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Abstract. Explanation-based learning depends on having an explanation on which
to base generalization. Thus, a system with an incomplete or intractable domain
theory cannot use this method to learn from every precedent. However, in such cases
the system need not resort to purely empirical generalization methods, because it may
already know almost everything required to explain the precedent. Learning by failing
to explain is a method that uses current knowledge to prune the well-understood
portions of complex precedents (and rules) so that what remains may be conjectured
as a new rule. This paper describes precedent analysis, partial explanation of a
precedent (or rule) to isolate the new technique(s) it embodies, and rule reanalysis,
which involves analyzing old rules in terms of new rules to obtain a more general set.
The algorithms PA, PA-RR, and PA-RR-GW implement these ideas in the domains
of digital circuit design and simplified gear design.

1, Introduction

Every approach to machine learning depends, at least implicitly, on some set
of constraining assumptions about the nature of the learning task. Empirical
learning approaches, such as conceptual clustering algorithms (Michalski &
Stepp, 1983), require that observed regularities in the data reflect the under-
lying causal laws of the domain. This assumption tends to be true in domains
where training examples are relatively abundant. Another frequently-used con-
straining assumption is that the target concepts can be expressed in a limited
(biased) language (Winston, 1975; Mitchell, Utgoff, & Banerji, 1983).

Explanation-based approaches to learning (Mitchell, Keller, & Kedar-Cabelli,
1986; DeJong & Mooney, 1986) assume that examples or precedents can be
explained in terms of the learner's theory of a domain. They then generalize
the resulting explanation in order to find weaker preconditions under which the
explanation still holds. These techniques have been applied to several widely
different domains. For instance, Mooney and DeJong (1985) describe a sys-
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tem for learning schemata for natural language processing, whereas Mahade-
van (1985) and Ellman (1985) apply similar techniques to the circuit domain.
Mooney and Bennett (1986) give a domain-independent technique for gener-
alizing hierarchically structured explanations, and Minton, Carbonell, et al.
(1987) outline a general planning architecture that uses related techniques.

One limitation of explanation-based approaches is that they fail if the sys-
tem cannot explain the precedent. As Mitchell et al. (1986) have pointed out,
a system can fail to find an explanation for a variety of reasons, including in-
completeness and intractability of the domain theory. To illustrate the former
problem, consider an adder circuit that differs from a known design only in the
implementation of one exclusive-or gate. It would be overly conservative to
treat the entire structure as a new adder - it is really an old adder with a new
exclusive-or gate. Since an explanation-based technique cannot completely
explain the new adder, it cannot be applied to this generalization problem.
A more versatile learner would explain those parts it could understand, such
as the bit-slice architecture and the sum-with-carry structure of each bit. It
would then see that it failed to explain the new adder only because it could not
understand a particular subcircuit. Thus, the system could conjecture that its
domain theory was missing an implementation rule for exclusive-or.

Another limitation of explanation-based approaches is that they can only
produce rules that are provably correct (in their domain theories) independent
of context. That is, they cannot learn logically incorrect rules that neverthe-
less have heuristic value. Explanation-based methods compile rules from the
domain theory into more efficient ones, attempting to find the weakest precon-
ditions under which the compiled rules should be applied. However, finding
the weakest preconditions is a notoriously difficult problem, and instead the
system may produce a logically correct but overly specific rule. In contrast,
heuristic rules constitute plausible conjectures that are useful in some contexts
but invalid in others. Most explanation-based learning methods cannot acquire
such heuristic knowledge.

This paper describes an approach to learning in the presence of imperfect
domain theories, which we call learning by failing to explain. The intuition be-
hind this approach is that novices do have some useful explanatory knowledge,
which they can use to isolate those aspects of a precedent they do not under-
stand. For example, a student who can say, "I don't understand step five," is
in better shape than one who says, "I don't understand this proof."1 This ap-
proach does not distinguish between intractable and incomplete theories; each
can lead to a failure to explain and thus is treated the same way. Further-
more, like all empirical learning methods, the current method can only form
plausible conjectures. It does not address the issue of verifying the soundness
and usefulness of these conjectures.

The constraining assumption underlying this approach is that precedents
can be derived from a grammar of generally useful problem-solving operators.
Such an assumption seems plausible in design domains, where designers build
up a hierarchy of implementation techniques. It would be less plausible in a

1This work is motivated by intuitions about human learning, but is not intended to model
such learning.
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domain where the interesting properties come about through significantly ran-
dom processes. The following section describes learning by failing to explain
and its application to the design domain. Section 3 evaluates the approach,
examining its generality and limitations, reporting some experimental results,
and outlining directions for further research. Finally, Section 4 discusses re-
lations to other learning work. Hall (1985, 1986a) goes into greater depth on
the issues discussed in this paper.

2. Learning by failing to explain

This section presents one approach to learning by failing to explain. It
begins with a description of the design domain and then examines issues of
representation and performance within this domain. Finally, it considers two
related learning methods - precedent analysis and rule reanalysis.

2.1 The design domain

I have tested these learning methods in the design domain, focusing princi-
pally on circuit design. The devices in this area fall naturally into a hierarchy,
with more complex devices, such as adders and register banks, made from
interconnections of less complex devices, like bit slices, flip-flops, and gates.
I have also examined the design of simplified gear mechanisms, in which ele-
ments such as gears, sprockets, chains, and shafts are connected to implement
transfer of rotational speed.

A model of the design skill must account in some way for at least the fol-
lowing competences.

• Top-down design; the ability to take a high-level specification of a device's
function and refine it into a lower-level implementation.

• Optimization: the ability to take one device and replace a piece of it with
some other piece so that the resulting device is functionally the same but
improved in some way.

• Design derivation (analysis): the ability to justify that some device per-
forms a given function.

• Analogical design: the ability to solve a new problem in a way similar to
some previously solved problem, or by combining elements of the solutions
to several old problems.

This paper discusses learning in the context of a particular model of design
knowledge, the design grammar. In order to justify use of this model of knowl-
edge, Section 2.3 discusses how a design grammar supports these four compe-
tences, though design performance is not the primary focus of this research.

The learning task I will address involves the improvement of design compe-
tence with experience. This can be stated more formally:

• Given: A set of design rules that provide initial competence;
• Given: A set of precedents giving specifications and their implementations;
• Find: New design rules that, in combination with the initial rules, let one

transform the specifications into their implementations.
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Note that the above statement refers to precedents rather than instances.2 I
assume that each input is actually a complex combination of instances of many
different rules. Thus, a large part of the learning problem lies in determining
the boundaries between rule instances. This contrasts with most work on
concept learning, in which each input corresponds to a single rule instance.

2.2 Representing designs and design knowledge

The principal epistemological assumption I make is that design knowledge
can be divided into two components: knowledge about the analysis of designs
and knowledge about their synthesis, with the latter being represented as a
design grammar. This distinction is critical to understanding what is learned,
and it is shared by many authors, including Mahadevan (1985) and Ressler
(1984).

Analysis knowledge is that body of axioms, lemmas, theorems, proof tech-
niques, etc., that lets one show that a design is correct or calculate its costs.
This is a deductively sound knowledge base, which I take as given for present
purposes. For example, analysis knowledge in the circuit world includes De-
Morgan's laws and the laws of temporal logic.

Synthesis knowledge, on the other hand, is what enables the designer to put
together (synthesize) implementations. It is a collection of tools and tricks that
the designer uses in producing implementations. For example, one synthesis
rule for circuits is "To implement NOR(a,b), use AND(NOT(a),NOT(6))."

In contrast to analysis knowledge, synthesis knowledge may contain heuristic
rules that may not preserve functional equivalence in all contexts. For instance,
one can multiply a number by two using a single bit shift, but one can not
multiply a number by three this way. The single shift is an implementation of
multiplication that works only when one of the inputs is two.

Synthesis knowledge is represented as rules having the form "structure X can
sometimes implement functional block Y," where a functional block represents
some constraint between its well-defined inputs and outputs. By structure, I
mean an interconnection of functional blocks, where the interconnection rep-
resents the flow of data.

Each rule has the form LHS <=> RHS, where LHS denotes a single func-
tional block and RHS describes a possible implementation for LHS. Structures
are represented by directed graphs. Figure 1 graphically illustrates a typical
rule. This may be represented algebraically as

[y = BUFFER(a)] <= [y = NOT(NOT(a))].

Note that input and output correspondences are indicated by common vari-
ables in the two sides of the rule. Thus in the figure, the output variable y in
the LHS is the same as the output variable y in the RHS.

In this representational scheme, a precedent consists of a pair of graphs, each
representing an implementation of the same overall function. The intuitive

2This terminology is in accord with Winston, Binford, Katz, and Lowry (1983), who also
use precedent to mean complexes of rule instances.
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Figure 1. A design grammar rule. The LHS is to the left of the double-headed
arrow, the RHS to the right. Input/output variable correspondences are
represented by naming. Thus, the two a variables correspond and the y
variables correspond.

meaning is that one is a high-level description of some device and the other is
a particular implementation of the same device. Therefore, one of the graphs
will be termed the high-level graph, the other the low-level graph.

2.3 Derivation in design grammars

Having formalized synthesis knowledge in terms of grammar rules, we will
consider how such grammars can be used in the process of derivation. A deriva-
tion is a sequence of rule applications, starting from some graph (a structure
description) and leading to a functionally equivalent graph. To apply a rule,
the system must first verify that either the LHS or RHS of the rule matches
a subgraph of the current graph. If this holds, then the system removes the
matching subgraph from the current graph and installs a copy of the other
side of the rule in its place. Analytic knowledge is then used to verify that
the transformation maintains overall functional equivalence between the initial
graph and the resulting graph. (When this is verified, the rule application is
termed allowable.) Note that the system may apply rules either left to right or
right to left, as long as the analysis component verifies that the transformation
maintains overall correctness. If the system cannot verify correctness, the rule
application is not allowed (and cannot be a part of any derivation).3

The four design competences can be seen as different applications of the
basic mechanism of grammar derivation, as follows. Note that I have not im-
plemented a complete performance design system to demonstrate these com-
petences. Other authors have done work in this area, however, as noted below.

Top-down design. This involves taking a relatively high-level specification of
the function of a device and successively refining it by choosing implemen-
tations of subfunctions. This process is modeled by derivations using rules
exclusively left to right, that is, by always replacing the single LHS functional

3This research has not addressed the problem of verification using analytic knowledge, so
when such verifications are needed, the system asks a human oracle.
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block with the RHS implementation. Ressler (1984) takes this approach in
generating operational amplifier designs.

Optimization. This involves taking one device and replacing one piece with an-
other so the resulting device is functionally the same. An optimization step can
be modeled by a right-to-left rule application, followed by a left-to-right rule
application. For example, consider representing the idea that a synchronous
adder circuit can sometimes be made faster by pipelining, that is, increasing
the latency but decreasing the clock cycle time. Suppose a system has two im-
plementation rules for the functional block SYNCHRONOUS-ADDER, one with
high latency and short clock period, the other with low latency and long clock
period. Using these rules, the system can recognize when one implementation
is present as a subgraph of the current design stage and replace it with the
functional block SYNCHRONOUS-ADDER. Then the block can be expanded
using the other implementation.4 Darlington (1981) uses a similar notion of
transformation in order to semi-automatically optimize programs.

Design derivation (analysis). This involves justifying that some device per-
forms some given function. This process can be viewed as the parsing problem
for design grammars. Wills (1987) takes this view in her work on recogniz-
ing program structural cliches. Winston et al. (1983) take a similar view of
analysis, but the grammatical structure is implicit in the knowledge base of
precedents, and rules are extracted "on the fly" from analogous precedents.

Analogical design. This involves solving a new problem in a way similar to
some problem that has already been solved, or by combining elements of the
solutions to many old problems. This competence can be modeled by "re-
running" a known derivation on a new design problem by: (1) finding a partial
match between the problem specification and the initial specification of the
known derivation, (2) applying those steps whose subgraphs are covered by
the partial match (and which are still allowable), and (3) leaving out the other
steps. This technique for controlling search has been explored by Steinberg
and Mitchell (1984), and can be seen in STRIPS' use of macrops (Fikes, Hart,
& Nilsson, 1972).

The learning task can now be stated in more technical terms. The system
should conjecture general grammar rules to add to its design grammar so that
the precedents have derivations in the augmented design grammar. That is,
for each precedent, there should be a grammar derivation starting from the
high-level graph and resulting in the low-level graph.

2.4 Precedent analysis

The distinction between analytic and synthetic design knowledge leads to
two forms of explanation. Some previous work on explanation-based learning
(e.g., Mahadevan, 1985) has focused on deductively valid explanations based
on analytic knowledge. Others (e.g., Mooney & DeJong, 1985) have focused on
heuristic synthetic knowledge, in which a design is explained by the sequence

4 The issue of verifying that such a move improves efficiency is also beyond the scope of
this work.



LEARNING BY FAILING TO EXPLAIN 51

of rule applications used to derive it. I have taken the latter approach in my
own work.

Now let us consider precedent analysis, a technique for constructing and
learning from a partial explanation of a precedent. PA is a prototype computer
program that implements this technique. The basic idea behind the algorithm
is to first construct a maximal partial parse (derivation) of the precedent in
terms of the existing design grammar. Next one prunes the parts of the prece-
dent's graphs that are completely derived by the partial parse, leaving a new
correspondence between a subgraph of the current high-level graph and a sub-
graph of the low-level graph. Finally, one forms two new rules (with identical
LHSs) using this new correspondence.

Although there have been other approaches to parsing, both for languages
generated by graph grammars (Brotsky, 1984) and by string grammars, these
approaches cannot be applied to the problem of constructing partial parses
for use by precedent analysis. This is because (1) the algorithm must produce
reasonable partial parses when the input cannot be completely parsed; and
(2) most existing parsers depend upon the fact that they parse context-free or
context-sensitive languages, whereas design grammars can generate arbitrar-
ily complex languages. In fact, the parsing problem for design grammars is
uncomputable (Hall, 1985).

2-4-1 A precedent analysis scenario

Consider an example of this process. Suppose precedent analysis is given
the following precedent:

(a) [y = Z - l ( f 3 ) , 0 = MUX(K, ZERO, Z - 1(XOR(a,c))) ,a = XOR(a, b)}

(b) [y = Z - 1 ) ( , ? ) = AND(*,XOR(Z - 1 ) ,Z - 1 (c ) ) ,a ' = XOR(a,b)].

Figure 2 presents this information graphically, with (a) considered to be the
high-level graph. Suppose further that the learner knows the design grammar
rules shown graphically in Figure 3.

Using the knowledge in this miniature design grammar, the learner can al-
ready show that the MUX with ZERO on an input in Figure 2 (a) is equivalent
to the AND box in Figure 2 (b). Apply the rules in the order given: expand the
MUX, replace the AND-ZERO combination with ZERO, replace the resulting
OR-ZERO combination with BUFFER, and finally implement the BUFFER
as a single connection point. This partial derivation leads to the equivalence
shown in Figure 4.

The precedent analysis system then reasons that the functionally corre-
sponding parts of the two graphs have been explained by the partial derivation.
This correspondence is indicated by the dashed lines in Figure 4. In this case,
the fact that the original MUX-ZERO combination can be implemented by
the AND is explained by the partial derivation. The learner knows the re-
maining (unmatched) subgraphs fulfill the same role in the overall function. It
is then reasonable to conjecture that this role equivalence derives from some
combination of unknown rules, and thus should be captured in the grammar.
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Figure 2. A precedent, consisting of a high-level graph (a) and a low-level graph (b).
This example is somewhat contrived in order to more fully illustrate the
parsing algorithm's heuristics. The Z-1 boxes represent a time delay of
one clock cycle.

Since both subgraphs are more than single nodes, neither can be the LHS of
a rule. Thus, the learner creates a new functional block type to stand for the
common role5 filled by the two subgraphs. This block then becomes the LHS
of two rules shown in Figure 5, one whose RHS is the unmatched subgraph
in Figure 4 (a), the other whose RHS is the unmatched subgraph in Figure
4 (b).6 The variable correspondences are determined by the partial match.

Creating the appropriate name for the common role (function) filled by
the two subgraphs can be a problem in that (1) the teacher will not share
the same name for that role, and (2) the learner may already know another
name for (what turns out to be) the same role. The present system ignores
these problems by simply making up a new name each time. The problem of
deducing that two roles are the same (from their implementations) requires
sophisticated analytic reasoning beyond the scope of this research.

5In my terminology, "role" is a generalization of "function"; see Hall (1986b) for more
discussion of roles.

6 At the current stage of this research, creating two rules rather than one is no different
in power from creating a single rule associating the two unmatched subgraphs. However,
I anticipate that this will facilitate future research. The new LHS functional block can be
given a natural interpretation as the moat restrictive common role of the two RHSs.
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Figure 3. Four design grammar rules. Rule (a) is a standard multiplexor implemen-
tation, whereas (b) reflects the fact that AND of anything with zero is
identically zero. Grammar rule (c) shows that OR of anything with zero is
the identity (BUFFER) function, and (d) shows that the identity function
may be implemented as a connection point.
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Figure 4. The precedent in Figure 2, after prior knowledge (Figure 3) has led to partial
understanding, showing that the MUX-ZERO combination of the original
is implemented by the AND box. The dashed lines indicate functional cor-
respondences. Note that functional blocks correspond to functional blocks
and connection points correspond to connection points. The Greek letters
are for reference in the text only.

2.4-2 The precedent analysis algorithm

Now that we have seen an example of precedent analysis, let us consider
the method in more formal terms. Table 1 presents a pseudo-code description
of the PA algorithm, which implements a greedy approach to finding partial
parses. The method searches for a partial derivation that, when applied to the
high-level graph, results in a graph with as large a partial match as possible
with the low-level graph. The partial match must initially match correspond-
ing input and output variables as dictated by the precedent. Ideally, at any
stage in its development, the partial match may only associate functionally
equivalent nodes in the two graphs. The heuristic criteria for extending the
partial match are given below. In the pseudo-code description, PM holds the
current partial match, HLG holds the current high-level graph, and LLG holds
the (unchanging) low-level graph of the precedent. The PA algorithm loops,
calling the SEARCH FOR PROGRESS algorithm shown in Table 2. Each time
progress is found, the loop is executed again, starting from the HLG resulting
from the previous iteration. When no more progress occurs, the resulting HLG
is used to formulate a conjecture.
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Figure 5. The grammar rules learned from the precedent in Figure 2. The system has
extracted the role-equivalent subgraphs from the transformed precedent.
Since neither subgraph was a single node, two new rules were formed.
The variable correspondences (indicated by naming) were inferred from
the partial match.

SEARCHFORPROGRESS looks ahead through all possible combinations of
allowable rule applications to a fixed search depth, trying to find some com-
bination that results in a meaningful extension to the partial match. The
search is breadth-first through the space of rule applications, stopping at a
depth dictated by the system parameter SEARCHDEPTH. When no further
progress seems possible, SEARCHFORPROGRESS returns the smallest graph
encountered in the last lookahead phase. The complexity of the subgraph iso-
morphism problem makes it desirable to have the graphs of grammar rules be
as small as possible.

In the previous example, PA proceeds as follows. First, progress is found im-
mediately (without any rule applications), because the match can be extended
to include points a-a' and /?-/?'. Assuming SEARCH DEPTH = 4, SEARCH-
FORPROGRESS then searches breadth-first to depth four, resulting in Figure
4. Further progress is made by extending the match to include all the dashed
lines. SEARCHFORPROGRESS then fails to make any further progress, as no
rules are applicable to the unmatched portions of the graphs.
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Table 1. Pseudo-code for PA, a precedent analysis algorithm.

Inputs :

Outputs :
Variables:

PRECEDENT consists of a high-level graph, a low-level
graph, and their variable correspondences.

DG is a set of design grammar rules.
One or two grammar rules .
LLG and HLG are graphs.
PM is a partial match between two graphs .
PROG? is a flag stating whether progress was found.

Procedure PA (PRECEDENT . DG)

Let PM be the variable correspondences lor PRECEDENT.
Let LLG be the low-level graph for PRECEDENT.
Let HLG be the high-level graph for PRECEDENT.
Repeat
Let [PROG?, HLG, PM] be SearchForProgress(LLG, HLG, PM, DG) .

Until PROG? is False.
Return MakeConjectures (LLG , HLG, PM) .

The overall criterion for extending the partial match is that matched nodes
should represent functionally equivalent connection points or blocks. If one
node is constrained relative to the inputs or outputs, the other should be
identically constrained. The partial match is extended incrementally inward
from the input variables and output variables according to two heuristics.

1. Two connection points (one from each graph) may be matched when their
values are determined by the same function of corresponding matched
nodes. (This moves in from the inputs.)

2. Two connection points may be matched if all of the following conditions
hold: (a) They are inputs to the same type of functional block; (b) the
blocks to which they are input drive matched nodes; and (c) there is no
ambiguity in matching the other inputs to the functional blocks. There is
ambiguity if either block has more than one input of the same type, and
at least two of those inputs remain unmatched. (This moves in from the
outputs.)

To illustrate these criteria, consider the pair of graphs in Figure 2. The first
criterion would say that, since connection points a and a' are each XOR of
corresponding previously matched nodes, they (and the XOR blocks) may be
matched. The second criterion would say that, since j3 and /?' are each the
unambiguous inputs of the Z-1 boxes that drive y, they may be matched. The
second criterion would be used again to extend the match to that shown in
Figure 4.

There are some subtleties: consider what happens to the first criterion when
one graph has two nodes that are (syntactically) the same function of the same
inputs. There is no syntactic way of choosing between them. PA solves this
using the fact that the graphs represent pure functions. The meaning of the
graph does not change if we remove one of the two and replace its connections
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Table 2. Pseudo-code for SearchForProgress, a subroutine of PA.

Inputs :

Outputs :

Variables:

LLG and HLG are graphs.
PM is a partial match between the two graphs .
DG is a set of design grammar rules.
A flag stating whether progress was found.
A modified high-level graph.
An extended partial match between the two graphs.
BEST. GRAPH and QHLG are modified high-level graphs.
BEST. PARTIAL. MATCH and QPM are extended partial matches.
QUEUE is a queue of graphs, matches, and their depths.
QDEPTH is the current depth of the search.
SearchDepth is the allowed depth of search.

Procedure SearchForProgress (LLG , HLG, PM. DG)

Let [BEST. GRAPH, BEST . PARTIAL . MATCH] be [HLG, PM] .
Let QUEUE be <[HLG, PM, 0]>.
While QUEUE is not empty,
Let [QHLG, QPM, QDEPTH] be Head(QUEUE).
Let QUEUE be Tail (QUEUE).
If CanExtendMatch?(LLG. QHLG, QPM),

Then return [True, QHLG, ExtendMatch(LLG, QHLG, PM)] .
If size(QHLG) is less than size (BEST. GRAPH) ,

Then let [BEST. GRAPH, BEST. PARTIAL. MATCH] be [QHLG, QPM].
If QDEPTH is less than SearchDepth,

Then add ApplyAllowableDesignRules(QHLG, QPM, QDEPTH, DG)
to the back of QUEUE.

Return [False, BEST. GRAPH, BEST . PARTIAL . MATCH] .

by connections to the other. A straightforward pre-pass over a graph merges
the syntactic equivalence classes into one node each.

There is another criterion for extending the partial match when a subgraph
transforms into a single connection point. (This happens when a subgraph is
functionally equivalent to the identity function.) In such cases, the previous
two criteria do not apply, as there are no new nodes to which to extend the
match. In this case, the algorithm looks for a situation in which the inverse
image of a connection point under the partial match decreases. For example,
the system would judge progress after transformation of "y =BUFFER(a)" to
"a." That is, originally the partial match mapped both y and a to the same
connection point, x, in the other graph. After the transformation, the only
connection point mapped to x is a; thus the inverse image of x under the
partial match has decreased from {a,y} to {a}.

Once the partial match has been extended as much as possible, it is straight-
forward to construct the two rules. In the above example, the unmatched sub-
graphs consist of those functional blocks with no dashed line correspondence.
In this case, PA creates a new functional block (/) to be the LHS of the new
rules (as shown in Figure 5). Note that the inputs and outputs of the new block
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Figure 6. A precedent on which the second match-extension heuristic fails. ANOTB
represents the function AND(a,NOT(6)). The heuristic would match con-
nection point a with y, because there is no ambiguity in matching the
inputs to the ANOTB boxes and they both drive z. This leads to a highly
context-dependent and rather useless rule conjecture.

correspond to the connection points impinging on the unmatched subgraphs.
Their correspondence is given by the partial match.

2.4-S Correctness of the generated rules

At first glance, it might seem that PA can generate "incorrect" rule conjec-
tures, since the heuristics for match extension can erroneously associate two
nodes that really do not correspond functionally. For example, in Figure 6,
the second match-extension heuristic would cause the system to associate node
a in the left graph with node y in the right graph, because the inputs to the
ANOTB function are unambiguous. The system would then conjecture the
synthesis rule saying "sometimes replace constant ZERO with a connection
to y and simultaneously replace f ( x , y) with x." This rule is clearly undesir-
able in that it can rarely be applied (at a minimum, y must be connected to
ZERO). A designer would not really use this rule, because it is very specific
and context-dependent.

However, this rule is not incorrect, since it can be applied in at least this
one case. The same goes for any rule conjectured by PA.7 Furthermore, since
rule applications are checked analytically before they are executed, such rules
cannot lead to functionally incorrect designs. However, they can lead to some
rather strange design derivations, and they tend to be rather useless in general.
I have not explored how often these faulty rules are conjectured ("how often"
is a difficult question to address in the absence of real-world data), nor have I
explored whether they cause more bad rule conjectures when they are present
than when absent. These are two interesting questions for future research.

Throughout, I assume that the teacher only presents correct precedents. If the precedent
were incorrect, it would be possible for PA to conjecture a rule that was never applicable,
hence incorrect.
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Table 3. Pseudo-code for PA-NO-RR, an algorithm that learns using precedent
analysis without rule reanalysis.

Inputs: PRECEDENT consists of a high-level graph, a low-level
graph, and their variable correspondences.

DESIGN . GRAMMAR is a set of design grammar rules.
Outputs: A revised design grammar.
Variables: CDG is the current design grammar.

T is a pair of learned design rules.

Procedure PA-NO-RR (PRECEDENT, DESIGN. GRAMMAR)

Let CDG be DESIGN . GRAMMAR .
Let T be PA (PRECEDENT, CDG).
If T does not duplicate information in CDG,

Then let CDG be the union of T with CDG.
Return CDG.

2.5 Rule reanalysis

In addition to the issue of the conjectures' context-dependence, their speci-
ficity is also important. Precedent analysis may produce overly specific rules
for two main reasons. First, since the matching heuristic moves in from the
"edges" of the graph, it can get stuck early if some key unknown transforma-
tion applies near the inputs or outputs. Second, there might be more than one
unknown rule used in constructing the precedent. In either case, the learned
rules will have RHSs that are combinations of more than one unknown, more
general rule. The learner is much less likely to see again a given complex com-
bination of rule instances than it is to see such instances used separately in
other contexts.

However, it is possible to learn new rules later that would let precedent
analysis find the more general rules from which the first was composed. The
idea of rule reanalysis is that whenever the learner induces a new rule, it
should try to use the rule to analyze previously learned rules as though they
were precedents. Winston (1975) introduced the idea of the near-miss felicity
condition as a means of ensuring that no more than one new condition was
used in any precedent. Rule reanalysis can be seen as an attempt at dealing
with far misses by keeping overly-specific intermediate results around for later
generalization.

This subsection demonstrates that reanalyzing existing rules leads to a more
powerful learning method (in a sense to be defined) than one that does not.
It also shows that rule reanalysis is still somewhat sensitive to the order of
presentation of the precedents.

2.5.1 The need for reanalysis

For comparison purposes, Table 3 presents a pseudo-code description of PA-
NO-RR, a simple program for accepting precedents, using PA to conjecture
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new rules, and adding the conjectures to the design grammar. This algorithm
does not use rule reanalysis. Suppose one always presents precedents to PA-
NO-RR in the best possible order, i.e., the order that results in the most
general learned rules. Might it not be that rule reanalysis is a waste of time?
The answer to this is "no," as the following counterexample shows.

Suppose that, unknown as yet to the system, there are four general design
rules represented in three precedents. The four design rules are as follows, for
brevity stated as propositions rather than graphically:

• f1(x) <=>g1(x)

• f 2 ( x ) <=> g 2 ( x )
• f 3 ( x , y ) «=> g 3 ( x , y )
• f 4 ( x ) <=> g 4 ( x )

The three precedents are the following:

• f3(f 1 (x) , f 2 (y) ) = g3(g1(x), g2(y))
. f 2 ( f 4 ( t ) = g2 ( g 4 ( t ) )
• f 3(f1(z) , f 2(z)) ,* = f4(w] = [ 9 3 ( g 1 ' ) ( x ) , 9 2 ( z ' ) ) , z ' = 04M]

Further suppose that the system starts with an empty design grammar.
Here is the new design grammar that results from applying PA-NO-RR

to the three precedents in the given order:8

. b 1 ( x , y ) « = f 3 ( f 1 ( x ) , f 2 ( y )
• b 1 ( x , y ) < = > g 3 ( g 1 ( x ) , g 2 ( y ) )
• MO <=> MU(t}}
• b2 <=> g2(g4(t))

• f4(z) <=> g 4 ( x )

In this case, b\ and 62 are (arbitrary) names for the new blocks. Thus, only
one of the four original design rules was discovered. In other words, simple
precedent analysis is not sufficient to find the desired rules even when it sees
precedents in the optimal order.

2.5.2 An example of rule reanalysis

Now let us see how PA-RR, a rule reanalysis algorithm, behaves on the
same inputs. Table 4 presents a description of this algorithm, which (unlike
PA-NO-RR) keeps reanalyzing old rules until no new conjectures emerge.

Suppose that PA-RR is presented with the same precedents above and in
the same order. Since PA can analyze neither precedent 1 nor 2, the system
conjectures four rules, one rule for each graph of each precedent: b1 (x, y) <=>
b1(/i(z),/2(y)}, &i(z,») ^ g3(g 1 (x ) ,b2 ( t ) ) , MO <^ fa(/4(0). and 62(i)
<=*02(ff4(*))-

On seeing the third precedent, PA analyzes it using the b\ rules. This
results in the new rule f4(x) <=> g4(x), and PA-RR then reanalyzes the

8Depending on the implementation details of PA, it could produce a slightly different
partial parse, yielding the two rules, h(z,w) <=> f 3 ( f 1 ( z ) , w ) and h(z,w) <=>• g 3 ( g 1 ( z ) , w),
in place of the f4 rule shown.
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Table 4. Pseudo-code for PA-RR, an algorithm that reanalyzes old rules using newly
conjectured rules.

Inputs: PRECEDENT consists of a high-level graph, a low-level
graph, and their variable correspondences.

DESIGN . GRAMMAR is a set of design grammar rules.
Outputs: A revised design grammar.
Variables: CDG is the current design grammar.

QUEUE is a queue of design grammar rules.
T is a pair of learned design rules.

Procedure PA-RS (PRECEDENT, DESIGN . GRAMMAR)

Let CDG be DESIGN . GRAMMAR .
Let QUEUE be <PRECEDENT> .
While QUEUE is not empty,
Let T be PA (Head (QUEUE) , Difference (CDG, Head (QUEUE) )).
If T does not duplicate information in CDG,

Then let QUEUE be all rules in CDG.
Let CDG be the union of T and CDG.

Else let QUEUE be Tail (QUEUE).
Return CDG.

existing rules. Using its new knowledge, PA can now analyze the 62 rules
to obtain another new rule, / 2 (x ) <=> gi(x). PA-RR again reanalyzes the
existing rules, and applying PA to one of the 61 rules results in the two simpler
rules: h(z,w) <=> /3(/i(a;)) and h(z,w) •£=> 93(91(1)). In summary, PA-RR
has learned the following rules.9

• f*(x) <=> g4(x),
• MX) <=> 02(2:),
. h(z,w) *=* f3(fi(z),w)t

• h(z,w) <=> 93(91(2), w).
To compare the performance of PA-NO-RR and PA-RR, we can define a
generality partial order on design grammar rule sets by set inclusion between
the derivations generated by the rule sets. Clearly, the set produced by PA-
RR suffices to derive all the rules produced by PA-NO-RR. However, there
is no derivation of the /2 rule in terms of the rules produced by PA-NO-
RR. Thus, PA-RR results in a (strictly) more general set of rules. In fact,
all six orders of presentation result in strictly less general sets of rules when
PA-NO-RR is used than when PA-RR is used.

This example shows that without rule reanalysis, the system can require
more precedents to reach a given level of generality. There is clearly a trade-
off between the cost of using rule reanalysis and the cost of obtaining more
precedents; however, this tradeoff is complex and heavily dependent on the
implementation. We can observe two clear cases when rule reanalysis would

9The system still retains the 6, rules, even theugh-they can be derived from the others.
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be desirable. The first occurs when it is crucial that the learner get as much
as possible from each precedent. For instance, if very few precedents are avail-
able, PA-NO-RR may not be able to formulate general rules. The second
case occurs when the learner only receives precedents very slowly relative to
its computing speed. This could easily happen in learning apprentice tasks,
where the precedents are entered by a human.

2.5.3 Order sensitivity

PA-RR is somewhat sensitive to the order of presentation of precedents.
This is because the algorithm does not find all maximal partial parses of all
precedents every time it conjectures a new rule. The system saves a signifi-
cant amount of processing by keeping only the conjectured new portion of the
precedent. The alternative is keeping the entire precedent as well. This would
at least double the amount of processing done by PA-RR.

To illustrate the order sensitivity, consider a slightly different set of prece-
dents:
1 ' . f 1 ( f 4 ( x ) ) ~ g i ( g 4 ( x ) )

2. f 2 ( f 4 ( t ) = g3(04(0)
3 . [ f 3 ( f 1 ( z ) , f 2 ) ) ,  z = f 4 ( w ) } = ( g 3 ' ) , g 1 ( z ' ) ) , = g 2 , ( z ) } .
Two of these are the same as in the previous example, but precedent 1 has
been replaced by precedent 1'.

If these are presented to PA-RR in the order (2, 3, 1'), then the system
generates only two new rule conjectures (aside from those corresponding to
precedents 1' and 2 themselves):

and

On the other hand, if the precedents are presented to PA-RR in the order
(1, 3, 2), then it instead conjectures the new rules (again, aside from those
corresponding to precedents 1' and 2 themselves):

and

These are incomparable rule sets (in the generality partial order defined above),
because there are no derivations of the h rules in terms of the second rule set,
and there are no derivations of the h' rules in terms of the first rule set.

The difference arises because PA-RR "forgets" some of the information in
precedent 3 when it uses PA to isolate the portion of the precedent it does
not understand. For example, once it analyzes the third precedent in terms of
precedent 1' and discards the explained part of the former, precedent 2 cannot
be used to analyze either the precedent 1' rules or the h' rules (the two "halves"
of precedent 3). This is because precedent 2's graphs only match subgraphs
of precedent 3 that are partially contained both in precedent 1' and the h'
rules. PA-RR's prior knowledge (of precedent 1') has effectively prejudiced it
against learning the h rules from the combination of precedents 2 and 3. This
behavior is reminiscent of the way a human's prior knowledge can sometimes
hinder the acquisition of significantly new concepts.
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Figure 7. A small design grammar for the gear world. The blocks XPOSjfc] and
XNEG[k] represent multiplication of angular speed by +k and —k, re-
spectively. Note that these are parameterized rules. Rule (b) contains a
pictorial representation of a sprocket and chain arrangement.

3. Evaluating the approach

Having described precedent analysis and rule reanalysis in some detail, we
can now evaluate this approach to learning. This section examines the gen-
erality and limitations of learning by failing to explain. It also reports some
preliminary experiments with the method and proposes some extensions sug-
gested by these studies. The reader should keep in mind that the technique of
learning by failing to explain is not intended as a complete model of learning.
For learning tasks where complete grammar derivations of precedents are avail-
able to the learner (e.g., see Mooney & DeJong, 1985) an explanation-based
approach is definitely more desirable for learning non-heuristic rules, since it
produces new grammar rules that are both general and justified. If complete
derivations are not available, either due to an incomplete grammar or to an
inadequate explanatory mechanism, then an approach like that of PA-RR
could be useful.

3.1 Generality of the method

Learning by failing to explain is at heart a method of grammar induction.
As such, it should generalize to other domains in which knowledge can be for-
malized grammatically, at least in part. In addition to the domain of circuit
design, the current system should work with only minor modification in any
design domain in which knowledge may be represented as a grammatical hier-



64 R. J. HALL

Figure8. A gear-world precedent, depicting two abutting gears with radii of sizes
two and one, together with a sprocket-chain-sprocket connection. Note
that one sprocket shares a common shaft with the radius one gear. Shaft
labels represent angular speed variables.

archy of function composition. Rich's (1981) plan calculus is one such grammar
formalism for representing algorithmic knowledge about program design.

Though no experiments have been performed using the Plan Calculus, PA-
RR-GW, a system related to PA-RR, has been applied to learning struc-
tural implementation rules for simplified gears. In this domain, functional con-
straints take the form of simple arithmetic relationships among shaft speeds.

As an example, suppose PA-RR-GW starts with the design grammar
shown in Figure 7. The functional blocks XPOS[k] and XNEG[k] represent
multiplication (of angular speed) by positive and negative constants, respec-
tively. Note that these blocks are parameterized by the multiplicative constant.
The first grammar rule expresses the fact that b — XNEG[ij](a) can be im-
plemented by b — XPOS[i](XNEG[j](a)). The second rule expresses the idea
that the sprocket-chain-sprocket connection implements the XPOS[k] function,
with k equal to the ratio of the radii of the sprockets.

If PA-RR-GW is then shown the precedent in Figure 8, its precedent anal-
ysis component explains the sprocket portion using the grammar rules. The
remainder forms the conjecture shown in Figure 9. Note that this conjectured
rule is not general, in that its parameters are numbers rather than symbols.
PA-RR-GW waits until it finds other instances of rules using exactly two
gears to implement the XNEG function, then hands the set of qualitatively
similar rule instances to a constructive generalization routine. This routine
induces the functional relationships that hold between the gears' parameters
and XNEG's parameter.

As the example illustrates, learning by failing to explain is only partially ap-
plicable to the gear world: PA-RR-G W learns only the qualitative structural
aspects of the implementation rules. Gear-world components have continu-
ously varying parameters, so it is necessary to induce functional relationships
among numbers in order to capture fully general rules. Since this task moves
beyond grammar induction, PA-RR-GW requires an auxiliary routine.

The system has successfully generalized the rules governing transfer ratios
of meshed gears and the rules governing sprocket-chain connections. The gross
structural relationships, e.g., that a sprocket-chain-sprocket connection imple-
ments positive multiplication of angular speed, were conjectured using prece-
dent analysis and rule reanalysis. The arithmetic relationships, such as the
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Figure 9. A rule conjectured by PA-RR-GW. Note that no numerical generalization
has been done yet; further structurally isomorphic examples are required
to allow the constructive generalization routine to operate. Only one rule
was conjectured because the equivalence had one graph with only a single
block.

equality of the multiplicative factor to the quotient of the sprocket radii, were
generalized by the auxiliary routine. The details of the auxiliary routine are
less important than its successful use in concert with techniques for learning
by failing to explain.

Although the implementations of PA-RR and PA-RR-GW are somewhat
dependent on the semantics of the graphs, the idea of maximal partial parsing
should extend to any domain that can be formalized in grammar terms. In
fact, similar work has been done in the domains of natural language syntax
and simple arithmetic problems, as discussed in Section 4.

3.2 Limitations of the approach

There are two sorts of limitations on the PA-RR algorithm. The first
affects the quality of the conjectured rules, whereas the second affects the
computational efficiency of the system.

I observed two problems of the former kind. First, the second match-
extension heuristic can fail in cases like those described in Section 2.4. This oc-
curs when two inequivalent functional blocks have the same type, have matched
outputs, and have uniquely corresponding unmatched inputs. Second, when
the unknown rules are needed near the outer edges of the precedent, little
progress can be made. This results in virtually the entire precedent being
conjectured as the "new rule," with little or no generalization. For example,
a precedent might incorporate unknown implementations of input and out-
put buffers, yet be otherwise completely understood. Ideally, we would like
the system to conjecture the input and output buffer implementations as new
rules, but since the system has no way of extending the partial match from
the inside out, it would conjecture just the entire precedent.

A major limitation on PA's efficiency is that it cannot focus attention on
small portions of an example. Suppose we wish to show that f(g(x)) = j(k(x)),
and we can do this because we have rules f<» h1, h1 , h?, ..., hm <£> j,
g •»• z'i, ..., im <* k. In this case, the system would try all possible derivations
of length m — 1 before it would try the derivation of length m that allows
progress. However, note that there are 2m-1 nodes in this search tree. If PA
could focus its attention on just the / derivation by considering only rules
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pertaining to / and its derivations, it would only need to look through m - 1
nodes. This combinatorial interaction of multiple progress paths could be
avoided by concentrating on one section of the graph at a time. On the other
hand, Hall (1986a) shows that a uniformly depth-first approach is much worse
than a uniformly breadth-first approach, because the system can waste time
finding much longer derivations than necessary.

3.3 Illustrative experiments

I have not carried out experiments with "real-world" design data, as might
be obtained from a human expert. However, Hall (1985) documents several
examples to which the system has been successfully applied, and this section
presents some empirical studies of PA's behavior.

In discussing the details of a PA run, it is useful to define the notion of
a progress history. This is simply a list containing the numbers of derivation
steps between successive discoveries of progress. For example, the progress
history (2, 6, 2, (5)) indicates that in a fifteen-step partial derivation, PA
found progress after the second, eighth, and tenth steps. The last lookahead
phase failed to find progress, but a five step derivation resulted in the smallest
graph (i.e., the best graph returned by SEARCHFORPROGRESS was a graph
at level five of the lookahead tree).

In discussing the following experiments, it will be useful to define a base
design grammar, G1, which is shown in Table 5. Each rule includes a name,
a left-hand side (LHS), and a right-hand side (RHS). The LHS takes the form
OUTPUTS = BLOCK-NAME (INPUTS), where there may be multiple inputs and
multiple outputs. The RHS specifies relations between the input and output
variables that implement the functional specification in the left-hand side.

3.8.1 The importance of search depth

One factor that governs the success of PA is the value of SEARCH DEPTH,
the maximum length of derivations that SEARCHFORPROGRESS will examine.
There is a tradeoff between explanatory power and the amount of lookahead.
Search time is (roughly) exponential in SEARCHDEPTH, since the lookahead
tree contains roughly bSearchDepth nodes) where b is the average branching
factor - the number of allowable rule applications at each level. Whenever
the final lookahead phase is unsuccessful, the system must examine the entire
tree. On, the other hand, if the system uses a small SEARCHDEPTH, it may
fail to explain an otherwise explicable precedent. Thus, it will generate a rule
conjecture that can actually be derived from the preexisting grammar.

To examine the effect of search depth, I performed a simple experiment using
the grammar G1 and the precedent

Table 6 reports the results. With SEARCHDEPTH set to 2, PA conjectured
the new rule [r = NOT(NOR(p,g))] = [r = OR(p,g)]. In contrast, setting
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Table 5. A design grammar for the circuit domain.

ADD2

ADD1

XOR

MUX

NAND1

NAND2

NOR1

NOR2

ONE1

ONE2

ONE3

ZERO1

ZERO2

ZERO3

BUFFER1

BUFFER;

BUFFER;

BUFFER,,

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

LHS:

RHS:

; LHS:

RHS:

. LHS:
RHS:

LHS:

RHS:

LHS:

RHS:

[s0, s1. s1] = AOD2(ci, a0, a1, b1, W)
[s0, c] = ADD1(ci, a0. b0) ; a0 and 60, a1 and 61 commute
[s1, co] = ADD1(c, al, b1) ; c is an internal variable

[s, co] = ADD1(ci, a, b) ; a and b commute
s = XOR(ci. XOR(a, b))
co = OR(OR(AND(a, b), AND(a, ci}), AND(b, ci))

y = XOR (a,b)  ; a and 6 commute
y = MUX (a, 6, NOT(b))

y - MUX(s, a, b)
y = OR(AND(s, b), AND(o, NOT(s)))

y = NAND(a,b)  ; a and 6 commute
y = NOT (AND (a, b))

y = NAND (a, 6) ; a and 6 commute
y = OR (NOT (a), NOT (b))

y = NOR(a, 6) ; a and b commute
y = NOT(OR(a, b))

y = NOR(a, 6) ; a and 6 commute
y = AND(NOT(a), NOT(b))

y = ONE( )
y = OR (ONE, c) ; c is an internal variable

y = ONE( )
y = NOT(ZERO)

y = ONE( )
y = OR(c, NOT(c)) ; c is an internal variable

y = ZERO( )
y = AND(ZERO, c) ; c is an internal variable

y = ZERO( )
y = NOT (ONE)

y = ZERO( )

y = AND(c, NOT(c)) ; c is an internal variable

y - BUFFER (a)

y = AND (ONE, a)

y = BUFFER (a)

y = OR (ZERO, a)

y = BUFFER (a)

y - a ; a single connection point

y = BUFFER(a)

y = NOT(NOT(a))



68 R. J. HALL

Table 6. The effect of search depth on explanatory ability.

INITIAL GRAMMAR

SEARCH DEPTH

PROGRESS HISTORY

CONJECTURED EQUIVALENCE

FIRST CASE

G1

2

(1,1, 2, (2))
(r = NOT(NOR(p ,g) ) ]

= [r= OR(p ,g ) ]

SECOND CASE

G1

3

(1, 1, 2, 3,2)
PRECEDENT EXPLAINED

SEARCHDEPTH to 3 let the system explain the precedent using its current
design knowledge, so no conjecture was necessary.

3.3.2 The effect of rule overuse

Another factor that influences PA's behavior is its current design grammar.
Too many rules can cause needless search. On the other hand, the explana-
tion for some precedents may require certain rules that are often applicable.
For example, consider BUFFER Rule 3 in G1 . Each connection point can be
expanded into a buffer, and the buffer can be re-implemented, say, as a double
negation using BUFFER Rule 4. This sequence is allowable at every connec-
tion point of every graph. The system must have this rule available for some
derivations, but it should not simply try it at every possible point. The maxi-
mum tolerable SEARCHDEPTH for a given rule base would be greatly reduced
if such rules were used indiscriminately.

To study the effect of such rule overuse, I ran a second experiment using the
precedent

[y = XOR(a, ZERO)] = [y = a].

and holding the search depth constant at eight. One condition used grammar
G1 as shown in Table 5. I stopped this run after two hours and hundreds of
searched nodes with no progress found. The search had only reached level six
of the tree on the first lookahead phase.

The second condition used a modified grammar, G2, which disallowed cer-
tain directions of use for particular rules. This grammar was obtained from
GI by disallowing all ZERO and ONE rule applications in the left to right
direction (i.e., never allowing expansion of a ZERO block or a ONE block)
and by disallowing right to left uses of the ADD1 rule. In this run, PA ex-
plained the same precedent with little search, expanding only 42 nodes. Table
7 summarizes the results of this experiment.

3.3.3 The use of derived rules

Another key insight demonstrated by the implementation is that derived
rules can greatly increase explanatory power by decreasing the effective SEARCH-
DEPTH needed to find progress. Derived rules are just rules in the grammar
that one knows can be derived from other grammar rules. The notion of a de-
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Table 7. The detrimental effect of rule overuse on explanatory ability.

INITIAL GRAMMAR
SEARCH DEPTH

NODES SEARCHED
PROGRESS HISTORY
CONJECTURED EQUIVALENCE

FIRST CASE

G1

8

>200
—

NONE (SYSTEM FAILED)

SECOND CASE

G2

8

42
(8)

PRECEDENT EXPLAINED

rived rule is essentially the same as that of a chunked rule (Laird, Rosenbloom,
& Newell, 1984) or a macrop (Fikes et al., 1972). The insight is that having
a derivation of n steps summarized into a single step decreases the length of
that derivation; hence, it increases the effective lookahead. This should let
the system explain hopelessly complex precedents once it has first explained
simpler precedents and stored the results as derived rules.10

To examine this effect, a third experiment was performed using the two-bit
incrementer precedent:

In one condition, PA was run on this precedent using a search depth of six and
using grammar G2. In this case, the system failed to explain the precedent.
Analysis reveals that a search depth of eight would give a complete 41-step
explanation, but this would involve expanding more than 10,000 nodes and
require more than 12 CPU hours. The size of the search space can be largely
attributed to the focus of attention problem mentioned previously.

In the second condition, PA was given the following series of four precedents:
• XOR(ZERO,a)=a
• XOR(ONE,a)=NOT(a)
• MUX(ONE,z,y) = y/
• [[co, s\ = ADDl(x, ONE, ZERO)] = [co = x,s = NOT(x)]

The fourth precedent required searching 123 nodes; its progress history was
(2, 2, 8). After each one was fully explained, it was added to the grammar as a
pair of rules (giving the new grammar G3) and used in subsequent derivations.
The system was then given the two-bit incrementer precedent, using grammar
G3 and a search depth of six. In this case, PA found a complete explanation
for the precedent. Table 8 shows the results of this study.

10PA-RR and PA-RR-GW do not reanalyze derived rules, since the systems would suc-
cessfully explain them. This detail was omitted earlier for the sake of brevity.
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Table 8. The beneficial effect of derived rules on explanatory ability.

INITIAL GRAMMAR

SEARCH DEPTH

NODES SEARCHED

PROGRESS HISTORY

CONJECTURED EQUIVALENCE

FIRST CASE

G2

6

> 10000

NONE (SYSTEM FAILED)

SECOND CASE

G3

6

19
(2, 1, 1,6)

PRECEDENT EXPLAINED

To see how derived rules can improve learning, consider a related precedent,
a two-bit incrementer with delayed carry output:11

Using the grammar G2, the system could not find the desired rule conjecture,

If SEARCHDEPTH were large enough to allow the required partial derivation,
the run would simply take too long. On the other hand, PA does find this
conjecture using grammar G3 in a reasonable amount of time.

This study demonstrates another way in which PA-RR can be combined
with another learning method - chunking - so the two together can learn a rule
that neither can learn alone. The new rule cannot be learned from grammar
G2 by chunking, because the rule cannot be derived from G2.

However, note that having extra grammar rules increases the "bushiness" of
the search tree and, in principle, this could lead to worse performance. Minton
(1985) has addressed this problem in his MORRIS system. The key insight
there was to save only rules that are either frequently useful or useful in solving
difficult problems. I have not attempted to implement these ideas within the
PA system.

3.3.4 Additional tests

PA has been tested on several grammar-precedent pairs besides those already
discussed. Most runs used the grammar G1, shown in Table 5, or closely
related grammars. These cases were intended to demonstrate both learning
(when explanation fails) and successful explanation (hence no learning). The
most complex precedent fully explained (requiring the longest derivation) in

11 The PG block denotes a pass gate: a device that outputs its first argument when its
second argument is one. Otherwise it "turns off," putting out high impedance. Clk1 and
clk2 are inputs from the system's two-phase clock.
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the tests to date is the twelve-step derivation of the one-bit incrementer. (This
was the fourth precedent in the third experiment, as reported in Section 3.3.3.)

During runs in which the system learned a rule, the most complex case
was the two-bit incrementer with delayed carry (the last example of Section
3.3.3). In this case, the progress history was (2, 5, (2)), a nine-step derivation.
However, with SEARCHDEPTH = 7, the system examined all derivations of
the form (2, 5, (k)), with k < 7, choosing the particular two-step derivation
because it resulted in the smallest unmatched subgraph. PA conjectured the
Z-1 implementation in terms of PG blocks, a much simpler rule than the
entire precedent.

In all, I performed some 20 tests of the PA algorithm. PA-RR has not been
tested as extensively. In one test, PA-RR started from an empty grammar
and learned implementation rules for NOT, AND, and OR gates (in terms of
transistor primitives). It inferred these rules from three precedents, each of
which employed from three to six logic gates. In other tests, PA-RR started
from some pre-existing grammar and was given a rule that allowed it to re-
analyze some preexisting rule in the grammar,

3.4 Directions for future research

The research reported here has left many questions unanswered. One major
open question addresses the nature and use of analytic knowledge needed for
both learning and design. In particular, the system must be able to verify the
allowability of rule applications. PA-RR cannot be fully automatic (nor can
any design system) until this question has been addressed.

More work needs to be done on heterogeneous learning systems that combine
many different learning techniques. This paper has shown how learning by
failing to explain may be used in concert with numerical function generalization
and chunking. A reasonable next step would be attempting to incorporate
explanation-based learning for generalizing explicable precedents.

In order to unify and generalize the knowledge base further, the system must
recognize when the function of a learned implementation is equivalent to one
already known, so that the same LHS block name may be used for the new
rule. This would increase the system's power to find derivations.

Further experimentation should also be done, especially using realistic sets of
precedents. These might be obtained from human experts or teachers of design.
This would be particularly interesting for experiments with a heterogeneous
learning system, as the different learning techniques could be evaluated for
usefulness and relative power.

Another area of future work lies in the improvement of PA-RR, the current
implementation. The above experiments suggest several modifications:

• PA should not just try all rules uniformly at every lookahead step. It
should have heuristics for avoiding, except as a last resort, certain classes
of rule applications (like forward uses of ZERO and ONE rules as men-
tioned in Section 3.3). This would decrease the bushiness of the search
tree and therefore increase the tolerable value of SEARCHDEPTH.
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• PA-RR needs a MORRIS-like method (Minton, 1985) of forgetting some
rules to cut down the bushiness of the search tree. For example, once a
rule can be completely derived from other rules, it is a good candidate for
pruning from the rule base (however, see the next item).

• PA should use derived (chunked) rules that appear commonly in deriva-
tions, as this increases the amount of lookahead per step. The increase in
branching factor this implies must be traded off against the extra power
gained. As Section 3.3 showed, adding the right chunks is well worth the
slight increase in search space size.

• PA should have a mechanism to focus its attention on a given area of the
example to cut down on the combinatorics of the lookahead tree.

• The performance of the match-extension heuristics might be improved
through the use of analytic knowledge.

I believe that each of these additions would lead to a more robust system for
learning by failing to explain.

4. Related work
In this section I consider some relations to earlier work that has employed

similar learning methods. I have mentioned PA's relation to grammar in-
duction, and some closely related research falls in this area. I also consider
connections to work on integrated systems that incorporate both explanation-
based and empirical learning components.

4.1 LPARSIFAL

Berwick's (1985) LPARSIFAL, a language-learning system, can be viewed as
another system that learns by failing to explain. Of course, the grammars in
the natural language domain use languages of strings instead of graphs. Also,
Berwick's system is based on Marcus' (1980) PARSIFAL parser, a forward-
chaining production system in which the rules can examine only the first three
structures in the input buffer. But despite these differences, there are many
similarities between the learning methods.

LPARSIFAL begins with a knowledge of X theory, which can be viewed as
analytic knowledge for the natural language domain. The system first uses
its current rules to parse an input sentence as much as possible. If the parse
fails, the system tries to construct a single PARSIFAL rule that would let
it complete the parse. If it fails to construct such a rule, the precedent is
ignored. Otherwise, the new rule is added to the rule base. _If the system
acquires more than one rule with identical action parts and X contexts, it
generalizes the condition parts by keeping only those structures common to
the rules. This combination of learning by failing to explain with an inductive
generalization technique is reminiscent of the way PA-RR-GW learns and
generalizes structure rules in the gear world.

Berwick argues that LPARSIFAL can learn natural languages because they
are naturally constrained. The action of ignoring precedents for which the
system cannot construct a rule lets the system exploit the near-miss felicity
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condition without requiring a carefully crafted sequence of precedents. Thus,
rule reanalysis is not necessary in this domain, since it is a method for handling
far misses.

4.2 SIERRA

VanLehn's (1987) SIERRA system can also be viewed as a system that
learns by failing to explain, though its author refers to this process as "learn-
ing by completing explanations." The domain is learning procedures for simple
arithmetic calculations, and the system is intended as a psychological model
of learning in young children. SIERRA learns from a sequence of "lessons,"
which are groups of worked subtraction problems. VanLehn describes his tech-
nique as attempting to explain the examples of the next lesson using the current
procedure, then proposing a single new subprocedure that lets the system com-
plete the derivations of the worked examples. This is analogous to precedent
analysis.

The system depends on certain teacher-student felicity conditions to make
this process tractable. These include the assumption that each new lesson
introduces only one new subprocedure and the assumption that the teacher
has shown all intermediate states of the computation for each example (e.g.,
making all borrows explicit). The first condition, one disjunct per lesson, is a
variant of the near-miss idea. SIERRA assumes that the mysterious parts of
the new lesson's precedents will be explained by only a single missing "rule."
Using this condition again obviates the need for rule reanalysis.

VanLehn argues for a knowledge-acquisition methodology incorporating the
above felicity conditions. There is obviously a tradeoff between ease for the
teacher and ease for the student. Unconstrained precedent sets are easy for
the teacher but difficult for the student. Felicity conditions make the student's
job easier at the cost of requiring the teacher to know much more about the
student's internal representations and knowledge states. Rule reanalysis is one
way of mitigating this tradeoff, allowing the student to take a bit more of the
responsibility, yet still not allowing the teacher arbitrary freedom. For exam-
ple, the teacher would still need to exercise care that the example sequence
did not allow too many different parses.

4.3 LAS

Anderson's (1977) LAS system12 may also be viewed as learning by failing
to explain. The system takes as input sentences paired with their meanings,
which it represents in a semantic network. It attempts to construct an aug-
mented transition network (ATN)13 that would let it generate those sentences
from their meanings, as well as construct the meanings from their associated
sentences. Each time LAS sees a new sentence, it tries to extend its existing
ATN so it can correctly parse that sentence. In other words, the system "ex-

12For a review of this system, as well as of LPARSIFAL, see Langley and Carbonell (1987).
13ATNs are basically context-free grammars with procedural semantics and augmentations

that let them handle global properties like subject-verb agreement. Actually, LAS used a
more limited class of grammars called recursive transition networks.
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plains" as much of the sentence as possible with existing knowledge and then
uses the remaining differences to slightly alter its grammar.

LAS can extend its ATN by adding new arcs, but it can also expand its
existing word classes to allow a parse. For example, suppose the system has
a grammar that recognizes the sentence, "The dog chased the ball." If one
gives it the new input, "The dog chased the cat," it can see that the previous
knowledge is sufficient to explain the new input if only the word class containing
"ball" were expanded to include "cat." In addition, the program can merge
two word classes when it finds they overlap sufficiently. Finally, LAS can merge
sub-ATNs when they are similar enough. This approach achieves the effect of
rule reanalysis, because it can store a far miss - i.e., a sentence that is quite
dissimilar from any it has seen before - as a disjunctive branch of the ATN
and later merge that branch with newer sub-ATNs.

LAS uses knowledge about concepts, like the corresponding word and rela-
tive significance, to assist generalization in a manner similar to explanation-
based learning. It uses this knowledge to construct the initial ATN from the
sentence itself. Thus, it can be viewed as heterogeneous in that it combines
different learning techniques in one system.

4.4 OCCAM

To be robust, learning systems must incorporate many different kinds of
techniques. I have argued that the combination of learning by failing to explain
with chunking and numerical function induction is more powerful than any one
in isolation. Similarly, adding explanation-based techniques would provide a
powerful ability to prune irrelevant detail from precedents.14

Pazzani, Dyer, and Flowers' (1986) OCCAM system illustrates one approach
to integrating explanation-based and empirical techniques. The system looks
for correlations (empirical generalizations) in the input data and then attempts
to justify the correlations using its causal theory. Empirical generalizations are
based on a notion of similarity and a rule base containing heuristic generaliza-
tion rules. When the justification fails, OCCAM postulates possible additions
to the causal theory ("tentative generalizations"). These are assumed to hold
until contradicted by later examples. When justification succeeds, the expla-
nation is used to generalize the correlation further, via an explanation-based
technique ("explanatory generalizations").

A major difference between OCCAM and PA-RR is that the former uses a
fixed base of heuristics to form candidate rules from observations. In contrast,
PA-RR uses current explanatory knowledge to help form a conjecture.

5. Conclusion

In this paper, I motivated the task of learning design grammar rules by
showing that a design grammar facilitates four basic competences of design:
top-down design, optimization, design derivation, and analogical design. A de-

14In this vein, Lebowitz (1986) also argues that systems should combine explanation-based
and empirical techniques.
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sign grammar represents the synthesis component of design knowledge, which
is distinguished from theory-based analytic knowledge.

Precedent analysis is a method for learning from precedents that does not
require the ability to explain a precedent completely before learning it. The
key idea is that the learner uses current knowledge to partially understand a
precedent before conjecturing a new rule, pruning away the portions of the
precedent that are already understood. As with any inductive method, it can
only produce rule conjectures. This idea was implemented in the PA system.

Rule reanalysis is a technique for using new rules to try to analyze old
rules as if they were precedents. This approach can be viewed as a method for
dealing with "far misses" by retaining overly specific rules until further learning
allows their generalization. Even though rule reanalysis is somewhat sensitive
to order of presentation of precedents, it is still inherently more powerful than
simple acceptance of new rules, even assuming that the precedents are ordered
optimally. The program PA-RR implements this idea; it accepts precedents,
calls PA to analyze them, and then invokes rule reanalysis.

A related system, PA-RR-G W, has been implemented for learning design
grammar rules in a simplified gear domain. This provides evidence for the
generality of the techniques. Moreover, it shows how learning by failing to
explain can be used together with another generalization technique, numerical
function induction, to handle domains in which components have continuously
varying parameters.

Several experiments were done to explore the properties of the system. Major
influences on performance included the value of the SEARCH DEPTH parameter,
the presence of frequently applicable (but ill-advised) rules, and the presence
of chunked rules to decrease the minimum SEARCHDEPTH required. This
last effect shows how the system can be profitably combined with yet another
learning technique - chunking.
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