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Neural networks or connectionist networks (CN) (networks of relatively simple computing
elements) offer an attractive and versatile framework for exploring machine learning for
a number of reasons (such as, massive parallelism of computation, fault and noise tolerance,
etc.). One frequent application of such networks is to learn complex mappings from a set
of input patterns to a set of output patterns using supervised learning. Typically, such learn-
ing involves modifying the weights on the links within an a-priori fixed topology (Hinton,
1989). The discovery of generalized delta rule, popularly known as the backpropagation
algorithm (Werbos, 1974; Parker, 1985; Le Cun, 1985; Rumelhart, Hinton & Williams,
1986) for weight modification learning in multi-layer feed-forward CN is at least partially
responsible for the current interest in this approach to machine learning.

Although several weight modification learning algorithms have been proposed and em-
pirically studied over the past several years, many questions that concern the time com-
plexity of learning, and the choice of appropriate network topologies for particular tasks
remain to be answered. Stephen Judd's book is a welcome addition to the growing family
of books and monographs on CN. It represents one of the very first attempts to formalize,
in computational terms, learning in multi-layer feed-forward CN.

The learning task studied by Judd—the loading problem—simply stated, is the task of
memorization of some given data by a given feed-forward CN with a fixed architecture
(i.e., the number of nodes and the connectivity among them is not allowed to change dur-
ing learning). The first three chapters of the book introduce the loading model of learning
and compare it with two other formal models of learning, viz., the ones proposed by Gold
(1967) and by Valiant (1984). Some of the early complexity results for the linear Percep-
tron learning model (Rosenblatt, 1961) derived by Minsky & Papert (1969) and others are
reviewed as well.

The loading model is inspired by the computational task underlying many popular
CN approaches to learning. Valiant's model is concerned with what is feasibly learnable.
Judd's loading model is concerned with what is feasibly learnable in a CN with a certain
a-priori fixed structure. The question asked is whether a particular network can be made
to represent the given data (assuming of course, that such a representation exists, given
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the particular network topology and node functions—it is meaningless to expect a CN to
learn a function that is incapable of representing) in time poly(\A] + \ T\) (where \A\
is the size of the network; | T/ is proportional to the number of items in the data set to
be loaded and the number of bits used to encode each item of data; and poly(X) is a
polynomial function of X); not whether it is possible to find some network to represent
the same data. This assumption of fixed architecture has important theoretical as well as
practical implications (see below).

Judd shows that the loading problem is NP-complete in the worst case for a given archi-
tecture by reducing the loading problem from the well-known 3SAT problem (Garey &
Johnson, 1979). A different proof of a similar result has been given by Blum and Rivest
(1988). Judd proves that the loading problem remains NP-complete even when: the net-
work depth is at most 2 and the fan-in of individual nodes is at most 3; only 67% of the
data items are to be retrieved correctly; or when the data items are at most 2-bits long;
or when the number of data items to be loaded is no more than 3. He further shows that
loading shallow networks, i.e., networks of bounded depth but unbounded width (and some
special cases of such networks too technical to discuss here) is NP-complete. He then goes
on to show that certain restricted classes of shallow networks, the so-called columnar lines—
with a fish-net pattern of connectivity—can be loaded in time bounded by poly (\ A \ + \T\).
Judd further points out that his results are valid for a variety of node functions (the proof
in the case of the frequently used logistic function is given in an appendix).

Generalization—loosely speaking, the ability to produce correct outputs in response to
previously unseen data items—is an important consideration in evaluating different learn-
ing algorithms. Judd argues that intractability of loading implies intractability of generaliza-
tion as well. The line of argument used here is as follows: Good generalization perfor-
mance presupposes efficient and reasonably accurate memorization. Thus a network which
fails to memorize the items in its data set adequately cannot possibly generalize adequately.

Judd obtains his intractability results on the loading problem as a function of the size
of the a-priori chosen network architecture and the number of data items in the data set
to be loaded. It is debatable whether this is in fact an appropriate measure of the com-
plexity of the underlying task because it does not reflect the properties (e.g., inherent
regularities) of the data items being loaded; nor can it capture possible effects of choosing
a particular network topology for loading a given set of data items. Experiments with many
popular CN learning algorithms suggest that the choice of network architecture can have
a significant influence on both the learning time as well as the generalization performance.
It would be interesting to see extensions of the loading model that can factor into the time-
complexity estimates of learning, such interactions between the network architecture and
intrinsic structure of the data set to be loaded.

Judd's results, as they stand, do not appear to rule out tractable solutions to the memoriza-
tion task for particular choices of data sets and architectures. Of particular interest are
data sets in which similar data items are to be mapped to similar network outputs, and
data sets that exhibit intrinsic spatial or temporal or spatio-temporal structure (e.g.,
2-dimensional visual patterns that are compact and connected as opposed to random dot
patterns). The investigation of architectural constraints and the corresponding representa-
tional and inductive biases suitable for particular domains appears to be a promising area
for further research.
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If one were to relax the fixed network architecture assumption, any given memorization
task can be trivially solved by constructing a look-up table. As Judd correctly points out,
this is not particularly interesting. Furthermore, such an approach cannot yield good
generalization. However, as has been proposed by Baum (1989), it might be possible to
design efficient learning algorithms that adaptively alter the necessary network connec-
tivity in non-trivial ways while searching for a suitable set of connection weights. Indeed,
several such generative or constructive learning algorithms for CN are currently being in-
vestigated (Honavar & Uhr, 1988; Diederich, 1988; Ash, 1989; Nadal, 1989; Rujan & Mar-
chand, 1989; Fahlman & Lebiere, 1990; Hanson, 1990; Gallant 1990). Since Judd assumes
an a-priori fixed architecture, it is not at all clear as to what his results would mean in
the context of such constructive learning algorithms. It would be interesting to see exten-
sions of Judd's line of work to learning models in which the network adaptively assumes
the necessary architecture as well as an appropriate setting of weights.

In summary, Judd's book is a valuable contribution to the theory of learning in neural
networks. One hopes to see this work extended in a variety of contexts including those
of non-feed-forward networks and constructive learning algorithms. The book is very well
written and the exposition is at a level that should be accessible to beginning graduate students
in computer science. Thought-provoking quotations interspersed throughout the book both
inform as well as entertain the reader. The book should be of interest to a wide audience
of researchers in complexity theory, computational learning theory, neural networks, and
machine learning.
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