-
crete steps: First the inference mechanism develops a sketchy description of the current
situation, and next the matcher or lookup mechanism uses that description to search mem-
ory. Although this approach seems to reduce case retrieval to the computationally better-
understood task of pattern matching or indexed database retrieval, it suffers from an impor-
tant shortcoming, one that the work in this article attempts to address.

1.2. Underconstrained description

In this article I argue against the disjoint, or describe-and-search view of case retrieval,
and in favor of a model in which developing a description of the current situation is more
closely integrated with searching for a relevant prior case. The main argument is that the
disjoint model underspecifies the content of the vocabulary and the behavior of the infer-
ence mechanism: that the disjoint model ignores a valuable set of constraints, provided
by the contents of memory and the process of memory search, that can be brought to bear
on the choice of vocabulary and on the task of description.

Feature-based case retrieval is dependent upon the system's (or the system designer's)
choice of descriptive vocabulary being a good one, and upon the inference mechanism's
ability to generate good descriptions of the situations it enounters. But there is no external
criterion by which the goodness or accuracy of a sketchy description can be judged. The
goodness of a description is determined solely by the degree to which a pattern-matcher
can use it to select cases from memory that are in fact relevant or useful, and therefore
the appropriateness of a description depends not only upon the current situation, but also
upon the contents of memory. A description that usefully describes a given situation, relative
to a particular case library (i.e., one that allows the system to discriminate among its cases
and retrieve a relevant one) might not usefully describe the same situation given a different
case library.

Because the disjoint model separates the task of describing the current situation from
the task of searching for relevant prior situations, it leaves open a loop that, if closed, would
provide a mechanism for learning.

1.3. Retrieval and learning

A case retriever is faced with two learning tasks: Acquiring new descriptive features over
the course of many experiences, and refining a description over the course of a single
experience.

Over the course of reasoning about many situations, a case-based reasoner can learn
not only by adding new cases to its memory, but also by adding new descriptive features
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to its representational vocabulary. The features that should be learned and added are those
likely to lead to the appropriate retrieval of useful cases. This article presents a number
of criteria that a system designer or learning system can use to identify such features. Many
of the features depend upon the existing contents of memory, and, therefore, depend upon
an integration of the feature acquisition mechanism with the case library itself.

Over the course of reasoning about a single situation, a case-based reasoner is attempting
to build a description of the current situation using the features currently in its representa-
tional vocabulary. Since many of the features in a descriptive vocabulary are abstract, it
is often costly to determine whether or not a feature applies to a given situation. Conse-
quently, a case-based reasoner's inference mechanism must be selective in its use of descrip-
tive features. It is important that the reasoner direct its inference toward determining the
applicability of those descriptive features most likely to narrow its search to a small set
of useful cases. This utility criterion is dependent upon the current contents of the case
library, and this article presents an algorithmic mechanism whereby the system can use
the contents of memory to gain some control over its descriptive inference mechanism.

1.4. The rest of this article

The main goal of this work is to focus attention on the tradeoff between the cost of identi-
fying a feature and the benefit associated with that feature: both on the static role that tradeoff
plays in the design of representation vocabularies, and on the dynamic role it plays in a
system's ability to balance the computational costs of feature extraction against memory
search. Although the argument applies to the general problem of case retrieval, it is stated
here in the context of a planning task.

In the next section, I introduce the planning task against which the argument is framed.
In section 3, I discuss the types of features from which a representation vocabulary can
be built. I introduce the idea of labels—selected features whose presence or absence plays
a primary role in determining the applicability of a prior case to a current situation. The
idea of labels is further developed in section 4, which defines criteria for selecting labels.
Section 5 presents the main argument of the article: that the notion of labeling and the
criteria developed in section 4 can be used to integrate the tasks of situation description
and memory search, and that the integrated system can reason effectively about the infer-
ence cost versus the information content of features. Section 6 describes a computer pro-
gram that implements the idea of explicitly reasoning about features acquisition cost, and
the remainder of the article discusses the implications of this approach.

2. Critical planning situations

Although the main argument of this article applies to case-based reasoning in general, the
specific examples herein are drawn from the task of recognizing and reasoning about the
critical planning situations an agent may encounter:

• The agent may have failed. An action may not have had its intended effect, or an unex-
pected condition may block the satisfaction of one or more of the agent's goals.
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• The agent may be entering a situation in which a failure is likely or imminent. The agent
should be able to predict the failure.

• The agent may be entering a situation entailing an opportunity that it knows how to
exploit.

While some failures are the result of circumstances that are genuinely beyond the control
and predictive abilities of the agent, others result from planning errors that can be cor-
rected if the agent understands the connection between the planning error and the failure.
A widely accepted paradigm for dealing with failed plans (see, for example, Sussman, 1975;
Hayes-Roth, 1983; Hammond, 1986; Birnbaum & Collins, 1988), is that an agent must:

• Explain the failure. Assign blame for the failure to some condition over which the agent
could have had control. (Or, if no such condition can be found, identify the failure as
an unforseeable, unavoidable one.)

• Recover from the failure. Plan some activity that will lead toward the original goals,
taking into account the changed world resulting from the failure. Or, if achieving the
original goal now looks too expensive, work on some other goal.

• Repair the plan that resulted in the failure. If the explanation assigns blame to some
condition internal to the planner—for example, failure to look for a certain contraindicating
condition before commencing a particular activity—modify the plan so that future uses
of the same plan will not result in the same failure.

The case-based approach has been applied to the task of reasoning about plan failure,
but it has not in particular been applied to the subtask of building explanations of failures.
While case-based programs like CHEF (Hammond, 1989) CLAVIER (Barletta & Mark, 1988),
and JULIA (Hinrichs, 1988; Kolodner, 1987) have dealt with the task of recovering from
and repairing failures, they have not in particular used a case-based approach to generate
the necessary explanations for those repairs and recoveries. SWALE (Kass et al., 1986),
EXPLAINER (Leake, 1990), and ABE (Kass, 1990) deal with the task of generating explana-
tions from prior cases, but the explanations are not oriented towards plan failure and repair.

2.1. Knowledge structures for plan criticalities

To use prior cases to explain plan failures requires a content theory of failure, recovery,
and repair, and a representational theory of how similarities between instances of recurring
failures can be detected. Such a theory is embodied in the PFXP knowledge structures de-
scribed in Owens (1990). PFXPS package causal descriptions of plan failures with recogni-
tion criteria and repair and recovery strategies.

Critical planning situations can be defined in concrete, domain-specific terms. A system
operating a chemical plant, for example, might know that the temperature and pressure
in a particular reaction tank must be kept within certain limits, and have specific procedures
for dealing with exceptions. On the other hand, characterizations of critical planning situa-
tions can also be quite general: one can mis-prioritize one's goals, choose inappropriate
tasks, or allocate resources inappropriately. PFXPS characterize plan failures abstractly. This
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is significant to the task of case retrieval, because abstract features are, in general, more
costly to infer from initial situation descriptions than concrete ones.

The planners of Sussman (1975) and Sacerdoti (1975) and their descendants included opera-
tional definitions of generalized critical planning situations as part of the programs' control
structure. Specific code, for example, detects and resolves situations in which the steps
taken to establish a precondition for one goal violate a protected precondition for another
goal or task. Wilensky (1983) presented a taxonomy of critical planning situations related
to goal interactions. Hammond's (1989) planner moves the knowledge about critical plan-
ning situations out of the program's control structure and into a memory, using knowledge
structures called Planning TOPs. In Owens (1990), I present a typology of critical planning
situations derived from a study of a large library of common advice-giving proverbs like
Too many cooks spoil the broth.1

The PFXP is thematically related to a planning TOP in that it captures a recurring planning
situation; it is structurally related to the explanation pattern or XP discussed in Schank
(1986) in that it packages a reusable explanation, and it extends both ideas by packaging
recognition, recovery, and repair strategies with the description of the failure.

A PFXP'S abstract characterization of a class of critical planning situations can be useful
to a planner because an abstract characterization can define a functional equivalence class,
significant to repair or recovery. All too many cooks situations, for example, share certain
causal properties, such as involving a plan that failed in some way because several agents
were working on a common task. It is likely that a common set of recovery strategies will
be successful in all too many cooks situations, e.g., starting the plan over with fewer agents,
or allocating more resources to supervision and coordination.

Just as the chemical plant controller can have a knowledge structure packaging recogni-
tion criteria and appropriate actions for an overpressure in tank 17situation, so can a planner
have a knowledge structure that packages recognition criteria and appropriate actions for
a too many cooks situation. The difference has to do with the abstractness of the identify-
ing features and the specificity of the repair and recovery procedures. But the difference
for case retrieval is significant. While a controller for a chemical plant is likely to have
a pressure transducer that constantly reports the pressure in tank 17, the analogous feature
detector for the too many cooks situation is likely to be a set of inference rules that are
costly to execute, and can therefore not be checked constantly. Accordingly, a case retriever
must be selective in its choice and use of abstract knowledge structures.

3. Retrieval and labels

A major problem for retrieval is that, if a case retriever has a large vocabulary of abstract
features it can use to describe situations, its inference mechanism cannot be simply "exam-
ine all the features against the current situation and report which ones apply." As observed
in Schank et al., (1986), "Real instances have indefinite numbers of features, some explicit,
some inferred and many ignored." There are virtually an infinite number of facts about
a situation, many of which would be irrelevant, or expensive to compute, or both.

The problem with recognizing an abstract characterization like too many cooks, as op-
posed to a concrete characterizaton like overpressure in tank 17, is that the features that
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characterize a too many cooks situation are themselves abstract, difficult to notice, and
costly to infer. The knowledge structure characterizes situations in which MULTIPLE AGENTS
are working on a COMPLEX, MULTI-STEP PLAN. Determining whether or not MULTIPLE
AGENTS and COMPLEX, MULTI-STEP PLAN characterizes a new situation is inferentially costly.

In spite of the abstractness of these features and the concomitant costs of determining
their applicability to a new situation, they are powerful cues to discriminate between too
many cooks and other potentially applicable knowledge structures in memory. The system
cannot do much about the inferential cost of determining whether or not these features
apply to newly encountered situations, but it can do something about the cost of determin-
ing whether or not these features apply to cases. It can attach these features as labels to
the cases, in effect caching the results of inference. From that point on, determining whether
or not MULTIPLE AGENTS applies to a case in memory is simply a matter of checking the
feature against the case's list of labels.

3.1. The role of labels

Labels can be concrete or abstract—they can be any features that describes situations and
cases. The fundamental choice in using labels is how complex and abstract the labels will
be, and how much inference a system will perform before it begins to search memory. Two
widely used approaches described below are Classical indexing, which performs a great
deal of inference to extract complex, thematic labels that are then used as indices into a
database of cases, and Retrieval as matching, which uses larger numbers of shallower,
less costly features as labels. Both of these approaches, however, suffer from the fundamental
flaw of the disjoint model of case retrieval: they do not take advantage of knowledge about
the population of cases in memory to determine how feature extraction and inference should
proceed, and they ignore feedback that can be used for learning.

3.2. Labels and classical indexing

Classical indexing views a case library as a database, indexed according to certain key fea-
tures of the cases. The system retrieves a relevant knowledge structure by first characteriz-
ing the current situation in a functionally relevant way, and then using that characterization
as a probe into a memory of knowledge structures.

For example, a planner might care about situations in which a goal is blocked because
of an inadequate supply of a resource.

In the classical indexing approach:

• A symbolic construct (for example BLOCKED GOAL—INSUFFICIENT RESOURCE)2 is assigned
as a label for situations of this type.

• The system has some mechanism for detecting a BLOCKED GOAL—INSUFFICIENT RESOURCE
situation, and produces the appropriate symbolic construct accordingly.

• The retrieval mechanism allows the system to cluster together all knowledge structures
indexed by this symbolic construct so that they are made available when memory is
searched using this index.
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In general, this approach performs relatively costly inference to extract highly thematic
features from new situations, and it uses those features as the indices around which memory
is organized. Examples of the use of indices to retrieve compound knowledge structures
is schema-based or case-based reasoning are widespread; see, for example, Schank and
Abelson (1977), Charniak (1981), Kolodner (1984), Hammond (1989), or Ashley (1988).

3.3. Labels and matching

The second broad category of approaches to retrieval, Retrieval as matching, attempts
to use simpler features as labels; features that can be extracted from situations with less
costly inference. The approach uses larger numbers of these simpler features to determine
the applicability of an old case to a new situation. Labeling features, under this approach,
tend to be either surface features, or features cheaply inferred from surface features via
a preprocessing pass.

Systems embodying this approach do not extract deep thematic descriptions of the current
situation prior to searching for relevant knowledge structures. One instance of this approach
is the Memory-Based Reasoning approach of Stanfill and Waltz (1986). This approach dy-
namically weights the importance of each feature based upon how unusual it is vis-a-vis
the contents of memory. Thagard and Holyoak (1989) argue for a connectionist mechanism
for adjusting the weights of features in determining a match via constraint relaxation.

3.4. Intermediate approaches

There is an intermediate approach taken by, among others, the PROTOS system of Bareiss
(1989) that calls for features more abstract than surface features, but not as overarching
or as thematic as the highly abstract features used in classical indexing. Other approaches,
like CABARET (Rissland & Skalak, 1989), CASCADE (Simoudis, 1990), CASEY (Koton, 1988),
and CLAVIER (Mark, 1989) deal more explicitly with the combined use of cheaply detected
surface features and more expensive thematic features in case retrieval. Generally, these
systems embody a fixed distinction between cheap and expensive features, with an explicit
use of two passes at retrieval, one based on cheap features as indices, and the other based
on more expensive thematic comparison of the candidate cases to the current situation.
One goal of the work described herein is to integrate these two types of retrieval and com-
parison more closely.

3.5. Labels and detectors

Both the classical indexing and the retrieval as matching approaches represent a commit-
ment to at least some inference process to extract features from the world—shallow infer-
ence in the case of retrieval as matching, and deep inference in the case of indexed retrieval.
Even systems that seem to match new situations against knowledge structures in memory
on the basis of "all" of the features of the current situation must, in fact, do some kind
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of feature extraction, since "all" of the features of any real situation is an unlimited set.
Kolodner and Thau (1988), for example, contrast their system PARADYME (also Kolodner,
1989) with some other case memories, saying that indices are "not used to organize memory's
heirarchies, nor to direct traversal at retrieval time." In other words, PARADYME's indices
do not form the basis of static memory organization as they do in, for example, CYRUS
(Kolodner, 1984). Even though such systems do not use indices in the classical sense, they
still must face the question of what abstract properties of situations to represent, which
is the same question one must answer in choosing labels.

Computationally, labels require detectors—if cases in memory are labeled with some
feature, then there must exist an inference mechanism to detect the presence of that feature
in new situations. A detector is a piece of code that corresponds to a given label, and that
has access both to the planner's inference capacity and to the system's sensors. The system
gains its knowledge about the world by selectively running its detectors. Running a detector
is equivalent to asking a question of the inference mechanism; the inference mechanism,
in turn, has access to the system's sensors and working memory, which it uses to return
an answer.3

Unfortunately for the two models of retrieval discussed above, the inferential cost of detec-
tors can range from virtually free to extremely costly. And the value of the answer returned
by a detector can be high or low, depending upon the makeup of cases in memory and
the degree to which the feature detected discriminates among those cases. Neither of the
retrieval models can take advantage of this cost and benefit information; the model I pre-
sent in section 5 below addresses this concern.

4. Criteria for labels

Some labels are more useful than others. Labels can be syntactically useful, which means
that they discriminate among the cases in a particular system's memory, and they can be
semantically useful, which means that similarly labeled cases are in fact similar from the
system's functional point of view. Section 5 below, and the implementation work in section
6 below, discuss how syntactic utility can be measured and taken into account at case-retrieval
time. This section discusses the criteria for semantic utility of labels in a planning system.

The problem of choosing labels is comparable with the task of organizing cases or abstrac-
tions into a set of meaningful categories, which is one of the general problems of machine
learning. AI has used statistical approaches to category formation (e.g., Stepp & Michalski,
1986; Quinlan, 1986; Fisher, 1987; Cheesman et al., 1988) as well as the more knowledge-
intensive methods of Explanation-Based learning (e.g., DeJong & Mooney, 1986); Mitchell
et al., 1986). A strong argument for a functional approach to category formation is presented
in Schank et al., (1986).

The work described herein is not about how categories ought to be learned, but about
what kinds of categories a specific type of system needs. A theory of how categories are
formed or how labels are learned is outside the scope of this work. Instead, this is a theory
of what constitutes a useful label and how those labels can be used for indexing and retrieval
of abstract knowledge structures.
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4.1. Functional criteria

It has long been observed (cf. Minsky, 1961) that functional terms define the categories
a system should care about. For an example of functional relevance in the task of plan
repair, consider the label SPREAD-TOO-THIN, that applies to situations corresponding to the
following proverbs:

• If you run after two hares, you will catch neither.
• Drive not too many ploughs at once; some will make foul work.
• He that hath many irons in the fire, some of them will cool.

All situations labeled with SPREAD-TOO-THIN have something in common—an aspect of
the agent's capacity is spread too thinly across a number of tasks. The aspect might be
a physical resource, it might be a physical capacity of the agent like the amount of weight
it can carry, or it might be the agent's capacity to monitor tasks. Although the applicable
recovery strategies might differ depending upon what resource is spread too thinly, the
strategies are likely to involve behavior such as offloading subtasks, eliminating redun-
dant steps, or increasing the effectiveness of the critical resource/capacity. Because
of this common functionality, SPREAD-TOO-THIN is a good feature around which to organize
a portion of memory and, consequently, a potentially good label for cases.

4.2, Types of functional relevance

A case-based or abstraction-based reasoning system seeks to retrieve cases or abstractions
relevant to the current situation in which the system finds itself. But the specifics of func-
tional relevance depend upon the task in which the system is engaged:

• For case-based planners like CHEF (Hammond, 1989), CLAVIER (Barletta & Mark, 1988),
PLEXUS (Alterman, 1986), or JULIA (Hinrichs, 1988; Kolodner, 1987), a case is relevant
to the degree to which the plan constructed from that case satisfies the system's current
goals.

• For a system whose goal is to build explanations, like SWALE (Kass et al., 1986) or CASEY
(Koton, 1988), a case is relevant to the degree to which the explanation derived from
it subsumes the facts of the current situation and is plausible. (See Pearl (1988) for a
discussion of explanation plausibility.)

• For systems that explicitly critique, evaluate, and interpret cases (e.g., a legal reasoner
like HYPO (Ashley, 1988)), the goal of retrieval is to find a case that is demonstrably
similar to the current case along certain dimensions derived from a deep, domain-intensive
analysis of the current situation and whose outcome supports the system's desired out-
come for the current situation.

• For a categorization system like PROTOS (Bareiss, 1989), the goal is to find cases sharing
certain predictive features with the currently examined case, those features being either
designed into the system or learned by causal or explanatory reference to a body of do-
main knowledge.
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For labeling knowledge structures relevant to critical planning situations, four types of
functional relevance are particularly significant:

Failure-related: Failure-related labels capture some aspect of the central causality repre-
sented in the knowledge structure. A failure-related label clusters together knowledge struc-
tures in which a common element plays a role in the causal description of the Mure. SPREAD-
TOO-THIN is one example of a failure-related index. For another example, the Too many
cooks knowledge structure can be labeled with MULTIPLE-AGENTS, which also labels a number
of other knowledge structures that deal with both desirable and undesirable aspects of
multiple-agent situations. It can also be labeled with COMPLEX TASK, which differentiates
between situations in which multiple agents are desirable and those in which multiple agents
create a problem. It can be labeled with domain-specific labels like MOVING, which identi-
fies knowledge structures dealing with problems that occur when carrying objects.

Symptomatic: Symptomatic labels relate an observable condition to the situation character-
ized by the knowledge structure. For example, RESOURCE CONTENTION between agents is
symptomatic of a too many cooks situation, even though at the level of representation of
the knowledge structure, no explicit causal connection is made between the resource con-
tention and the failure. (Imagine that you are working on a task with some helpers, and
every time you reach for a tool someone else has it.)

If the causal description contained within the knowledge structure were more detailed,
then RESOURCE CONTENTION would be a failure-related label, and could have been acquired
by the same explanatory mechanism. But because the connection between resource con-
nection and the Too many cooks failure is beyond the representational power of the knowledge
structure, the label can be learned only by statistical correlation. Symptomatic labels pro-
vide a place for the system to list observable features suspected to be causally implicated
in the failure, but for which no causal connection has yet been inferred. A system that
learns would transform symptomatic labels into failure-related lables by deepening the causal
structure represented within a knowledge structure.

Recovery-related: Recovery-related labels characterize an aspect of the recovery strategy
contained within the knowledge structure. For example, there is a functionally useful differ-
ence between recoveries that require additional resources and those that do not. If REPAIR-
REQUIRES-RESOURCES labels the former, then the system can, in a resource constrained situa-
tion, search for cheap recovery strategies that are not so labeled. Note that recovery-related
labels can be used to retrieve knowledge structures that relate to the current status of the
planning system, rather than the current situation.

Direct: Labels that exhibit direct functional relevance characterize the central causality
in the failure, without being a subset of the symbolic constructs used in the representation
of that causality. These labels define categories in which a certain overarching pattern of
causality occurs, in cases where that pattern is not captured by any single symbolic con-
struct within the representation. For example, if there are a number of knowledge struc-
tures that deal with situations in which a plan failed due to a low level of a resource, they
can be clustered using a label—for example INSUFFICIENT RESOURCE. The label does not
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appear within the description of any of the PFXPS to which it applies; its semantics derive
from the common set of repair and recovery strategies that it labels.

While these types of relevance guide the knowledge-intensive task of acquiring new fea-
tures to add to the labeling vocabulary, a simpler, shorter-term learning task is to obtain
and exploit knowledge about the inferential costs and syntactic utility of features in order
to control inference. The following section describes this task and a computational approach
to it.

5. Balancing inference and search

The above arguments claim that the choice of labels should be based upon functional criteria,
but there is an equally important and often competing requirement: that labels be based
upon features that are observable. A feature that clusters together failure situations for
which there is a common mode of repair is useful, but only to the extent that the system
can encounter a new situation and determine whether or not that feature applies to it. If
there is a detector for each label, some detectors will be more costly to run than others.

The more useful indices are characterized by relatively low complexity in extraction and
therefore lower cost in processing resources. Features present in the input (i.e., low-level
sensor readings), for example, are trivially easy to extract. So are error messages from
the system's actuators, like ARM WEIGHT LIMIT EXCEEDED. On the other hand, more abstract
labels associated with sensing, ranging from the simple "What's in front of me?" that merely
requires the process requiring this information to wait in line to use the sensing apparatus,
to the more costly "Go look around the corner and see what's there," which requires plan-
ning and carrying out a sequence of actions. Information may be computationally expensive
if it requires a great deal of inference; for example, "Does this plan describe a task with
independently executable subtasks?"

Unfortunately, the problem of feature extraction will not go away. In any given situation,
there is always more information that can be gathered—more features that can be learned
about the situation—by spending additional time sensing or making inferences. No descrip-
tion is ever complete, so any control structure that suggests first developing a description
of the situation and then using that description either to extract abstract features or to select
the existing features of the description, faces a difficult question: When is the description
sufficiently complete that the system should stop enhancing the description and start using
that description to extract indices?

5.1. Active and passive memory

The answer to that question is that the entire model of retrieval on which it is predicated
needs to be revised. There are two basic models of lookup applicable to the task of select-
ing a relevant knowledge structure. Under the classical indexing model, the view that has
been implicitly described thus far, memory is passive. It is the responsibility of the problem-
solving portion of the system to come up with a description of the knowledge structure
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that it wants—presumably to come up with a set of labels. On the basis of this description,
memory can select a knowledge structure that best matches and can return it.

Accordingly, the features output by the describer must be functionally grounded in the
conditions the system needs to recognize and the actions the system needs to perform. The
applicability of a case in memory to the current situation is often predicated upon some
kind of abstract, thematic similarity (e.g., for a planner, ' 'Both the current situation and
the prior case involve a finite resource that is spread across too many tasks.").

The task of description, as it stands apart from search, is underconstrained because there
are many possible abstract descriptions that apply to any one situation, only some of which
are likely to be useful in retrieving relevant prior cases. The utility of a description depends
not only on its functional grounding in a system's recognition and action capabilities, but
also upon its relationship to the cases already in memory and the features used to describe
those cases. A criterion for descriptions, ignored in the disjoint model, is that the descrip-
tion enable the memory to discriminate reliably and in a functionally relevant way, among
the competing candidates for "best match" to the current situation. The process of description
needs to know what is contained in memory and how it is described.

The problem with passive memory is that the process that extracts labels must know
a great deal about what is in memory and how it is organized. It must know, for example,
how the experiences or abstract knowledge structures in memory are described so that the
description of the current experience will indicate the similarities and differences between
the current experience and the experiences in memory. In effect, passive memory requires
that the system fully understand a situation before it extracts labels from it. But since the
entire purpose of extracting labels is to retrieve knowledge structures that will help the
system understand the current situation, it makes little sense to require understanding as
a prerequisite to label extraction. Accordingly, passive memory is not an acceptable model.

Under the active memory model, on the other hand, the contents of memory have a
more direct control over the process that extracts labels from the current situation. In one
version of the active memory model, the abstractions are viewed as active agents, each
competing with the others to characterize the current situation. Each abstraction demands
the inferences it needs to make the mapping between itself and the particular facts associated
with the current situation. Control of processing resources, under this model, constitutes
resolving the competition between abstractions to have their questions answered, and
deciding how many of those questions to answer. The questions, in this case, refer to re-
quests to run a particular detector.

5.2. Incremental retrieval

In active memory, the system performs incremental retrieval. When it begins processing
a new situation, some information is available essentially for free—the kind of low-cost
features described above. Using these features, analogous to presenting symptoms, as labels,
the system may retrieve a large number of knowledge structures that match on the basis
of those labels.

Given this pool of candidate knowledge structures, the system can examine them for labels
with high discriminating power—that separate the pool into subpools. The more evenly
balanced the sizes of the subpools, the higher the discriminating power of that label.
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Labels with high discriminating power yield the highest benefit. Consider a pool of can-
didate knowledge structures, and imagine some label that happens to be present on all of
those knowledge structures, or another that appears on none of them. Neither of these labels
have great information content, because running the detector for these labels and determin-
ing whether or not either characterizes the current situation will not help to refine the choice
of knowledge structures. If, on the other hand, a label is present on half of the candidate
knowledge structures, then it is to the system's advantage to decide whether or not that label
characterizes the current situation, because the label has a high information content. It is
this benefit that must be balanced against the cost of feature acquisition discussed above.

As the system runs more and more of its detectors—as it infers more and more proper-
ties of the current situation—the number of knowledge structures in memory that match
on the basis of those properties decreases. It is not necessary, however, to drive the number
of matches all the way to 1. If, for example, the system's goal is to recover from a failed
plan, and if the known characteristics of the current situation specify 50 of the system's
knowledge structures equally well, and if those 50 structures all suggest the same plan
repair, then there is no reason to look for more information to help discriminate between
those cases.4 Recovery-related labels play an important role in retrieval.

On the other hand, often the same set of features label cases wth different suggested
courses of action. The MULTIPLE AGENTS label, for example, applies to the many hands
make light work class of situations in which a goal was accomplished more quickly due
to the increased number of agents, as well as to the Too many cooks spoil the broth class
of situations, in which the multiple agents resulted in a worse outcome. The system needs
a label that is present on one PFXP and absent on the other, that allows it to discriminate
between the cases. The feature COMPLEX HIERARCHICAL PLAN is such a discriminator; it
applies to the situations in which too many agents get in each other's way, but not to the
situations in which multiple agents improve the outcome.

6. ANON

The ANON program provides a mechanism for integrating feature extraction and memory
search, and for explicitly reasoning about the costs and benefits of individual features. ANON'S
task is to maintain a library of abstract knowledge structures and match those knowledge
structures against descriptions of planning situations. My goals in writing ANON were two-
fold. First, the program was to be a vehicle for experimenting with representational con-
structs, labeling vocabularies and retrieval mechanisms. Secondly, as argued in Owens
(1989), it was to demonstrate a computationally feasible implementation of an active memory.
In the ANON program, I focus on the concept of incremental retrieval and the tight integra-
tion of retrieval with other processing. ANON represents a framework in which to implement
decision theoretic and other strategies relating to the choice of where to direct inference.

ANON exists to demonstrate the viability of the design in the context of a larger planning
system. It does not stand alone, but rather makes assumptions about the structure and input/
output behavior of the rest of the planning system.

In particular, the program assumes that there exist detectors of the kind described above.
The program further assumes that it knows something about the relative cost of running
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the various detectors. In its current implementation, ANON also assumes that detectors are
independent and that they do not share partial results. Running one detector does not change
the cost of running another.

Under ANON'S model, memory has some control over the inference and sensing proc-
esses. The presence or absence of abstract features in the environment is determined in
response to requests from memory, and those requests are based upon the need for infor-
mation to discriminate among the available knowledge structures.

6.1. Top-down and bottom-up search

Allowing memory to gather information by requesting features suggests a very top-down
view of search: information from the environment would only be supplied upon request,
and information would only be requested when needed to discriminate between competing
knowledge structures.

Such an extreme top-down view of search and retrieval is typically implemented by placing
all the system's knowledge structures in a discrimination net partitioned according to the
system's labeling terms, for example, as in Feigenbaum (1961). The system descends the
discrimination net to find a knowledge structure that matches the current situation on the
basis of all the features extracted in the course of descending the net.

Unfortunately, the discrimination net method exhibits certain problems:

• A system using a discriminaiton net must ask its questions in a predetermined order and
cannot ask the situationally cheaper questions first.

• A system using a discrimination net cannot exploit free information—information gener-
ated perhaps as a side effect of other processing that the system must do regardless of
whether or not it needs the information. Some of a planning system's detectors might
be run by other than the memory search process—the answers they return should be
usable immediately by the memory search process even if it has not yet descended to
that particular branching point in the discrimination net.

• A system using a discrimination net would require a complex control structure to deal
with having one of its questions answered "I don't know."

It is possible to take information utility into account when building a decision net. Quinlan's
(1986) ID3 program provides one example of how this can be done; Fisher's (1987) COBWEB
system and Cheeseman's (1988) AutoClass systems deal with the issues of learning the right
features from which to construct clusters of similar knowledge structures. Static clusters
and discrimination nets, however, do not support the kind of dynamic balancing of informa-
tion cost against information utility at retrieval time as described above. PARADYME (Kolodner,
1989), with its use of preference heuristics, takes information utility into account more
dynamically, during the retrieval process, but it does not appear to provide a mechanism for
merging information about feature acquisition cost with information about the discriminating
power of features. Although PARADYME is also a fine-grained parallel retrieval scheme, it
differs from ANON in that while PARADYME takes as input a description of the current situa-
tion and searches memory for a matching case, ANON extracts a description incrementally

130



INTEGRATING EXTRACTION AND SEARCH 325

as memory search proceeds. When a relevant knowledge structure is found, ANON'S descrip-
tion of the current situation is only just exactly detailed enough to discriminate among the
known cases in ANON'S memory.

Another retrieval mechanism from which ANON differs is DMAP (Martin, 1990). DMAP
searches memory by passing markers through uses a complex, richly indexed hierarchical
knowledge representation. ANON, on the other hand, attempts to gain maximum utility from
flat indexing relationships.

The other extreme is the completely bottom-up search, in which the system gathers as
much information as it can about the current situation, and then uses that information as
a template to match against knowledge structures in memory in a single pass. Using a bottom-
up approach effectively says that the system should run all of its detectors first to yield
a vector of features, and then use this vector of features as a retrieval probe. If the system
has a rich and extensive labeling vocabulary, the cost of running a large number of detectors
is likely to be prohibitive. Furthermore, only a small number of detectors are likely to
correspond to labeling terms with good discriminating power in the current situation. This
approach precludes the efficiencies of incremental retrieval.

6.2. Incremental retireval in ANON

The ANON program uses an incremental approach combining some of the features of top-
down and bottom-up search. This hybrid system tries to be intelligent about which of the
features in its labeling vocabulary it will detect next, at each point in the retrieval process.

The code runs on the Connection Machine fine-grained SIMD parallel computer (Hillis,
1985). Although parallelism is not a particularly important theoretical aspect of the model,
fine-grained parallelism provides an effective, natural mechanism for the dynamic calcula-
tion of feature utility, which is at the heart of the program. The dynamic calculation of
feature utility is built on top of a basic retrieval mechanism similar to that used in the docu-
ment retrieval system described by Stanfill and Kahle (1986).

6.3. Memory organization in ANON

ANON'S memory contains approximately 1000 knowledge structures, each corresponding
to a very sketchy representation of a PFXP or critical planning situation. Each is labeled
via an unstructured list of labels chosen from the system's labeling vocabulary of about
80 labeling terms. The indexing relationships are represented as doubly linked associations
between label terms and knowledge structures, with one processor used for each two-way
link.

ANON'S memory does not explicitly maintain a hierarchy of categories—categories and
hierarchy are implicit in the assignment of labels to knowledge structures.

Given any label term, the system can, essentially in constant time,3 determine which of
the knowledge structures in memory are labeled with that term. Similarly, given any knowl-
edge structure, the system can determine which label terms are used to label it. As will
be shown below, these operations form the heart of a flexible, incremental retrieval system.
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What has been described thus far is a flat database with boolean, atomic labels (or
numerically weighted labels, depending upon which type of detector the system is built
around). Beyond this, ANON offers a mechanism for letting the content of memory inform
the feature extraction process.

The goal of ANON'S retrieval mechanism is to focus the system's feature extraction capa-
bilities on the features that are likely to be most useful as retrieval labels, relative to the
cost of acquiring information about those features. Accordingly, measuring the utility of
a piece of labeling information is at the heart of ANON'S incremental retrieval approach.

6.4. Information utility

6.4.1. Syntactic measurement of benefit

Once the system determines that a certain set of labels characterize the current situation,
then it can retrieve all the knowledge structures in its memory associated with those labels.
Presumably, some of the knowledge structures in this "candidate" pool also have other
labels, each of which may or may not apply to the current situation. The question facing
the system in which of these other labels it should test to determine applicability to the
current situation.

Figure 1 demonstrates the simplest, most syntactic way to determine which labels the
system should care about. This figure shows the state of the system after determining that
three label terms, L1, L2, and L3, characterize the current situation (the last by virtue of
its absence). A first pass at retrieval using these labels identifies eight knowledge struc-
tures as potentially relevant on the basis of matching on these three terms. The question
is which of the remaining label terms the system should try to detect next.

L4 is uninteresting because it characterizes all the candidates. Spending inferential and
sensing effort on determining the applicability of L4 to the current situation is useless,
because this knowledge will not enable the system to discriminate between the candidates.
The same is true of L5, because it characterizes none of the candidates. L6 has limited

Figure 1. Syntactic measurement of feature utility.
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discriminating power in that it separates PFXP513 from the others. L7 and L8 have the
greatest discriminating power: each splits the pool of candidates into two equal-sized groups.
Accordingly, the system should next turn its inferential effort to detecting the cheaper of
the features corresponding to these two lables.

6.4.2. Deeper measures of utility

The same basic implementation also allows the system to determine feature salience on
a deeper, more functionally meaningful basis. Instead of looking for labels that split the
set of candidate knowledge structures in half, the ANON system can look for labels that
correlate with a property the system cares about for some functional reason. For example,
if the system is operating in a resource constrained situation, it may have narrowed its search
to a small number of knowledge structures. Some of these knowledge structures are likely
to include recovery strategies that consume additional resources, while others do not and
are less expensive. Because this distinction is functionally relevant, it can be reflected using
a label like RECOVERY-REQUIRES-RESOURCES.

Unfortunately, the label RECOVERY-REQUIRES-RESOURCES is expensive to detect. Accord-
ingly, the system is looking for labels that are cheaper to detect, but that are highly corre-
lated with this feature in the context of the set of candidate knowledge structures retrieved
thus far.

6.4.3. Cost of features

A utility measurement implies balancing the benefit of any particular piece of information
against the cost of acquiring that piece of information. Because ANON, as implemented,
does not have detectors for each of its labels, it cannot estimate the cost of running those
detectors. But even in a fully developed system that includes detectors, it is not clear how
well the system can predict the cost of running its detectors or of performing any particular
piece of inference.

Two approaches to estimating cost that are possible in the content of ANON'S retrieval
mechanism are estimation by feature class and caching. Features can be marked as belong-
ing to a particular class—for example, low-level sensory features or error messages from
the effectors at the cheap end and unconstrained inference or features requiring active sens-
ing at the costly end. A numerical estimate of the predicted cost of acquiring features of
that class can be associated with each class. Alternately, the system can store, for each
label, historical information about the cost of determining whether or not that label applies.

The former approach requires categorization of features by the system designer when
the system's initial vocabulary is defined and does not specify how the system can assign
new features to the appropriate cost class as they are learned. The latter approach allows
the system to learn the average complexity of acquiring features as it proceeds. Neither
approach guarantees accurately predicting the cost of running a given detector in a given
situation, rather these approaches are of heuristic value. The point of ANON, however, is
not to suggest any particular mechanism for learning the cost of feature extraction, but
rather to provide a computational framework in which computational and other costs of
feature acquisition can be seamlessly integrated into the search process.
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6.5. ANON's basic mechanisms

The feature utility determination and retrieval are accomplished using three basic operations:

65.1. Filter

Given a labeling term or a set of labeling terms, the system identifies the knowledge struc-
tures associated with that term. ANON uses boolean features and ranks selections matching
based upon the number of features that match. The same approach is trivally extensible
to employ numerical weights or feature salience metrics.

Filtering uses a scan/reduce model of computation. In addition to the processors represent-
ing the links between labeling terms and knowledge structures, there is a processor for
each labeling term and one for each knowledge structure. When all the labeling terms to
be selected during a given iteration of the retrieval process are selected, each labeling term
broadcasts information to all processors representing links between itself and a knowledge
structure. Each of those link processors then forwards information to the knowledge struc-
ture to which it points, so that each processor corresponding to a knowledge structure now
has information about which of its labels were selected. The system then uses a parallel
sort to rank the knowledge structures according to how closely their labeling terms match
the labeling terns selected for the current iteration of the retrieval process.

To use numeric weights rather than boolean values, the weights are applied to the link
processors.

65.2. Typify

Once the system identifies a set of candidate knowledge structures, it can identify labeling
terms that are highly representative of this set. Since these might not be the same labeling
terms that were used for retrieval, these terms might be useful for learning new clusters
and new labeling relationships. This process is easily accomplished by running the retrieval
algorithm in reverse—forwarding information from the selected knowledge structures to
the links, and from the links to the labeling terms to which they point.

This operation is essentially inductive syntactic generalization. If ANON has used a com-
plicated conjunction of features to retrieve a given set of knowledge structures, it is possi-
ble that there is a single, previously unexamined feature that is highly representative of
this set—that discriminates this set from the non-selected knowledge structures. This process
will find such a feature.

6.5.3. Discriminate

Using the same calculation used to calculate typicality, the system can look for labeling
terms that subdivide a specified set of knowledge structures. The closer the partitions are
to equal sizes, the better the discrimination score for a particular label term. Just as terms
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that are highly typical of the retrieved set of knowledge structures are important, features
that are present as labels for half of the current candidate knowledge strucutres and absent
for the other half are also interesting—they have a high discriminating power and are likely
to be the subject of a request from memory to the system's detectors.

This approach can also be used with weights to separate the knowledge structures into
equally weighted subdivisions rather than subdivisions of equal numbers of candidates,
so that labels will be found that separate, for example, a large number of low-weighted
knowledge structures from a small number of highly weighted ones.

The same computational technique can be used to identify features that correlate with
each other across a candidate pool. For example, if the system is interested in a functionally
significant but costly feature, it can use the discriminate operation to identify other features
that correlate with it, with the expectation that some combination of these other features
may be cheaper to acquire.

6.6. Basic retrieval operation

Figure 2 outlines the operation of ANON'S incremental retrieval mechanism.
The system starts with an initial rough characterization of the current situation, consist-

ing of a small number of labeling terms believed to apply. This initial characterization con-
sists of information that was provided for free—such as information that becomes available
as a side effect of other processing that the system was doing. For example, the fact that
MULTI-AGENT PLAN or RESOURCE-CONSTRAINED-SITUATION applies to the current situation
might be known as a side effect of planning decisions that the system needed to make.

In the case when few features are already known, the system can have a stock set of
features it cares about, analogous to the stock questions that a detective asks upon encounter-
ing a crime scene. Which questions are asked next depends upon the answers to the first
few questions.

Based upon this initial set of labeling terms, the system retrieves a pool of knowledge
structures labeled using these terms, using the filter operation described above. Figure 3
shows ANON'S output of candidate knowledge structures, given an initial set of two labels.

Figure 2. ANON'S basic retrieval mechanism.
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Figure 3. ANON'S initial search.

Next, using the discriminate operation described above, the system identifies the label-
ing terms with the highest discriminating power vis-a-vis the current pool of candidate
knowledge structures. Using this measurement of discriminating power and any of the esti-
mates of feature acquisition cost discussed above, identify the labels with the best cost/ben-
efit ratio. These labeling terms go onto a list of terms, the presence or absence of which
the system will try to detect in the current situation. Figure 4 shows ANON'S identification
of the best discriminators among the ten knowledge structures.

As the system gains more information (i.e., if the program were connected to an actual
planner, as it runs its detectors and determines which of the suggested labeling terms apply
to the current situation), it returns to the filtering step to further narrow the set of knowledge
structures under consideration.

The system can continue to narrow the set of knowledge structures until either there is
one knowledge structure remaining in the pool, or until there is no further discriminating
information available. Figure 5 shows two further iterations of the filtering and discriminating
steps, employing the user as a detector. If multiple knowledge structures remain in the
pool and no further discriminating information available, some of the knowledge structures
must be re-labeled.

136



INTEGRATING EXTRACTION AND SEARCH 331

Figure 4. Looking for discriminators.

Figure 5. Incremental refinement.
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6.7. A unified control structure

Note that this control structure allows the system to operate in either a top-down or bottom-up
search mode, depending upon the availability of information. If a great deal of information
is available about the current situation (i.e., if the situation is already represented using
the same labeling terms used to organize memory), then memory does not need to assist
in formulating a description of the current situation. The system can use those labeling
terms as retrieval cues for a single iteration through memory search, looking for the knowl-
edge structure that shares the largest number of labeling terms with the description of the
current situation. If ANON starts with a large number of labeling terms in the initial set,
then one pass through the process will suffice to uniquely specify one knowledge structure,
which will be returned.

If, on the other hand, very little is known about the current situation, then memory should
play a large role in developing a description. In this context, discrimination net traversal
is a useful mechanism, and in this context ANON can exhibit the same behavior as a dis-
crimination net traverser. If the system starts with an empty list of initial label terms and
with no information about relative costs of feature acquisition (i.e., if all costs are set to
unity), then the system works very much like a self-balancing discrimination tree. The first
request for information would be for some feature, the presence of absence of which would
split the system's knowledge structures into two equal-sized pools. The second request would
be for some feature that would split the selected pool again into two equal-sized pools.

Given some initial description of the current situation and some information about the
relative costs of acquiring knowledge about the current situation, the system operates in a
way that is neither strictly top-down nor bottom-up. ANON maximizes the use of the a priori
sketchy description of the current situation and, beyond that, uses its knowledge about the
contents and organization of memory to direct its inference mechanism efficiently.

7. Memory and idiosyncratic questions

It is important to recognize that ANON'S control structure causes the system to seek a great
deal of information about the current situation if it is matching against an area of memory
densely populated with knowledge structures, and to seek much less information if it is
matching against a more sparsely populated area of memory. As a result, changing the
knowledge structures in the system's memory changes the questions that the system asks
in the process of developing a description of the current situation. There is no need to
posit a separate "situation describing" module that must be updated to reflect changes in
the system's memory. Questions are asked as needed to discriminate among the knowledge
structures in memory; changing memory changes the questions.

Consider again an explanation system faced with a task such as SWALE'S (Kass et al.,
1986) goal of explaining the mysterious death of a star race horse. Different individuals,
each with idiosyncratic goals for an explanation, will build different explanations. An insur-
ance examiner, for example, might be reminded of a valuable painting that mysteriously
disappeared a year earlier in what turned out to be a fake burglary staged by the owner
to collect the insurance money. A veterinarian might be reminded of the cow that died
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mysteriously the previous week and begin investigating whether the medical causes were
the same. A racing examiner might be reminded of other cases of one competitor trying
to disable another and might suspect the owners of Swale's competitors. A gambler might
be reminded of other odds-on favorites suddenly being disabled or otherwise removed from
competition. Each of these individuals retrieves different remindings from memory because
each has described Swale's death in different terms. Each description is equally correct,
but each leads to a different path of explanatory reasoning.

It is unreasonable to assume that veterinarians, insurance adjusters, and gamblers have
totally different processes for extracting descriptions from situations. Moreover, it is diffi-
cult to account for these differences in retrieval with a system that separates feature extrac-
tion from the rest of memory. The differences might be accounted for by a process that
maps retrieval goals to predictive features, as discussed by Stepp and Michalski (1986) or
Seifert (1988). This process could weight the importance of features depending upon how
relevant they were to the current set of retrieval goals. But this approach leaves unanswered
the question of how retrieval goals and predictive features are linked together.

A model like ANON explains the individuals' different explanations of Swale's death as
due to the fact that abstract feature extraction is driven by the case libraries of each indi-
vidual. The veterinarian has a large case library of animal diseases and consequently
describes the event in terms of features that can discriminate among these cases. Likewise
an insurance examiner discriminates among a second, different library of cases, and a
gambler among a third. Each of these individuals extracts, from the story, the features
necessary to discriminate among the cases in his own memory. Each individual can use
the same kind of mechanism to extract abstract features from concrete descriptions of situa-
tions, but that mechanism is driven by a different case library in each case, and so results
in a different set of features being extracted, a different case retrieved, and a different ex-
planation generated.

8. Discussion

8.1. Retrieval and feature utility

An essential question in learning is what to learn: what category distinctions or descriptive
features are worthwhile. This question arises more or less statically as "What terms should
be included in the system's representation vocabulary?" and dynamically as "What features
should the system try to extract now from this situation?" The main tradeoff in answering
this question is to balance the expressive power of a descriptive feature against the com-
putational and physical costs of determining whether or not that feature characterizes the
current situation. This is the question that system designers address when they choose a
reasonable set of primitives for a representation language, and it is the question that machine
learning systems address when they make feature acquisition or categorization decisions.

The work described in this article represents an attempt to build a framework in which
this tradeoff can be managed explicitly by a retrieval system. As such, it looks at two distinct
means of describing the expressive power of a feature. External functional utility describes
the utility of the feature to the system's external tasks: selecting actions, recovering from
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plan failures, and detecting opportunities or threats. Internal functional utility describes
the utility of the feature to the system's internal task: choosing the prior case or abstract
knowledge structure most relevant to the system's current situation. This decomposition
makes evident that the internal task, involving judgments of similarity or relevance, only
makes sense as it is grounded in the external task—choosing a relevant prior experience
is only useful to the degree that the prior experience tells the system what to do, or what
further information to gather.

The ANON program itself does not address what the system does with a knowledge struc-
ture once it is determined to be applicable. It is not a complete planning system, and therefore
it does not make any statements about the external task. It does, however, illustrate a retrieval
mechanism that can efficiently and dynamically calculate the internal utility of a feature,
and thereby does bring that utility measurement to bear on the question of what features
to try to detect or extract next. It does so in a way that potentially allows external and
internal utility to be expressed in comparable terms, and thereby to enter into the same
calculation of which piece of detection or inference has the highest expected utility.

It achieves some of the same effect as algorithmic approaches to internal utility calcula-
tions such as those found in systems like ID3, AutoClass, and COBWEB, in that it creates
a hierarchy of feature salience, such that the features with the highest discriminating power
are pursued first. It avoids, however, the problem of committing in advance to a static order-
ing of questions or a static hierarchy of feature importance. ANON'S algorithm allows the
information contained in the current candidates at any point in the retrieval process to direct
the subsequent retrieval. The features of the candidates known in the candidates but untested
in the input can be examined to decide which ones discriminate among the candidates.
The system's memory of knowledge structures can be examined as a whole to decide which
features carry a high information content with regard to the input.

Exclusively top-down search ignores such information as the system might have at its
disposal, for example, features acquired as a side effect of other processing that the system
needs to perform. Similarly, completely bottom-up search causes the system to waste its
time detecting the presence or absence of features that do not discriminate among the knowl-
edge structures that are currently under consideration. The balancing approach taken by
ANON is sensitive to and effectively uses available information, but it also allows the con-
tents and organization of memory to drive the feature extraction process.

8.2. Criticalities and future directions

Since the point of this research is to enable systems to reason about the utility of feature
acquisition, the major criticalities revolve around the system's measurements of utility. ANON
shows how a system can measure discriminating power and use that measurement. The
program itself, however, says nothing about external utility, beyond providing a mechanism
whereby external and internal utility measurements can be combined to control inference.
As a result, an important future direction is to say something about external utility and
detections costs, beyond the obvious "They should be taken into account."

In particular, this suggests that content theories of repair and recovery should be extended
to include detectability: the features to be included in a representation vocabulary are those
that are functionally grounded not only in repair and recovery, but in detectability as well.
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The issue here is to build a theory of feature detectors and their cost. Can anything be
said about detectability at other than an ad-hoc level? Are there significant different classes
of features, relative to detectability? Can detection cost be predicted or estimated reliably?
This is an issue not just for the system designer in choosing an initial representation vocab-
ulary, but for the system as well as it acquires new descriptive features.

A key future direction is to apply the representation methodology suggested by this work,
to a specific, concrete, real-world planning domain. While the advice-giving proverbs that
form the basis of ANON'S knowledge structures provide a good cross section of stereotypical
plan failures, they are not themselves grounded in a specific planning task. The goal is
to identify stereotypical recurring failures and corresponding recovery and repair strategies,
to build feature detectors for the descriptive features that discriminate among those failures,
and to use an ANON-like memory as a repository of the resulting knowledge structures.
When such a system is built it will enable us to determine whether or not the external
and internal measurements of feature utility, as described above, can in fact be combined
into a single mechanism for inference control.

8.3. Indexing: a compromise

A theory of indexing and retrieval is inherently one of compromise. Given infinite com-
putational resources, a system could choose the best knowledge structure from its memory
by trying each in turn, simulating the results obtained from applying the advice contained
in that knowledge structure to the current situation, and, after trying all the knowledge
structures in its library, choosing the best. Or, a system with infinite computational and
sensory resources could perform such a detailed analysis of the current situation that the
resulting description of the problem would effectively embody the solution, making com-
plicated matching of the current situation against prior experiences superfluous.

But computational resources are not infinite. A system cannot develop a rich, fleshed-
out description of the current problem merely as a precursor to searching memory, nor
can it devote a lot of computational resources to estimating the goodness of each of a large
number of knowledge structures as a potential solution to the current problem. Further-
more, computing power is not the only limit on the search for the ideal knowledge structure
to match against the current situation; information about the world comes at a price, too.
An eye or camera, for example, can only look in one direction at a time. Often, gathering
even low-level sensory information about the world involves costs in resources and time. A
theory of indexing and retrieval is a theory of heuristic management of bounded resources.

The compromises inherent in a theory of indexing and retrieval manifest themselves in
several places, most particularly the modularity of the system and the choice of an indexing
or labeling vocabulary.

8.3.1. Modularity

The premise underlying most models of retrieval is that a system can solve problems by

1. developing a sketchy description of the current situation,
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2. comparing that description against the knowledge structures in its memory and selecting
one or more knowledge structures that match it, and

3. adapting the retrieved knowledge structures to the problem at hand.

Within this framework, the tension lies in the balance between the sophistication of the
"sketchy describer," the matcher, and the adapter. The more powerful the describer and
the more extensive the memory, the less powerful the matcher and the adapter need to
be. On the other hand, a strong, flexible, general adapter requires only a small memory
and a weak matcher. In each case, the sophisticated module needs more access to the system's
general inference mechanism. The modular approach remains a compromise because it
cannot guarantee that the sketchy description captures anything essential about the current
situation, nor can it guarantee that a knowledge structure matched on the basis of this sketchy
description in fact contains useful advice.

Working around this modularity is an important part of the retrieval mechanisms described
above. I presented a theory of indexing that tightly integrates the task of describing the
current situation and the task of searching memory for relevant knowledge structures, both
with each other and with the larger planning task. I developed ANON to demonstrate the
ability of a memory, organized along functional lines, to drive a describer—an inference
mechanism—and thus tailor descriptions to the needs of the memory search process. Such
integration of feature extraction and retrieval will result in retrieved knowledge structures
that improve the capability of the system to implement repairs and recovery strategies.

8,4. Learning and retrieval

ANON is not a learning algorithm. It is instead a framework for dealing with knowledge
about the costs of feature acquisition that a system learns elsewhere.

The ANON program presents a novel approach to the mechanics of retrieval. As it is equally
informed both by the contents of memory and the features of the current environment,
it is neither top-down nor bottom-up in its approach to search. While it exploits parallelism,
it does so in a way that allows the system to search memory incrementally—interleaving
the operation of the searcher with that of the inference mechanism that gathers information
about the current situation. This approach allows the system to continually balance the
cost of acquiring information against the value of that information. Although other systems,
most notably ID3 (Quinlan, 1986), have attended to this balance, ANON manages it dynam-
ically during the retrieval process.

With this algorithm I argue for a re-modularization of memory-based systems. Memory
should not be viewed as a passive information-retrieval system to be queried by an intelligent
process elsewhere within a system. Memory implicitly contains much of the information
necessary to direct inference and sensing; systems should make this information explicit
and use it to direct incremental feature extraction and retrieval.
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Notes

1. See Lehnert (1981), Dyer, (1982), and Schank (1986) for other examinations of the significance of proverbs
to memory organization.

2. Of course any unique symbol, such as FOO or the number 23, could be used. Throughout this discussion,
bear in mind that the lexical form of any labeling construct has no semantics whatsoever. All semantics come
from the particular set of knowledge structures indexed by that construct, and from the behavior of its detector
(see section 3.5 below) for that construct.

3. In a simple variant on the essentially boolean detector approach described here, detectors could return some
numerical value that indicated how strongly the labeling term corresponding to the detector characterized the
current situation, or how confident the detector is in its assessment.

4. This condition does not, however, mean that the system should lump all of these cases together into one equiva-
lence class. There may be other circumstances other than this particular retrieval instance under which the
differences between the cases would be significant.

5. Given, of course, that "constant time" on parallel hardware loses its theoretical significance. Once the number
of indexing relationships exceeds the number of physical processors on the system, the complexity of the operations
described below is essentially n log n in the number of indexing relationships.
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