Machine Learning, 14, 219-232 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Flattening and Saturation: Two Representation
Changes for Generalization

CELINE ROUVEIROL CELINE@LRI.FR
Laboratoire de Recherche en Informatique, UR.A. 410 of CNRS, Université Paris Sud, bat 490,
F-91405 Orsay, France

Abstract. Two representation changes are presented: the first one, called flattening, transforms a first-order logic
program with function symbols into an equivalent logic program without function symbols; the second one, called
saturation, completes an example description with relevant information with respect to both the example and
available background knowledge. The properties of these two representation changes are analyzed as well as their
influence on a generalization algorithm that takes a single example as input.

Keywords. Inductive logic programming, generalization with background knowledge

1. Introduction

We describe two representation changes that both play a role in the generalization step.
The first one, called flattening, transforms a first-order logic program with function sym-
bols into an equivalent program without function symbols. The basic idea of flattening,
that is, representing each term in a clause C by a literal of arity n + 1 in the body of
C, has been mentioned before, although quite informally, in Logic Programming (Sterling
& Shapiro, 1986) and in Machine Learning (Genesereth & Nilsson, 1987; Sammut & Baner-
ji, 1986) and is commonly used (although most of the time manually) as a representation
trick in Machine Learning systems that do not handle languages with function symbols.
In section 2, flattening as well as its reverse representation change, unflattening, are for-
malized: algorithms are provided, and the properties of flattening with respect to the seman-
tics of logic programs and well-known relations of generality are studied. The second
representation change, saturation, completes examples given some background knowledge.
In section 3, saturation is formalized and compared with other approaches that also make
deductive use of background knowledge for generalization. Eventually, the impact of these
representation changes on an algorithm that generalizes single flattened clauses is studied.

The representation changes described in this article are implemented in the ITOU system
(Rouveirol, 1992), which belongs to the Inductive Logic Programming (ILP) family (Mug-
gleton, 1992), whose main feature is to adopt a logical framework for describing machine
learning steps. As with most ILP systems, ITOU deals with a subset of First-Order Logic,
definite clauses,! i.e., clauses with exactly one head literal (as in PROLOG). Handling
function symbols is less common feature in ILP. In this framework, a clause can be inter-
preted as a partial definition for a concept, where the head literal identifies the defined
concept and the literals in the body of the clause represent the conditions for concept
membership. In the following, variables are denoted with capital letters, and constants are
denoted with lower-case letters.

220 C. ROUVEIROL

Different definitions of generality are used throughout this article. The first one is adapted
from §-subsumption introduced in Plotkin (1969). A clause C is 6-subsumed by a clause
G if there exists a substitution 8 such that head(C) = head(G)8 and body(G)6 2 body(C).
Generality can also be modeled by logical entailment: a clause G is more general than
Cif G /= C. This definition naturally extends when some background knowledge is available:
in this case, a clause G is more general than C, with respect to a logic program T (the
background knowledge) if T U G /= C. ¢-subsumption and logical entailment are equivalent
for languages without function symbols, but they differ with respect to recursive clauses
(Niblett, 1988).

2. Flattening

The basic idea of flattening is to introduce for every function symbol f of arity n a new
predicate f, of arity n + 1, where the first n arguments are the same as for the function
and the last argument is the result of the function.

2.1, Definitions and algorithms

* Flattening predicate: The flattening predicate f, associated with the function symbol
£ of arity n is the predicate of arity n + 1 defined by

HXL o X X e X =21 L XD

The variable X is called the output argument of the flattening predicate.

The set of flattening predicates associated with a clause C is denoted Flar__Defs(C).
The flattened clause C; corresponding to a clause C (denoted flat(C)) is the result of
flattening all the terms of C. Notice that in a clause of Flat__Defs(C), only one implica-
tion out of the original equivalence in the definition of a flattening pedicate is represented.
The reason is that clauses of Flat__Defs(C) are only used for unflattening flat(C) (or
some generalization of flat(C)) and that this part of the equivalence is sufficient to per-
form unflattening.

One of the most delicate choices when implementing flattening is when the same term
occurs several times in the same clause. The version of flattening presented in figure
1 replaces every occurrence of the same term by the same variable. For example, let
E, be the clause to flatten:

E.: member(blue,[blue]) <.
The final flattened clause, once all the function calls have been replaced, is

E.s: member(X,Z) +
consp(X,Y,Z) A bluep(X) A nilp(Y).

FLATTENING AND SATURATION 221

Procedure flatten(P, Pf, Flat_Defs(P))
% P is a definite program with function symbols, Py is the corresponding flattened
% program, Flat_Defs(P) is a definite program that stores the definitions of flattening
predicates
Ppi= @, Flat Defs(P):=Q
For all clauses C of P
Cf =C
For all terms f{1), ...ty) in Gy % Term flattening
If the flantening predicate f, corresponding to f does not exist in Flar_Defs(P)
Then add fy(1;, .15, X) & X = f(1;,1y) t0 Flat_Defs(P)
endif
Replace all occurrences of f{1;,1;) in Cpby a new variable X, and add the
literal Tp(tr oty XJ 10 the body of Cr

endfor
Pf = Pf) Cf
endfor

return (P; , Flar_Defs(P))

Figure 1. Flattening algorithm.
with the three following clauses in Flat__Defs(E,):

NIL: nilp(nil) <
CONS: consp(X, Y, cons(X,1)) <.
BLUE: bluep(blue) «.

Some approaches (Ling, 1991; Nienhuys Cheng, 1991; Banerji, 1992) replace each oc-
currence of the same term by different and independent variables. The flattened clause
in this case would be

Es .. member(X,Z) «
consp(X',Y,Z) A bluep(X) A bluep(X') A nilp(Y).

This option makes the flattened clause more difficult to read because of the high number
of variables occurring in the clause. Moreover, the fact that X and X' may point to the
same object is lost (it is only implicitly captured by the usual convention in logic that two
different variables may unify).

An alternative consists in storing explicitly in the body of the flattened clause the links
between the variables introduced by flattening (Muggleton, 1992). The flattened clause
in this case is

222 C. ROUVEIROL

Es . member(X,Z) «
consp(X',Y,Z) N bluep(X) A bluep(X") A nilp(H A X = X',

We will focus in this article on the first and third way to flatten. The first version of
flattening generates the simplest (in the sense that the number of variables in the resulting
flattened clause is minimal) and most specific flattened clause, which is equivalent to the
input clause C with respect to Flar___Defs(C). This translates the assumption that
simultaneous occurrences of the same term in a clause are more likely to be caused by
some correlation than by chance. This version of flattening “sticks” to the example as the
more specific bindings between arguments of the original clause are transmitted to the flat-
tened clause. Choosing this option for flattening has the consequence that generalization
algorithms working on flattened clauses are biased towards the simplest and most specific
generalizations of the example(s). In the latter option, a greater number of variables are
introduced, but explicit unifications of variables are also kept in the flattened clause. This
formulation of flattened clauses is particularly adapted to generalization (see section 4).

e Unflattening: Unflattening a clause C; given a set of flattening predicates Flar__Defs(C)
(denoted unflar(C,Flat__Defs(C)) is achieved by applying linear resolution with set of
support Flar__Defs(C) to C;. If flattening has been performed such that explicit unifica-
tions are stored in the body of the flattened clause, resolutions with the axiom X = X
« first have to be performed, so that all equalities disappear in the body of the unflat-
tened clause.

In the previous example, observe that E, resolved with NIL, CONS, and BLUE yields
E,. Let us also point out a side effect of unflattening after dropping some literals from
a flattened clause (see section 4.1). Literals such that their output variable (i.e., the one
standing for the result of the function call) does not occur elsewhere in the clause dis-
appear during the unflattening process. For example, let us consider the unit clause

Ex: f(g(h(a)) <.
The corresponding flattened clause is
Exp: f(2) < a)(X) A hp(X, DN g,(Y.Z)

together with the following set of definitions of flattening predicates a,(a) <, h,(X,h(X))
<, 8p(X,8(X)) <. Dropping the literal ,(X,Y) yields the clause

Eng: f(Z) = ap(X) A gp(Y’Z)

which yields, once unflattened,

Ex;: f(g(X) <.

FLATTENING AND SATURATION 223

Therefore, unflattening allows us to drop literals such as a,(X) in the example, since
X does not appear anywhere else in Exg,.

The algorithm in figure 1 always terminates. It introduces a new predicate for each sym-
bol function instead of directly adding the equality X = (X, ..., X,) in the body of the
flattened clause. It is interesting when flattened clauses are processed by an algorithm that
explores possible matchings between sets of literals with the same predicate symbol (such
as Igg (Plotkin, 1969), for example). This step will be much more efficient if the flattened
clauses are described using several predicates for indexing the equalities with respect to
the function they represent, instead of using the one equality predicate.

2.2. Properties of flattening

Flattening and unflattening do not change the semantics of a logic program P, and it is
therefore equivalent, as far as the logical closure of the theory is concerned, to work on
clauses with function symbols or on flattened clauses, given Flar__Defs(P).

Theorem
P /= A iff fla(P), Flat__Defs(P) /= flar(A)

where P is a definite clause program, A is a definite clause, and Flas__Defs(P) denotes
the set of flattening predicate definitions for P.

Corollaries:
If C is a definite clause with function symbols,

® unflat(flar(C), Flat_Defs(C)) = C, up to a variable renaming;
* flat(unflat(C, Flat__Defs(C))) = C, up to a variable renaming; and
e C §-subsumes C' iff flat(C) §-subsumes flar(C"').?

Let us sum up the main features of flattening. First, it gives a uniform syntax to the
language used internally by the system. This enables a simple implementation of generaliza-
tion of a single clause only by dropping literals. More complex hypotheses (that is, with
more independent variables) are then considered when the simplest hypothesis fails to ex-
plain all the examples. Eventually, we show in the next section how representing constants
and terms as predicates in flattened clauses allows us to build pertinent reformulations of
the examples.

3. Saturation: relevant use of background knowledge

Saturation is a reformulation operator that enables us to take background knowledge into
account during the generalization process. Given an example E (a definite clause) and some

224 C. ROUVEIROL

background knowledge T (a definite program), saturation builds a clause that is logically
equivalent to E given T by completing E with pertinent literals with respect to E and T.
Pertinent literals with respect to E and T are literals H; such that flar(T), flat(body(E))
/-sLp H;, with the additional constraint that for each step of the SLD derivation yielding
one H;, at least one parent clause must belong to flat(body(E)) (linear derivation with set
of support flat(body(E))).

Saturation introduces a semantic (that is, in term of logical entailment) relevance criterion
on literals that complete the example description, as opposed to systems such as GOLEM
(Muggleton & Feng, 1990) or CLINT (De Raedt, 1992) that choose the literals to com-
plete the example in a finite submodel of the background knowledge (Rouveirol & De Raedt,
1992) with respect to syntactic restrictions on the hypothesis language (see figure 2).

Let us illustrate this claim in an example after Buntine (1987). The first version of flat-
tening is used when implementing saturation. This is because saturation completes a clause
with logical consequences of both literals in the body of this clause and some background
knowledge. Although the obtained clause is logically equivalent to the input clause with

Procedure saturation(C,, T, Cy)
% C, is a definite clause, as well as C;. T is a definite program
flatten(C,, Cof, Flat_Defs(Cp)) ; F :=Q
For all literals Le,; of body(Cep) Fi=F U (Lcg; 85 ¢) endfor
% O, is a substitution that skolemizes every variable of C,, F contains the set of all
% skolemized literals representing C,.
Repeat % Deductive phase
changed := false; depth :=0

For each clause Cp of T

If every literal of body(fla(C})) can be resolved with facts of F*

Then
F:=F U (head(C;) 05)5, changed := true
endif
depth :=depth + 1
endfor

until not changed or depth > depth-bound

% F at this point the set of skolemized unit clauses {Lcej 0 <) withj =i
Cssi Te 05 Lcyj 85 % The body of Cysis the conjunction of the facts of F
Cyr = Cys 057!

unflatten(Cp, F lat_Defs(C,).Cy)

return (Cy)

Figure 2. Saturation algorithm.

FLATTENING AND SATURATION 225

respect to logical entailment, it is more specific with respect to #-subsumption. Since the
aim of saturation is to complete with relevant information and not to generalize, it seems
more adapted when flattening the example clause and the domain theory to replace every
occurrence of the same term by the same variable. Moreover, handling equalities literals
during the deduction step of Saturation may result in problems. The domain theory is

list((]) <
list(X.Y) + list(Y)
member(X,X.Y) < lis{Y)

and the unit clause we want to generalize is E,: member(4,[3,4]) <. First, the domain
theory and the example are flattened:

T;: list(X) < nilp(X)
Ty: list(Z) « lis((Y) A consp(X,Y,Z)
Ts: member(X,Z) < lis((Y) A consp(X,Y,Z)
E\: member(Y,U) —
three(X) N four(Y) A nilp(N) A consp(Y,N,Z) A consp(X,Z,U).

The corresponding flattening predicates are Fy: three(3) <, Fs: four(4) <, F5: nilp([])
«, and Fy: consp(X,Y,cons(X,Y)} «.

Saturation traced on this example provides the following intermediary results (bold literals
are the ones introduced by Saturation). First, E, is saturated with Tj:

E . member(Y,U) <«
three(X) A four(Y) A nilp(N) A list(N) A consp(Y,N,Z) A consp(X,Z,U)

then saturated twice with T5:

E15: member(Y,U) <
three(X) A four(Y) A nilp(N) A list(N) A consp(Y,N,Z) N lis(Z) A
consp(X,Z,U) A list(U)

and, at last, twice with 75:

E 3. member(Y,U) «
three(X) A four(Y) A nilp(N) A list(N) A consp(Y,N,Z) A list(Z) A
member(Y,Z) A consp(X,Z,U) lisU) A member(X,U).

Saturation then stops, since no more new literals can be deduced from literals of the
body of Ei;: member(4,[3,4]) —
member(4,[4]) A list([4]) A member(3,[3,4]) A list([3,4]).

226 C. ROUVEIROL

Saturation may loop whenever the background knowledge contains one clause that is
not range restricted, i.e., when one or more variables that occur in the head of the clause
do not occur in the body of the clause. This demonstrates one advantage of performing
saturation on flattened clauses. The following clause is not range restricted:

list(X.Y) < lis«(Y).
Flattening rewrites the above clause into
Ty lisZ) « lisl(Y) A consp(X,Y,Z)

which is range restricted again. Saturation on flattened clause will then loop less often
than saturation on nonflattened clauses, because representing terms as predicates in the
body of the flattened clause can make them range restricted if the isolated variable(s) in
the head of the clause occur in a term.

The above example demonstrates that saturation only introduces into the body of the
completed flattened example, instances of member and list predicates built on terms and
subterms occurring in the example. This criterion is particularly adapted when the
background knowledge is made of rules (especially recursive rules), but it turns out to
be too restrictive when the background knowledge contains ground facts (Rouveirol & De
Raedt, 1992).

4. Generalization of a flattened clause

Let us now examine one possible algorithm that works on flattened clauses. It builds
generalizations of a single clause E with reference to some background knowledge 7. The
input is a definite clause with function symbols, which is first flattened and saturated given
T. Then a purely inductive generalization algorithm can be applied to the saturated clause
in order to build the generalization of the input clause given the background knowledge.
We will show here that working on flattened clauses allows us to introduce a more elegant
formalization for generalization of single clauses.

4.1. Definition

Truncation® is a purely inductive operator that builds all the possible generalizations of
a single clause with respect to 6-subsumption.’” That is, given a clause C, Truncation
generates all the clauses G; such that G; 8-subsume C, or in other words, it builds all the
clauses G; such that 3 8, head(G;) = head(C) 6 and body(C) 8 2 body(G;). Truncation
on a clause C,: T, < Lc, with function symbols amounts to

¢ dropping one or more literals of Lc,
* inverting a substitution § on C,, i.e., turning some occurrences of some terms or
subterms of C, into variables

FLATTENING AND SATURATION 227

The first point is easy to implement (although less easy to control), and it has been known
for quite a long time as the dropping condition rule (Michalski, 1983). Therefore, let us
rather concentrate on the inverse substitution point.

All the generalizations under §-subsumption of the term #: p(a,a) are organized in the
generality lattice shown in figure 3. Each of those generalizations may be built by inverting
a substitution on ¢, Let ¢ be a substitution {X;/2;} where the X; are the variables and the
t; the terms of the substitution. We call o~! the inverse substitution of o the unique
mapping® such that given any literal L, L ¢ ¢ ™! = L (after Muggleton & Buntine, 1988).

We distinguish two groups of substitutions: injective’ substitutions (in particular renam-
ing substitutions, which are bijections) and noninjective substitutions, Any substitution 6
can be expressed as the composition of an injective substitution ¢ and of some noninjective
substitutions »;, such that each »; substitutes different variables by the same term
(Rouveirol, 1992). We therefore distinguish two groups of inverse substitutions. Simple
inverse substitutions invert injective substitutions. In other terms, given a term # in a clause
C, a simple inverse substitution replaces all occurrences of #; by the same variable »;. In
our previous example, inverting an injective substitution on p(a,a) yields p(X,X). The se-
cond group of inverse substitutions, called splitting inverse substitutions, splits occurrences
of the same term #; in a clause C into several different variables. Applying a splitting in-
verse substitution to the literal p(a,a) would yield p(a,Y), p(a,Y), or p(X.Y).

4.2. Generalization of a flattened clause

Let us first consider the case where the clauses are flattened using the version of flattening
that replaces all occurrences of a term by the same variable. The algorithm of figure 4,
inspired by De Raedt (1992) and by the smaller step generalization algorithm (N édellec,
1992), takes into account the structure of the deduction graph of saturation in order to
keep the generalization as specific as possible. Initial literals in the body of the example
are first dropped; the algorithm thus generalizes as little as possible and asks for user valida-
tion before proceeding further in the generalization graph. This algorithm, because of flat-
tening, inverts §-subsumption for injective substitutions only. The process of inverting in-
jective substitutions on a clause with function symbols is therefore brought down to drop-
ping literals on the corresponding flattened clause where all the occurrences of the same
term are replaced by the same variable.

PX,Y)

a:WX)
o={X/a}

pX,2) PEY) pX,X)

o={X/a} o={X/a}

p(a, a)

Figure 3. Generality lattice.

228 C. ROUVEIROL

Procedure dropping_rule(C, Sg)
% C: saturated and flattened clause, S ¢ - setof candidate generalizations for C
S o= {C}
For each clause C in Sy
Delete C from S,
For all literals Lb; that are as low a possible in the derivation graph of body(C)
Propose the generalization of C, C - Lb; to the user
If the generalization is validated
then add C- Lp;to § I3
else
D(Lb;) = literals which have been deduced from Lb; during saturation
add C - D(Lb;) 10 S, % keeps the most specific literals if generalization fails
endif
endfor
endfor
return (S,)

Figure 4. Dropping rule algorithm.

The version of flattening that maintains equality literals in the body of the flattened clause
(Muggleton, 1992), although it provides more complex clauses, enables us to invert
6-subsumption for arbitrary substitutions. Purely inductive generalization of a single flat-
tened clause flat(C) can then be divided into two steps:

 dropping literals of flar(C) that are not equalities, which amounts to both dropping literals
and inverting injective substitutions on C

e dropping equality literals of flat(C) in conjunction with some instances of flattening
predicates, which inverts noninjective substitutions on C

The algorithm in figure 5 realizes this kind of generalization. Used in combination with
the algorithm of figure 4, it forms the basis of a complete algorithm for inverting
#-subsumption.

For example, let C be the unit clause C: p(a,a) <. The flattened clause corresponding
to Cis Cy: p(X,Y) < a(X) A a(Y) A X = Y. Dropping the literals a(X) and a(Y) inverts
an injective substitution on C;and replaces all the occurrences of a by the same variable
in the corresponding unflattened clause, p(X,X) <. If the literals X = Y and a(Y) are drop-
ped, the generalization p(a,Y) « is obtained, dropping X = Y and a(X) yields p(X,a) «,
and p(X,Y) « is obtained by dropping a(X), a(Y) and X = Y.

FLATTENING AND SATURATION 229

Procedure dropping_ruleb(C, S)

% C: saturated and then flattened clause, S, : set of candidate generalizations for C
Sg:={C}

For each clause Cin S,

Delete C from S,

For each wriplet (X=Y, fp(V.X), fp(V,Y}) in body(C) % V is a vector of variables
the four possible generalizations are obtained by dropping any two literals or the
three literals of the triplet

Propose each of these generalizations to the user

For each possible generalization
If the generalization is validated

then add the generalization t0 S,
else
D(Lb;) = literals which have been deduced from Lb; during saturation
add C - D(Lb) to S, % keeps the most specific literals if generalization fails
endif
endfor
endfor
return (S,)

Figure 5. Dropping rule algorithm on flattened clauses with equality literals.

5. Related works and conclusion

We have presented in this article two representation changes that are used in a bottom-up
generalization system called ITOU. Their main advantage is that they are independent from
any learning algorithm. If we consider flattening, many systems (Ling, 1989; De Raedt,
1992; Sammut & Banerji, 1986; Quinlan, 1990; Banerji, 1992) make the assumption that
their input clauses are without function symbols and therefore need to transform their ex-
amples using techniques similar to flattening in order to simulate some function symbols.
Flattening plus some syntactic restrictions or some adequate heuristic to limit the search
of the learning algorithm in the space of flattened literals may be a way to extend algorithms
that handle propositional or DATALOG languages only. Saturation is as well a very general
mechanism that allows us to take background knowledge into account in one pass only.
It can be added as a front end to learning algorithms (Bisson, 1992) that traditionally do
not use background knowledge. Saturation coupled with flattening allows us to deal in a
nonheuristic way with some types of background knowledge with infinite models.
Flattening was first designed (Rouveirol & Puget, 1989) to solve the problem of building
all possible inverse substitutions in CIGOL (Muggleton & Buntine, 1988). We have first

230 C. ROUVEIROL

provided an algorithm that computes absorptions for definite clauses with function sym-
bols. The flattening/unflattening process transferred the problem of inverting substitutions
in Absorption (the only substitutions are renaming substitutions, which are much easier
to invert) to the one of dropping literals in Truncation, where all the inductive choices
took place. In the version of flattening from Rouveirol and Puget (1989), each occurrence
of the same term was replaced by a different variable.

Nienhuys-Cheng, and Flach (1991) and Nienhuys-Cheng (1991) independently developed
a representation change similar to flattening, called free coding of clauses. They use this
special coding to define term partitions to build all the generalizations of a given clause,
with respect to the #-subsumption relation. If we do not consider this difference that the
formalization of Nienhuys-Cheng is algebraic whereas ours is logical, it achieves results
similar to our Truncation operator with the splitting occurrence rule with respect to
generalization of a single clause without reference to background knowledge. However,
the main difference between our approaches is that Nienhuys-Cheng does not consider
the problems of generalization in presence of background knowledge.

Some work has been done as well on generalization of the set of clauses (Rouveirol,
1992). In this case, flattening is still useful for constraining saturation, but if some lgg-like
algorithm (Plotkin, 1969) is to be used, it may be more efficient to unflatten the clauses
before generalization in order to prevent the lgg algorithm from forming irrelevant selec-
tions for subterms that have the same function symbols.

Appendix: Proof of the theorem
Theorem:
Pl=Aifand if flat(P), Flat-defs(P) |[= flat(A),
where Flat-defs(P) denotes the sets of flattening predicates definition clauses for P.

Proof: The theorem can be proved by induction on the complexity of terms of P: induction
on the number of arguments of P, induction on the depth of terms of P. We propose here
the proof for the simplest case only.

Let us suppose that P is made of one unit clause: pred(c) . Pred is a predicate symbol
of arity one, and c is a constant. The flattening predicate of the constant ¢ is

cp(X) o X=c.
We have to prove, in order to prove the theorem that

(1) pred(X) < ¢p(X), ¢p(X) «~ X=c implies pred(c).
Q) pred(c), cp(X) = X =c implies pred(X) « c,(X).

(1) This is the simplest part to prove. ¢, is the flattening predicate defined by
¢p (X) = X =c. We restrict the equivalence to the only implication:

@ cp(X) < X=c.

FLATTENING AND SATURATION 231

If we resolve pred(X) « ¢, (X) with (i), we get pred(X) « X=c.
By applying one of the equality axioms:

xl=yl A .. xn=yn = f(x1, .., xn) = f(yl, .., yn)
we get the following clause: pred(c). u

(2) We reduce this to the absurd. Let us suppose we have pred(c) and that we do

not have pred(X) « ¢, (X).
This would mean that $ a , ~pred(a) A c,(a). However, by definition, c,(X) < X
= ¢, and therefore a = ¢. From two previous assertions, we can derive ~pred(c), which
is in contradiction with pred(c¢). []

Acknowledgments

I would like to thank Yves Kodratoff and all the Inference and Learning Group at Orsay.
Thanks to J.F. Puget, since most of the ideas developed in this article had their source
in discussions with him, and to Maurice Bruynooghe, Luc de Raedt, and all the members
of the A.1. group of Katholieke Universiteit Leuven. Special thanks to the anonymous
reviewers; the last version of the article benefitted significantly from their comments
(especially the discussion concerning the flattening), and to Katharina Morik for her en-
thusiasm. This work has been partially supported by CEC through ESPRIT-2 contract
ECOLES (n"3059) and BRA ILP (n"6020).

Notes

. The reader may refer to Lloyd, (1987) for basic definitions of Logic Programming.

. We use a standard equality theory, for instance, the axioms defined in Shepherdson (1987, pp. 27-28).

. This does not generalize to logical implication.

. There may be several ways to resolve facts of F with all the literals of body(C)).

. If head(C,) contains variables that are not instantiated by 6, then g is extended to skolemize these variables
as well,

6. Truncation as presented here is more general than the Truncation operator (Muggleton & Buntine, 1988)

in that it covers the dropping condition rule (Rouveirol, 1992).

7. The reader should refer to Lapointe and Matwin (1992} for an extension of Truncation to inversion of implication.

. We only consider here idempotent substitutions (Lassez et al. 1987).

9. A substitution o is injective iff v v, v, belonging to the domain of ¢, if v; # v, then o(v,) # o(vy).

W bW —

s

References

Banerji, R.B. (1992). Learning theoretical terms. In S. Muggleton (Ed.) Inductive logic programming. New
York: Academic Press.

Bisson, G. (1992). Conceptual clustering in a first order logic representation, Proceedings of the Tenth Euro-
pean Conference on Artificial Intelligence (pp. 459-462). New York: Wiley.

232 C. ROUVEIROL

Buntine, W. (1987). Induction of Horn Clauses: methods and the plausible generalization algorithm. Interna-
tional Journal of Man & Machine Studies, 26, 499-520.

Buntine, W, (1988). Generalized subsumption and its applications to redundancey. Artificial Intelligence, 36,
149-176.

De Raedt, L. (1992). Interactive theory revision. New York: Academic Press.

Genesereth, M.R. & Nilsson, N. (1987). Logical foundations of artificial intelligence. Los Altos, CA: Morgan
Kaufmann.

Lapointe, S., Matwin, S. (1992). Sub unification: a tool for efficient induction of recursive programs. Pro-
ceedings of the Ninth International Machine Learning Conference. Los Altos, CA: Morgan Kaufmann.
Lassez, M.J., Maher, M.J., & Marriot, J.L. (1988). Unification revisited. In J. Minker (Ed.) Foundations of

deductive databases and logic programming. Los Altos, CA: Morgan Kaufmann.

Ling, C.X. (1989). Learning and inventing horn clauses theories. In Z.W. Ras (Ed.), Methodologies for in-
telligent systems, 4. Amsterdam: North Holland.

Ling, C.X. (1991). A critical comparison of various methods based on inverse resolution. Proceedings of the
Eighth International Workshop on Machine Learning (pp. 168-172). Evanston, IL: Morgan Kaufmann.
Lloyd, 1.W. (1987). Foundations of logic programming, 2nd extended edition. New York: Springer-Verlag.
Michalski, R.S. (1983). A theory and methodology of inductive learning. In R.S. Michalski, J.G. Carbonell,

& T.M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 1). Tioga.

Muggleton, S., & Buntine, W. (1988). Machine invention of first order predicates by inverting resolution. Pro-
ceedings of the Fifth International Machine Learning Workshop (pp. 339-352). Ann Arbor, MI: Morgan
Kaufmann.

Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. Proceedings of the First Conference
on Algorithmic Learning Theory. Tokyo: Ohmsha,

Muggleton, S. (1992). Inverting implication. Proceedings of the 2nd International Workshop on Inductive Logic
Programming (technical report), Tokyo: ICOT.

Nedellec, C. (1992). How to specialize by theory refinement. Proceedings of the European Conference on Ar-
tificial Intelligence (pp. 474-478). Vienna: Wiley.

Niblett, T. (1988). A study of generalization in logic programs. Proceedings of the Third European Working
Session on Learning (pp. 131-136). Glasgow, Pitman.

Nienhuys-Cheng, S.H. (1991). Consistent term mapping, term partition and inverse resolution. Proceedings
of the IJCAI'92 Workshop on Evaluating and Changing Represeniation. Sydney.

Nienhuys-Cheng, S.H., & Flach, P.A. (1991). Consistent term mapping, term partition and inverse resolution.
In Machine Learning: EWSL-91: European Working Session on Learning (pp. 361-374). Porto: Springer-Verlag.

Plotkin, G.D. (1969). A note on inductive generalization. In B. Meltzer and D. Michie (Eds.) Machine intelligence
5. Edinburgh: Edinburgh University Press.

Quinlan, J.R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.

Rouveirol, C. (1992). ITOU: Induction of first order theories. In S. Muggleton (Ed.), Inductive logic program-
ming. New York: Academic Press,

Rouveirol, C., & De Raedt, L. (1992). The use of background knowledge. Proceedings of the ECAI92 Workshop
on Logical Approaches to Learning. Vienna.

Rouveirol, C., & Puget, J.F. (1989). A simple solution for inverting resolution. Proceedings of the Fourth European
Working Session on Learning (pp. 201-211). Montpellier, Pitman.

Sammut, C., & Banerji, R.B. (1986). Learning concepts by asking questions. In R.S. Michalski, J.G. Car-
bonell, & R.M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2). Morgan
Kaufmann.

Shepherdson, J.C. (1987). Negation in Logic programming. In J. Minker (Ed.), Logical foundations of deduc-
tive databases. San Mateo, CA: Morgan Kaufmann.

Sterling, L., & Shapiro, E. (1986). The art of Prolog: Advanced programming techniques. Cambridge, MA:
MIT Press.

Received February 10, 1992
Accepted June 4, 1992
Final Manuscript September 15, 1992

