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Abstract. Certain tasks, such as formal program development and theorem proving, fundamentally rely upon
the manipulation of higher-order objects such as functions and predicates. Computing tools intended to assist
in performing these tasks are at present inadequate in both the amount of 'knowledge' they contain (i.e., the level
of support they provide) and in their ability to 'learn' (i.e., their capacity to enhance that support over time).
The application of a relevant machine learning technique—explanation-based generalization (EBG)—has thus far
been limited to first-order problem representations. We extend EBG to generalize higher-order values, thereby
enabling its application to higher-order problem encodings.

Logic programming provides a uniform framework in which all aspects of explanation-based generalization
and learning may be defined and carried out. First-order Horn logics (e.g., Prolog) are not, however, well suited
to higher-order applications. Instead, we employ XProlog, a higher-order logic programming language, as our
basic framework for realizing higher-order EBG. In order to capture the distinction between domain theory and
training instance upon which EBG relies, we extend XProlog with the necessity operator D of modal logic. We
develop a meta-interpreter realizing EBG for the extended langauge. XD Prolog, and provide examples of higher-
order EBG.

Keywords. Explanation-based generalization (EBG), higher-order logic, modal logic, logic programming, metal-level
reasoning, Prolog, theorem proving, program transformation

1. Introduction

Certain tasks, such as program development and theorem proving, fundamentally rely upon
the manipulation of higher-order objects such as functions and predicates. To enhance the
support computing tools can provide for such complex domains, it will be necessary to
increase considerably the 'knowledge' represented in those tools. Successfully coding all
this knowledge a priori is impossible due to the scope, complexity, and evolutionary nature
of these domains. Rather, tools must support assimilation of problem solving experience.
However, simply memorizing (i.e., caching) particular solutions is insufficient; instead ex-
perience must be abstracted or generalized. Learning, the ability to generalize and assimilate
from experience, will therefore have a significant impact on the success of future tools.

Much of machine learning research may be divided between inductive, or similarity-
based learning, and analytical learning. Inductive methods produce a description of a desired

An extended abstract of this work appears in the Sixth International Workshop on Machine Learning (see (Dietzen
& Pfenning, 1989)).
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concept by examining a set of instances of that concept (Angluin & Smith, 1983; Diet-
terich, et al., 1982). Typically, syntactic operations are employed to derive a generaliza-
tion covering those instances (e.g., a pattern that matches each of them).

Conversely, analytical methods generalize from a single example by employing a theory,
or knowledge of the problem domain, to determine how to generalize. To date, work on
analytical techniques relies primarily upon explanation-based generalization (EBG) as its
central mechanism (Mitchell, Keller & Kedar-Cabelli, 1986; DeJong & Mooney, 1986;
Minton, et al., 1989; Ellman, 1989). EBG abstracts a particular problem solution (i.e.,
a proof or explanation), yielding an encapsulation of that solution—that is, a derived rule
that more efficiently solves the original as well as related problems. While the proof-based
generalizations of EBG are necessarily valid (with respect to the domain theory), similarity-
based generalizations are guaranteed only to the extent that they cover the given examples.

Generalization and learning performance are intimately tied to the underlying language
for representing the domain, or representation language. If knowledge is encoded in an
inappropriate language, then it is less likely that the desired generalizations can be ex-
pressed in a natural and concise manner, and also less likely that they can even be found.
In particular, the cumbersome encoding of higher-order domains within first-order languages
inhibits reasoning and generalization. In order to realize EBG over problem domains form-
ulated within higher-order language, we extend the technique to higher-order explanation-
based generalization—that is, EBG in which functions and predicates as well as first-order
constants may be abstracted, or replaced with variables.

Recently, the logic programming paradigm has been used as a foundation for EBG (Kedar-
Cabelli & McCarty, 1987; Prieditis & Mostow, 1987; Hirsh, 1989; Bhatnagar, 1988). One
argument put forward in favor of the logic programming framework is that it admits a uniform
representation for all aspects of EBG: domain theory, training instance, query, derived rule,
operationality criteria, etc. (These concepts are defined in §2.) This helps in explicating
the underlying principles in a uniform way and clarifies semantic issues. In this paper we
explore two ways of enriching the representation language of Horn logic (e.g., Prolog),
each of which has a significant impact on EBG:

• Integrated support for higher-order objects including variables ranging over such objects.
This support is realized through the higher-order logic programming language XProlog.

• The incorporation of the modal operator D to formalize the distinction between domain
theory (i.e., 'general rules') and training instance (i.e., 'particular facts') upon which
EBG relies. Extending XProlog with D results in a rich language for higher-order
EBG-XDProlog.

Overview. We begin, in §2, by introducing first-order EBG within the logic programming
framework. As this section also introduces notation of XProlog and concepts unique to
our formulation of EBG, it should be worthwhile even for readers familiar with the topic.
Next we extend XProlog with D in §3. Within §4 we discuss higher-order representation
language, and then consider higher-order EBG within §5. Sections 6 & 7 illustrate higher-
order EBG's application to theorem proving and program development tasks, respectively.
Finally, we develop, in §8, an implementation of XDProlog and EBG through a meta-
interpreter written in XProlog. Each of the examples contained herein was produced with
this prototype.
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The brevity of this paper requires that we presume some minimal familiarity with Prolog
and the simply-typed X-calculus; respective introductions may be found within Sterling
and Shapiro (1986) and Hindley and Seldin (1986).

2. First-order EBG

We begin by briefly illustrating explanation-based generalization with a first-order exam-
ple from DeJong and Mooney (1986, pp. 158-166): (We apologize to any readers offended
by the morbidity of this example, but is has become standard in the literature.) EBG divides
the theory of the problem domain between a domain theory, which we also denote with D:

kill A B <= hate A B, possess A C, weapon C.
hate W W <= depressed W.
possess U V <= buy U V.
weapon Z <= gun Z.

and a training theory or 3:

depressed John,
buy John objl.
gun obj1.

(Within our examples, constants are in boldface while variables are in italics. As in Prolog
',' denotes conjunction. The symbol <= represents implication, and is equivalent to Prolog's
':-'.) Both D and 3 are composed of XProlog clauses. For readers familiar with EBG,
3 roughly corresponds to training instance; justification for the new terminology is given
within §3.

The EBG algorithm is additionally provided with a query, or goal, such as

?- kill john john.

EBG then requires a proof that solves the given query. Within our paradigm, such an ex-
planation may be expressed as a trace of XProlog computation. A proof of the above query
is illustrated within Figure 1. Goals of the proof are underlined, while the program clause
that reduces a particular goal appears underneath. In the course of applying each clause,
its variables may be unified with constants or variables of the goals, resulting in the given
unification constraints (enclosed in '<>')•

EBG generalizes this explanation to produce an encapsulation of the employed proof
strategy. In Figure 2, a generalized proof is constructed that corresponds to the original,
except that clauses of 3 (or 3-clauses) are omitted. This forms EBG's bias in the generaliza-
tion space: the proof of the given query is generalized by abstracting steps involving clauses
of the training theory. At the root of the new proof is a generalized query, which is derived
from the original by replacing each of the first-order constants with a variable: the goal
kill john john becomes the general goal kill X Y. Clauses of D (or D-clauses) applied
in the first proof are correspondingly applied in the second. This restricts the outcome
by propagating unification constraints through the proof (e.g., kill X Y becoming kill XX).
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Figure 1. First-order proof.

Figure 2. First-order generalized proof.

Leaves of the generalized proof (e.g., gun C) correspond to subgoals of the original proof
that were derived from 3. These leaves are accumulated in a conjunction of conditions
sufficient to establish the generalized query:

kill X X <= depressed X, buy X C, gun C.

We will frequently refer to the resulting proof encapsulation as a derived rule, or as an
explanation-based generalization, or simply as a generalization.

3. Modal logic

Our formulation of EBG relies upon the separation of D and J, since only rules of the
former are incorporated within generalized proofs. To differentiate the two, we prefix D-
clauses with the D operator, which is borrowed from modal logic—logics in which propo-
sitions have multiple levels or modes of truth, such as 'may be' and 'must be.'1, 2

We illustrate our use of D on the first-order example of §2. D and 3, which constitute
the logic program, may now be jointly expressed as

D VAVBVC. kill A B <= hate A B, possess A C, weapon C.
D VW. hate W W <= depressed W.
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D VU VV possess U V <= buy U V.
D VZ. weapon Z <= gun Z.
depressed john,
buy john obj1.
gun obj1.

The above presentation does not rely upon XProlog's implicit universal quantification of
a program's logical variables. This is because our EBG algorithm differentiates between
the clauses D Vx. D and Vx. D D. (The motivation for this distinction is beyond the scope
of the paper; see Dietzen (1991).) However, since explicitly specifying quantifiers can become
exceedingly tedious, we introduce the '!!' shorthand to represent this universal quantifica-
tion implicitly. The first clause of 3D may then be expressed as

!! kill A B <= hate A B, possess A C, weapon C.

From the query kill john john, the resulting explanation-based generalization becomes

!! kill X X <= depressed X, buy X C, gun C.

Traditionally, the modal operator D (sometimes called 'L') precedes necessarily true
sentences, or equivalently, those true in 'all possible states' or at 'all times.' Non-prefixed
sentences are only contingently true, true in the 'current state' or at the 'current time.' Our
incorporation of D is founded upon a correspondence between (1) EBG's separation of
domain and training theory and (2) modal logic's separation of necessary and contingent
truth: Because the validity of the generalizations derived through EBG depend solely upon
3D, more stringent truth requirements are placed upon D-clauses—namely that they be true
in all possible configurations of the problem space being modeled. Clauses of 3, as they
are excluded from generalized proofs, can safely be revised or removed without invalidating
the derived generalizations (e.g., depressed john becoming false). Such revision could
be explained semantically as 'changing states' or 'switching worlds.'

Suppose that within the suicide example, we remove the D from the clause weapon Z
<= gun Z. This results in the generalized proof of Figure 3 and the generalization

!! kill X X <= depressed X, buy X C, weapon C.

Figure 3. Less specific generalized proof.
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The above rule is more general than the previous one, but its application requires more
work. This illustrates the trade-off inherent in the partitioning of 3D and J: D-clauses get
'compiled into' the rules derived through EBG, while 3-clauses must be evaluated at the
time of application.

Now, again within the original example, suppose instead that we replace the last clause
with D gun obj1. This has the effect of 'anchoring' the generalization to obj1, with the
result of an identical query being the generalized proof of Figure 4 (whose rightmost branch
is solved), and the generalization

!! kill X X <= depressed X, buy X obj1.

By moving a clause from 3 or 3D, we make the resulting generalization more specific.
Such a shift is, however, dangerous in that the generalization then depends upon the validity
of D gun obj1. In another configuration where obj1 is not a gun, the derived rule is false!

Training instance. Previous realizations of EBG have used the term 'training instance'
rather than our 'training theory.' While the literature makes the same operational distinction
of excluding clauses of the training instance from generalized proofs, the term 'training
instance' additionally carries the connotation of embodying a single example situation from
which the learner should generalize. We have taken the liberty of renaming 3 to avoid that
connotation.

Typically within logic programming implementations of EBG, atomic clauses are directly
recognized as belonging to the training instance (Kedar-Cabelli & McCarty, 1987; Hirsh,
1987; Prieditis & Mostow, 1987)—e.g., gun obj1. Although this notion of training instance
offers some intuitive value, we find it artificially restrictive. There exist atomic clauses
that we might want to include within 3D, such as !! adjacent XX.3 The same is true even
for constant atomic clauses: for example, to represent that block1 is glued to the table we
could assert D on block1 table. Alternatively, we might want to include variables and
logical connectives within 3-clauses: for example, under the temporary condition that all
blocks are stacked in two-high pairs, we might assert the rules clear X <= on X Y and
on Y table <= on X Y. D furthermore affords the potential to intermix knowledge of the
domain and training theory through the nesting of D below the top-level.

Figure 4. More specific generalized proof.
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Our use of D, then, avoids what we believe to be undue limitations on the training in-
stance; our training theory may instead contain arbitrary XProlog clauses. Besides pro-
viding greater expressiveness, a modal logic representation for the distinction between D
and 3 can be given a clear semantics that is independent of a particular search procedure
or generalization algorithm.

Modal logic and EBG. Admittedly, the analogy that contingency is to necessity as train-
ing theory is to domain theory is philosophically questionable. The basis for our incor-
poration of D is rather that the operator elegantly models the difference between 3 and
D in a formal (as opposed to an operational) manner—that is, through a formal language
and the accompanying proof system. Our use of the terms 'contingency' and 'necessity'
is meant to convey some semantic intuition about why D models this distinction. One could
easily turn this observation around and say that we have found yet another interpretation
of D.4

Operationality. We illustrated in §3 how D defined which proof steps are included in
generalized proofs. Within the EBG paradigm, the traditional means of restricting the ex-
tent of generalized proofs is through operationality criteria: by establishing that a particular
goal meets an operationality criterion the subtree deriving it is 'pruned' from the generalized
proof. That is, an operationality criterion can be viewed as a predicate that determines
whether a given goal should be a leaf of the generalized proof. The term 'operational' arises
from the constraint that such subgoals be efficiently derivable at the time of rule applica-
tion. To illustrate, if we augment the original formulation of the suicide example (§3) with
a declaration that the goal weapon Z is operational, the EBG algorithm produces the derived
rule

!! kill XX <= depressed X, buy X C, weapon C.

as the derivation of weapon Z is excluded from the generalized proof.5,6

Although D and operationality criteria are both mechanisms that limit the extent of
generalized proofs, the former is a property of clauses (i.e., whether or not they contain
D), while the latter is a property of goals (i.e., whether or not they are operational). Opera-
tionality criteria present the same trade-off we have seen for D: the closer the operational
subgoals are to the root of the generalized proof, the more generally applicable the derived
rule is, but also the more work is required to apply it.

Before continuing our development of EBG, operationality, and D, we must further discuss
higher-order language in general, and XProlog in particular.

4. XProlog—A higher-order logic programming language

XProlog (Nadathur & Miller, 1988) extends traditional logic programming languages
primarily

• by providing the simply-typed X-calculus as a data-type; that is, XProlog terms are simply-
typed X-terms.
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• by incorporating the higher-order unification required for A-terms.
• by including more expressive logic contructs—e.g., embedded implication and quanti-

fication.
• by admitting higher-order predicates in a principled manner.

Within this section we briefly introduce XProlog. While this work relies upon and ex-
tends XProlog, the language is itself a research prototype.

Higher-order language. We follow common practice in overloading the term 'higher-order'
by applying it to values and domains (semantic entities), as well as to languages (syntactic
entities). A domain is said to be higher-order if it contains higher-order values—that is,
values which take other values as arguments (e.g., functions and predicates). For instance,
the values manipulated by a higher-order programming language include functions. (By
'manipulated' we mean that functions are 'first-class' objects—i.e., they can be bound to
variables, passed as parameters, and returned from function calls.) Similarly, within a higher-
order logic, the values that can be quantified include functions and predicates.

On the other hand, we consider a representation language to be higher-order if it con-
tains a means for expressing argument binding: for example, the X of X-calculus or lambda
in LISP. Such languages are particularly amenable to representing the values of higher-
order domains, since the formation of higher-order objects can be expressed with X.

X-terms. Terms of the simply-typed X-calculus take the form

where M and N range over, terms, c ranges over constants, x over variables, and T over
simple types. A given \-abstraction Xx:t.M is of function type T -> t' provided M has
type T '. The juxtaposition MN denotes a X-term application, which is of type T ' provided
M is of type T -> T ' and N is of type r. X-term application associates to the left: a b c
is read as (a b) c. Thus the Prolog term p(a, b) is written as p a b in XProlog.

X-terms become exceedingly redundant if all of the types required by the syntactic defini-
tion are explicitly included. A more succinct representation is afforded by eliding un-
necessary type information. Type reconstruction is the process of rederiving those omitted
types. In practice, all types are omitted from XProlog terms. The types of constants are
instead specified by explicit declaration, and the types of variables, untyped constants,
abstractions, and applications are then inferred from context. In the sequel, we will omit
types with the understanding that they are to be subsequently derived through type
reconstruction.

Basic operations on X-terms. We use the notation [N/x]M to denote the substitution of
N for free occurrences of x in M. (Bound variables may have to be renamed to avoid cap-
ture; see the example below.) The term operations supported by XProlog include 0- and
n-reduction as well as a-conversion, which are defined as follows:

provided x not free in M
provided y not free in M
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Closures over these operations yield corresponding notions of X-term convertibility: M
is said to be b-convertible to M' if there exists a sequence of 3-reductions and 3-expansions
(the inverse), applied at the top-level or to subterms, transforming M to M'. In this calculus,
Jn-reductions are normalizing and Church-Rosser (Hindley & Seldin, 1986); that is, max-
imal sequences of such reductions terminate with a unique X-term said to be in 3n-normal
form. This property is a consequence of the typing given to X-terms, and is crucial for
the unification algorithm, since the convertibility of two terms can be tested by comparing
their normal forms for equivalence modulo the renaming of bound variables (a-conversion).

Higher-order unification. Unification is the process of producing a common instance from
two or more terms by instantiating either term's free variables with other terms.7 We use
the XProlog notation M = N to indicate that the X-terms M and N are to be unified. When
unifying terms, we are typically interested in the most general unifier (MGU); for exam-
ple, the MGU of px and py is simply (x = y), rather than the overly specific (x = a, y = a).

Unification underlies the logic programming paradigm, but because XProlog terms are
X-terms, XProlog unification must be higher-order—i.e., it must support the instantiation
of variables to functions as well as to first-order constants. X-terms, however, do not admit
unique most general unifiers: consider that the unification of Fa = caa allows the variable
F to be instantiated with any of Ax.caa, Xx.cxa, Xx.cax, or Xx.cxx, none of which is an
instance of another (they are all closed). Thus, higher-order unification is inherently
nondeterministic. Even worse, Goldfarb shows that higher-order (and in particular, second-
order) unification is undecidable (Goldferb, 1981). However, a semi-decision procedure
effective in practice is presented by Huet, (1975) and refined by Elliott (1990).

Using higher-order language. Within a higher-order language, binding operators are im-
plemented via the primitive X. For example, the function f(x) = 2*x might be represented
simply as f= Xx.2 * x. Similarly, Vx3y.x < y might be expressed using the logical prod-
uct II and sum £ as II Xx. E Xy. x < y. (In fact, this is the representation used within
XProlog; the former is simply a more readable abbreviation.) The implementation of other
binding operators in terms of X allows a/3»;-conversion and X-term unification to be im-
plemented once within the representation language rather than within individual client pro-
grams (Pfenning & Elliott, 1988; Harper, Honsell & Plotkin, 1987). Relegating such tasks
to the representation language makes for more succint, elegant programs.

Many domains naturally involve binding constructs, and are thus best represented within
higher-order languages: logics, programming languages, and natural languages (Pfenning
& Elliott, 1988; Miller & Nadathur, 1987; Miller & Nadathur, 1986; Pereira, 1991). This
same need for higher-order representation also arises when one wants to reason 'at the
meta-level—that is, about aspects of XProlog. One would like facts (propositions) or prop-
erties (predicates) to be objects themselves. Prolog and other first-order representation
languages allow this to some extent, but in a way that is only operationally, but not logic-
ally motivated. XProlog, on the other hand, facilitates higher-order programming—that is,
the ability to create goals and programs, and pass them as arguments.

First- vs. higher-order. When higher-order values are represented within first-order
languages, we often need 'new variables,' need to check conditions such as 'where x does
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not occur in M', or must implement substitution in a way that 'renames bound variables
if necessary.' Additionally, procedures that depend upon the binding operator—e.g., 01817-
conversion and higher-order unification—must be explicitly programmed. All this makes
for a prohibitively complex encoding.

The extent of the overhead incurred through these higher-order operations remains unclear.
On the one hand, direct implementation of a/fy-conversion and higher-order unification
is generally more efficient than user-programmed encodings, since an extra layer of language
is avoided. On the other hand, the full power of higher-order unification is potentially too
costly. Yet Huet's semi-decision procedure is effective in practice, simply because typical
applications of X-term unification are more restricted than the worst case.

A subset of XProlog named Lx is currently being developed by Miller (1990). Lx restricts
higher-order unification to maintain the attractive properties of first-order unification, namely
decidability and most general unifiers. The overhead of Lx's restricted higher-order unifica-
tion is not significantly different than that of first-order. A discussion of the relevance of
LX to this work is beyond the scope of the paper.

XProlog clauses and goals. Simply-typed X-terms and higher-order unification underlie
XProlog; now we turn to the logical connectives of the language. XProlog terms are
distinguished based upon whether they appear as a goal G or a program clause D. For
Prolog the two classes may be inductively defined as

where G ranges over goals (also termed G-formulas or G-forms), D over program clauses
(or D-forms), and A over atoms. (Atoms are terms of type o—the reserved type of XProlog
propositions—that do not have a logical operator at the top level. Variables within D are
implicitly universal, while those within G are existential.)

For XProlog, we have instead

where both => and <= represent (intuitionistic) implication. Thus G =» D and D <= G stand
for the same formula. Typically, a goal will be written as D => G, while a clause will
be written as D ^ G. Operationally, the G-form D «= G is interpreted by assuming D
for the solution of G.

The above classes define the core of XProlog—the higher-order hereditary Harrop form-
ulas (Nadathur & Miller, 1988), which generalize Horn clauses while preserving the basic
character of a logic programming language. Clauses are restricted in that they may not
contain disjunction (;) or existential quantification (3), because of the difficulty in giving
an operational interpretation to such D-forms.

An example XProlog program. We herein consider the programming of a higher-order
predicate select, such that select P K L insures that L is a sublist of K for which P holds.
The type of select is
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type select (A -> o) -» list A -» list A -* o.

select may be programmed as

select P (x :: K) (x :: L) <= P x, select P K L.
select P (x :: K) L <= select P K L.
select P nil nil.

(:: adds an element to the head of a list.) The following query, for example, selects grand-
parents from the given input list:

?- select (\x.3y. (parent y x, 3z.parent z y)) (tom :: kate :: leo :: nil) L.

Readers may argue that select could be formulated within Prolog simply by replacing P
x with apply P x, and further, that grandparent could itself be encoded as a top-level
Prolog predicate:

grandparent x = parent >' x, parent z y.

In many situations, however, the 'inline' expression of higher-order arguments (such as
the unnamed grandparent) is either necessary or desirable: for instance, reformulation
at the top-level is not applicable to higher-order functions that are not predicates (i.e., not
of type 0). Moreover, first-order languages do not permit many operations over predicates,
such as composition: consider

select_or P Q K L = select (Xx.Px; Qx) K L.

(where the operator ';' represents inclusive 'or'.) Within Prolog, select_or cannot be pro-
grammed in terms of select, at least not without revising select's original definition.

5. Higher-order EBG

In §4 we made the case for the additional expressiveness afforded by higher-order language,
and in particular for XProlog. Expressive elegance is intimately tied to effective generaliza-
tion: succinct and elegant rules make for succinct and elegant generalizations.

We would like to assert more, namely that first-order encodings are inadequate for the
task of generalization within higher-order domains, because primitive syntactic manipula-
tions inevitably intrude into the generalizations. To justify this claimed inadequacy, one
might attempt to formalize a given higher-order example within a first-order language.
However, at best such a strategy could only establish the inadequacy of one particular for-
mulation. Arguing that first-order encodings are generally insufficient for higher-order do-
mains and higher-order generalization is more problematic, because first-order languages
certainly are expressively (and computationally) adequate.
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Instead, we suggest the proper question is whether programmers should be unduly con-
strained in their choice of language. Higher-order representation languages are higher-level
in that their additional expressiveness eases the task of programming over higher-order
domains: witness the success of higher-order programming languages such as ML, LISP,
Scheme, and more recently (and to a lesser degree) XProlog. As we can expect program-
mers to continue to make use of higher-order languages, the successful application of EBG
to these domains necessitates that the paradigm be extended to higher-order generalization.

We illustrate higher-order EBG within the domain of symbolic integration. Consider the
following higher-order rules: the first treats exponentiation, the second extracts a constant
factor, and the third splits a sum. (The predicate intgr relates a function to its indefinite
integral. We use a mathematical notation for arithmetic operators not included in XProlog—in
particular, exponentiation and division—as it increases readability.)

!! intgr (\x.xa) (Xx.xa+1/(a + 1)).
!! intgr (\x.a * Fx) (Xx.a * Hx) = intgr F H.
!! intgr (Kx.Fx + Hx) (hc.F'x + H'x) = intgr F F', intgr H H'.

intgr cos sin.

The traditional binding notation of dx has been replaced with X-terms. Missing from
the first rule is the restriction that a = —1, because XProlog does not admit constraints
other than those imposed by unification.8 The integration rule for cosine is an example
of a 3-clause that is not 'contingent': while the rule is valid in the same sense as the others,
it represents a proof step we wish to abstract under EBG.

The query

?- intgr (Xx.3 * x2 + cos x) H.

yields the solution

and the generalization

!! intgr (Xx.a * xb + Fx) (Xx.a * xb+1/(b + 1) + F'x) = intgr F F'.

The proof and generalized proof associated with this example are given in Figures 5 and
6, respectively.9

The generalization space of higher-order EBG is significantly larger than that of first-
order in that higher-order constants are additionally subject to variable replacement: con-
sider that in the first-order case of Figure 2, the goal kill X Y is fully general, while for
higher-order, a single variable G ranging over goals is fully general. Also unlike the proofs
of §2 & 3, the integration proofs make use of higher-order unification, which implicitly
enforces the restrictions placed upon free and bound variables: for example, within an ap-
plication of the power rule, \x.xa will not unify with \x.xx since a may not contain free
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Figure 5. Higher-order proof.

Figure 6. Higher-order generalized proof.

occurrences of x.10 Moreover, function variables may then appear in the derived generaliza-
tions (e.g., F). While this application is limited to abstracting X-terms, XDProlog supports
generalization over predicates as well.

6. Search control via tactics

The previous integration example relied upon logic programming's implicit search to solve
queries. Additional levels of search control need not, however, interfere with the underly-
ing process of EBG! We demonstrate this by implementing a tactic-based approach to the
symbolic integration problem. Search is controlled within a tactic-based theorem prover
(or problem solver) by requiring the user to a priori or interactively specify a combination
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of proof steps, or tactics, with which to attempt the derivation of a goal (Gordon, Milner
& Wadsworth, 1979; Constable, et al. 1986). These tactics guide the construction of an
actual proof (or problem solution).11

Tactics are simply named rules: for the integration domain, we have

!! tac power (intgr (\x.xa) (Xx.*a+1/(a + 1))) true.
!! tac constant_left (intgr (\x.a * Fx) (Xx.a * F'x)) (intgr F F').

tac cos_tac (intgr cos sin) true.

Tactics perform goal reduction: the input goal Gin (2nd argument) is reduced to a more
easily solved subgoal Gout (3rd argument).

To represent compositions of tactics, we have problem independent meta-tactics, or tac-
ticals, such as

!! tac idtac Gin Gin.
!! tac (then T1 T2) Gin Gout = tac T1, Gin Gmed, tac T2 Gmed Gout.
!! tac (orelse T1 T2) Gin Gout - tac T1 Gin Gout; tac T2 Gin Gout.
!! tac (repeat T) Gin Gout = tac (orelse (then T (repeat T)) idtac) Gin Gout.

We augment the above with a special interactive tactical:

!! tac interactive Gin Gout = write_string "Goal to be reduced: ", write Gin,
newline, write_string '' Enter tact i c/tact i ca l : ",
read XT. tac T Gin Gmed, ((Gmed = true, Gout = true)

; tac interactive Gmed Gout).

(XProlog's input predicate read, which is of type (A - 0) - 0, differs from Prolog's in
that the entered term is bound to the variable T before execution of read's body.)

Now to solve the query

?- tac interactive (intgr (\x.2 * (3 * cos x)) H) Gout.

we could enter the series of tactics constant—left, constant_left, and cos_tac as pro-
mpted; or equally, the tactical (then (repeat contant_left) cos_tac), yielding

as well as the generalization

!! tac interactive (intgr Qx.a * (b * Fx)) (\x.a * (b * F'x))) (intgr F F').

Level of generalization. Since tactics of the training theory are abstracted, the above
generalization is applicable to problems not addressed by the original tactical: for exam-
ple, Xx.2 * (3 * sin x). At the same time, this derived rule does not cover the range of
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problems for which the tactical (then (repeat constant_left) cos__tac) is applicable: con-
sider intgr (Xx*.3 * cos x) H. This is because the tactical- or meta-level is formulated com-
pletely within D, and hence generalization does not occur at that level; instead generaliza-
tion is confined to the tactic- or rule-level. This is, of course, exactly what we were after
when we set out to make the additional level of search control transparent to EBG. Alter-
native formulations could produce generalizations at the tactical-level, but those derived
rules are more likely to be so general that they would be difficult to apply.

Level of assimilation. Within this paper, we have concentrated on how a rich representa-
tion language supports EBG, and have ignored questions concerning how these generaliza-
tions may be assimilated and applied automatically. Under the traditional approach, the
underlying architecture of the problem solver produces and assimilates generalizations in
the course of solving each query (at least when learning is 'switched on'). This assimila-
tion may be selective or may involve the forgetting of those derived rules only infrequently
referenced.12

This approach to assimilation is, however, problematic for tactic-based paradigms. In
the above example, although generalization occurs only at the level of tactics, the derived
rule nevertheless contains a reference to the tactical interactive. If we are to maintain a
strict separation of the rule-level and meta-level, it does not make sense to assimilate a
generalization encompassing both levels. Rather, a slightly modified generalization could
be assimilated at the rule-level as a derived tactic:

!! tac constant_left_two (intgr (Xx.a * (b * Fx)) (Xx.a * (b * F'x))) (intgr FF' ) .

The point is that it is the user (or client program), rather than the architecture, which
is in a position to control assimilation. If we were to instead directly assimilate the original
generalization, we compromise the predicate interactive in that a subsequent invocation
might no longer prompt the user; that is, we compromise the user's control over search.

This example reinforces our belief that for such applications EBG should be a feature
of the language in which problem solvers are coded, rather than a 'black box' within the
problem solving architecture. In other words, what is required is a language in which one
can program the learning mechanism. By providing the programmer with an explicit means
to control generalization and assimilation, we defer the difficult problem of determining
when to generalize and assimilate. Client programs have the potential advantage of bring-
ing domain knowledge and user interaction to bear in determining what is to be learned.
This concept of programming generalization and learning within the same language in which
problem solving and interaction occur is markedly different from what we label 'black-
box' learning. Hence our approach stands in contrast to systems such as SOAR (Laird,
Rosenbloom & Newell, 1987), Prodigy (Minton, et al., 1989), and LEAP (Mitchell,
Mahadevan, & Steinberg, 1985) in which learning is largely relegated to the underlying
architecture. (A thorough treatment of our approach to programmable generalization and
assimilation is beyond the scope of this paper; see instead Dietzen (1991).
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Operationality vs. D. While §3 illustrated that both D and operationality criteria serve
to define EBG's generalized proofs (and hence its results), the tactic example above
demonstrates that the mechanisms are not equivalent: consider that a formulation of the
integration domain that replaces D with operationality criteria (defined via the predicate
oper) requires specifying

oper (tac interactive (intgr cos sin) true).

The problem is that this definition again forces the mixing of the rule- and meta-level,
thereby violating the modularity of our encoding.

Operationality criteria, on the other hand, do provide features beyond the capabilities
of D. For instance, they offer a generally more concise means to define generalized proofs:
by declaring that only a single subgoal is operational, the entire branch of the generalized
proof underneath is excluded, or 'pruned', from the generalization. Achieving the same
effect with D alone would require removing each of the program clauses applied within
that branch from D. Furthermore, if a particular rule is used pervasively in a proof, it
might be necessary to include it within both 3D and 3 (and then use some form of addi-
tional control to discriminate between occurrences.) Operationality criteria do not present
a corresponding problem, as it is unlikely that recurring subgoals could be considered both
operational and non-operational.

D does, however, offer the means to generalize in an entirely different manner: consider
that even interior steps can be abstracted from generalized proofs via D.

We conclude that the mechanisms of operationality criteria and D are complementary,
and while D is sufficient to formulate the examples presented within this paper, we do
not suggest it as a replacement for operationality criteria. In fact, the combination of the
two is particularly attractive: modal logic induces an underlying limit to the specialization
of derived rules that potentially prohibits EBG from yielding 'incorrect' generalizations,
while operationality criteria provide a means to 'fine tune' selection from the space of possi-
ble generalizations admitted by D.

7. Program transformation and apprentice learning

One paradigm for formal program development is that of program transformation (Burstall
& Darlington, 1977; Huet & Lang, 1978; Feather, 1986; Partsch & Steinbruggen, 1983).
Under a transformational approach, an abstract specification of an algorithm is refined,
or specialized, through a sequence of formal elaboration steps, or transformations, into
a program with acceptable performance. The resulting sequence of transformations along
with the initial specification serve as a derivation, or justification, of the optimized
program.13,14

We illustrate EBG over a transformational system which we have applied to induce tail
recursion in certain situations (Dietzen & Scherlis, 1987). (From a tail recursive version,
an iterative form could easily be derived.) As an understanding of the derivation's details
is unnecessary for this discussion, we defer presentation of the full derivation to Appendix A.
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We begin with a functional specification of the factorial program:

fix \fact. lam Xn. if (equals n 0)
1
(appl fact(n- l))*n

The above is a XProlog abstract syntax for a simple functional language. The constructs
lam and appl represent object-level X-abstraction and application, respectively. The fix-
point or recursion operator fix is 'applied' by substituting its body for each occurrence
of the bound identifier within its body (see Appendix A).

The derivation proceeds by applying transformations to this specification. For example,
the following transformation replaces an occurrence of e with op e z, where z is a right
identity of op (for example, mapping a to a + 0):

!! add_id_right op C (C e) (C (op e z)) = right_identity op z .

The third and fourth arguments match the input and output object programs, respective-
ly. The second argument C specifies a context—i.e., the particular subexpression of the
input program to be transformed. These higher-order context variables serve to formally
encode subterm or occurrence selection, which might, for example, result from "pointing
with a mouse" (Pfenning & Elliott, 1988). (This constitutes yet another application of higher-
order representation language: the formal expression of occurrences.) For example, within
the following invocation of the transformation

?- add_id_right (hx.Xy.x + y) (\g.g * h) (a * b) FoutI.

the context variable C is \g.g * h. From the definition of add_id_right above, C is ap-
plied to e and then matched against the input a * b; that is,

Thus, e is instantiated to a and h to b. Now, given that

right_identity (Xx.Xy.x + y) 0

the output Fout is instantiated as follows:
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The full derivation tail_rec, which consists of a sequence of ten such transformation rules
and the associated contexts, constitutes a meta-program—i.e., a program that manipulates
an object program such as fact. This meta-program would ideally be constructed interac-
tively by alternatively selecting rules and contexts; as eLP currently lacks the interface
necessary to interpret 'mouse input', tail_rec was instead hand-coded. The meta-program
is applied to fact through the query

?- tail_rec (\x.\y.x * y)
(fix \fact. lam Xn. if (equals n 0)

1
(appl fact (n - 1)) *n)

Fout .

which yields the tail recursive expression

Fout
 = appl (fix \fact1 . lam \m. lam Xn. if (equals n 0)

m
(appl (appl fact1 (n *m)) (n - 1)))

1

But more interesting is the generalization:

!! tail_rec op
(fix Xf. lam \y. if (H 1 y )

a
(0p(applf(H2y))(H3y)))

(appl (fix Xf'. lam \x. lam \y. if(Hl y)
x
(appl (appl f'(op(H3y)x))

(H2y)))
b)

= right_identity op b, left_identity op a, associative op.

The result produced by our prototype is not so elegantly expressed: it consists instead of
a series of constraint equations. We took the liberty of collapsing them into their 'most
obvious' solution above for presentation. The problem of more elegantly displaying these
constraints requires further consideration. In either form, however, the generalization may
be applied to analogous programs such as list reversal:

?- tail_rec append
(fix Xrev. lam Xl. if (null l)

nil
(append (appl rev (tl l)) (hd l):: nil)))

Fout .
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which instantiates15

a = nil
b = nil
#1 = null
H2 = tl
H3 = Xl.hdl::nil

yielding the tail-recursive version

Fout = appl (fix \rev1. lam \k. lam \l. if (null l)
k
(appl (appl rev1 (append ((hd l ) : : nil) k))

(tl l)))
nil

The above result requires only the addition of a final simplification to make the reduc-
tion from (append ((hd l ) : : nil) k) to ((hd l):: k). Hence, the generalized fact derivation
is sufficient for rev as well (except for final simplification).

The elegance of the above generalization is largely due to the expressiveness of higher-
order language. In particular, essential restrictions on the input program are implicit in
the higher-order notation: (1) that the function argument y may not appear in the 'then'
part of the if-statement, (2) that the function/may not be recursively invoked in the 'condi-
tional' or 'then' parts of the if, and (3) that the recursive call to f within the 'else' branch
must be the argument to a particular function op having special properties. These restric-
tions are not explicit in any single transformation step, but rather are spread over the se-
quence of transformations embodied by the generalization. Realizing a similar result within
a first-order system would be substantially complicated by, for example, the need for these
explicit occurrence checks.

Apprentice learning. We believe that the search space for the above derivation is intrac-
table; that is, without user guidance (e.g., via an explicit meta-program), it would not be
feasible for a system to 'discover' the sequence of transformations and the associated con-
texts with which to induce tail recursion. The problem space of program transformation
is further complicated in that it is the user who decides when a derived program is accept-
ably 'efficient—in this case, when it is tail-recursive. For transformation systems, we are
not in the situation of theorem proving where there are only two answers—'yes, a goal
is provable" or "no, it is not." Instead, the role of the user is two-fold: to guide the deriva-
tion and to make value judgments upon the resulting programs. Currently we are so far
from automating the latter that transformation systems will continue to depend upon user
assistance.

The fact that these value judgments are not part of the transformations means they are
not manifest in the resulting generalizations. There is an important underlying assumption
here: a sequence of transformations that leads to a 'good' program in one particular case
(e.g., fact) is presumed to do the same for other programs to which it is applicable (e.g.,
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rev). However, as this 'goodness' exists outside of the transformation system, there is no
guarantee that a derived rule indeed yields a 'good' program.16

Explanation-based generalization is often labeled 'speed-up' learning in that EBG ex-
tends the domain theory by constructing new rules in the deductive closure of that domain
theory. In other words, under EBG nothing new may be proven, but the solution of prob-
lems covered by derived rules is (hopefully) quicker. With the incorporation of user in-
teraction to address the problem of intractable search, this characterization of EBG becomes
incorrect: the resulting generalizations, while in the deductive closure of the rule set, are
generally not accessible without user guidance. Here EBG becomes a vehicle to transfer
knowledge from the user to the learner. The combination of learner and user, when viewed
as a whole, still only accomplishes speed-up learning. But, after a joint derivation of fact,
the learner could handle rev without user assistance (presuming that the system could find
the final simplification). That is, from the individual perspectives of the learner and user,
more than speed-up learning has taken place (DeJong & Mooney, 1986; Dietterich, 1986,
pp. 304-305; Mitchell, Mahadevan, & Steinberg, 1985; Mahadevan 1990).

8. XDProlog and EBG

Within this section we more formally describe XQProlog and higher-order EBG through
a pair of interpreters written in XProlog.

The syntax of \DProlog is summarized by the following inductively defined classes:

where the new meta-variable Gn over ranges over 'boxed' goals, e is the null terminal,
and P ranges over logic programs (omitting type definitions, module declarations, etc.)

Although our examples have only employed D at the top level, the operator is not restricted
to outermost occurrences. The use of D does not, however, extend to arbitrary XProlog
constructs. In particular, XDProlog disallows goals of the form D(D = G), D(3x.G), and
D(G1 ; G2), because it is unclear how to give them an operational definition. It is also
unclear what additional expressiveness would be provided.

XDProlog does not distinguish sequences of the modal prefix; that is, DOA is equivalent
to DA. In this respect XDProlog may be considered an intuitionistic version of the classical
modal logic S5 (Chellas, 1980). However, XDProlog is a proper subset of 55 as it lacks
negation (-) and the second modal operator of possibility 0, which may be defined as
- n -. The difference between possible and contingent truth is conceptually similar to
that between contingency and necessity: OA is to A as A is to OA. XDProlog could equal-
ly have been formulated with unprefixed clauses representing domain theory and clauses
prefixed with 0 standing for training theory.
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Interpreting & generalizing XDProlog. It is important to distinguish the programming
language XDProlog from the algorithm that produces explanation-based generalizations of
XDProlog computation. To simplify discussion, we first present, in §8.1, a XDProlog in-
terpreter without the generalizing component. That interpreter is written in XProlog. Due
the closeness of the correspondence between object-language (XDProlog) and meta-
language (XProlog), we often use the more descriptive term 'meta-interpreter.'

This meta-interpreter is extended to perform EBG within a second prototype in §8.2.
The expanded meta-interpreter exemplifies the generalization algorithm admitted by
XDProlog, and has produced the examples contained within this paper. In §8.3 we aug-
ment this meta-interpreter to admit operationality criteria.

To run examples using the meta-interpreters to follow, the X^Prolog program Pob to be
interpreted must be available as data. This is accomplished by asserting hyp D for each
clause D of Pob prior to invoking the meta-interpreter. The prototype may then enumerate
Pob with XProlog's backtracking search (by successively solving the goal hyp D).17

Variables of clauses asserted with hyp must be explicitly universally quantified. (The '!!'
convention, while part of the eventual system, is not realizable within the prototype.) What
follows is a portion of the ubiquitous suicide example in the form recognized by the
meta-interpreter:

hyp (D VA VB VC. kill A B = hate A B, possess A C, weapon C).
hyp (gun obj1).

8.1. The meta-interpreter

The XDProlog interpreter is divided between two sets of clauses: the solve predicates of
Figure 7, which reduce a given XDProlog goal G to some number of atomic subgoals
(Ga's), and the match predicates of Figure 8, which attempt to solve a pending atomic
subgoal Ga.

Figure 7. Meta-interpreter without EBG: Goal analysis.
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Figure 8. Meta-interpreter without EBG: Clause analysis.

The goal reduction performed by solve is again split between two sets of clauses: wsolve
for 'weak-solve' and ssolve for 'strong-solve.' This distinction arises from the more stringent
proof required by the necessary truth of 'boxed' goals: for example, from the clause p we
cannot derive the goal D p, but the goal p does follow from the clause D p. The top-level
predicate is wsolve, because goals are contingent until a D has been encountered. Each
of the Ga's derived through solve will require either a 'strong' or 'weak' proof, which is
realized through the corresponding match predicates—wmatch and smatch.

Within the solve predicates, solution of XDProlog goals is largely realized by the cor-
responding XProlog constructs. For example, a XDProlog conjunction (G1, G2) is derived
by establishing the XProlog conjunction of G1 and G2, while a universally quantified
XDProlog goal is universally derived under XProlog. Such sharing between object-language
(XDProlog) and meta-language (XProlog) makes for elegant interpretation. (The rules of
ssolve do not address the range of XProlog connectives because of the additional restric-
tions placed upon boxed goals.)

In the final clauses of wsolve and ssolve, the pending goal has been reduced to an atomic
Ga. This is insured by our use of the cut operator '!' of logic programming: if Ga instead
contained a logical connective, '!' would have committed the interpretation to one of the
preceding clauses.18

Through the predicate hyp, the final clauses of wsolve and ssolve select a potentially
pertinent clause D from the program, which the match predicates then attempt to apply
in the proof of Ga. The selection of D is 'naive' in that each clause of (P0b is simply tried
in order until one is found that derives Ga. As we shall see, in the course of deriving Ga

from D, match may produce subgoals (Gs's) that must be subsequently solved to com-
plete the proof.

The match predicates analyze the selected program clause D to determine if it is ap-
plicable in the solution of Ga. For a conjunction (D1 ,D2), the logic programming
paradigm dictates that either D1 or D2 individually derives Ga (although both D1 and D2

are available for the derivation of any resulting subgoals). A universally quantified clause
II D (or equivalently, II \x. Dx) is reduced by replacing the bound variable with a new
logical variable Y,19 which may become instantiated in the course of the proof: for exam-
ple, the clause II Xz.weapon z = gun z becomes weapon Y = gun Y. If D is a rule D'

= G', we conjoin G' with the subgoals that arise from establishing that D' implies Ga:
for the clause weapon Y = gun Y, the interpreter first determines whether weapon Y
establishes Ga, and then attempts to solve gun Y. When smatch encounters a D in the
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program, the nested clause need only be weakly matched with the current goal. This is
because proving a goal 'strongly' simply requires that any utilized clauses must themselves
be necessarily true. The resulting subgoal Gs is, however, boxed as it too must be strongly
proved. On the other hand, wmatch ignores D's within D, because we are therein only
concerned with a weak proof.

In the final clause of wmatch, the unification of an atomic Da and Ga is attempted: for
example, unifying the goal weapon objl with the clause weapon Y. This is analogous to
the unification of a goal and clause head under a Prolog interpretation. If successful, this
has the effect of 'returning' the accumulated conjunction of subgoals G8 (in this case, gun
objl) to the last clause of solve, which will then derive Gs recursively. The predicate
smatch is, however, missing the analogue to the last clause of wmatch. This is because
a contingent atomic clause cannot be used to prove a necessary atomic goal; that is, the
clause p is not sufficient to derive D p.

This concludes the discussion of the basic XDProlog meta-interpreter. The next step is
extending it to perform EBG.

8.2. The generalizing meta-interpreter

Kedar-Cabelli & McCarty produce first-order explanation-based generalizations within Pro-
log via an augmented meta-interpreter (Kedar-Cabelli & McCarty, 1987). As we shall take
a similar approach, we briefly review Kedar-Cabelli & McCarty's implementation: Under
its second formulation (pp. 387-388), their meta-interpreter, prolog_ebg, solves a par-
ticular query in parallel with the construction of the associated explanation-based generaliza-
tion. The predicate prolog_ebg takes three arguments: the particular query G, the
generalized query GG, and the conjunction of generalized conditions DD sufficient to derive
GG.

Each 'rule' applied by prolog_ebg in the proof of G is similarly applied in the proof
of GG. Leaves of the Prolog computation that arise in the course of deriving GG (i.e.,
those goals established by 'facts') are accumulated in the conjunction of sufficient condi-
tions DD. The resulting explanation-based generalization is then GG = DD, where for
example

GG = kill X X
DD = depressed X, buy X Y, gun Y

No explicit representation of the proof need be constructed; it is inherent in the Prolog search.
As in the first-order approach of Kedar-Cabelli and McCarty (1987), our generalizing

meta-interpreter develops two parallel proofs simultaneously: a proof of G and a general-
ized proof of GG. Again these proofs are not explicitly constructed; rather they are im-
plicit in the XProlog search. In the course of deriving G and GG, the implementation ac-
cumulates the conjunction of generalized clauses DD sufficient to establish GG—that is,
the leaves of the generalized proof. The resulting explanation-based generalization is then
!! GG = DD.
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Figure 9. Generalizing meta-interpreter: Goal analysis.

In the extended wsolve and ssolve of Figure 9, the decomposition of G guides the cor-
responding instantiation of the generalized goal GG. It is only at the atomic level where
G and GG diverge. (An exception is made for the handling of implicational goals D' =
G', which is simplified by locally treating D' as a part of Pob.) The MG's (for 'meta-
subgoaT) in the final clauses of solve assume a role analogous to that played by subgoals
in the previous meta-interpreter—that is, MG's retain subproof tasks for later derivation.
The transition from the Gs's of the first interpreter to the current MG's comes out of the
need to maintain both G and GG for subsequent solution. The straight-forward clauses
meta_wsolve and meta_ssolve that derive MG's are given within Figure 11.

After solve selects a clause D with which to derive Ga, the extended match predicates
of Figure 10 attempt to apply D is the solution of Ga. But in the course of deriving Ga,
the new match also yields a generalized atomic goal GGa and a generalized clause DD
sufficient to derive GGa. Within the final clause of wmatch where Da is unified with Ga,
DD is instead unified with GGa. That neither the pair Ga and GGa nor the pair Da and
DD are unified is essential for generalization: DD and GG need only be instantiated to
the point that GG necessarily follows from DD.

How then do any of the constants of D (first or higher-order) ever end up in GG or DD?
The answer is that unless some of the D's employed in the proof are boxed, none ever
will. In the matching of boxed clauses, D and DD are explicitly unified in the invocation
of bmatch (for 'boxed-match'): within the suicide problem, for example, both D and DD
are bound to VZ.weapon Z = gun Z. (The additional predicate bmatch is required to han-
dle subtle differences in the matching of instantiated DD's.) While D and DD are initially
equivalent within bmatch, they may later diverge as distinct new logical variables X and
Y are substituted for universally quantified programs. This is because D is to be unified
with Ga, while DD is to be unified with GGa: again for the weapon clause, D's logical
variable becomes bound to objl, while that of DD remains uninstantiated.

As both boxed and unboxed clauses are used in the proofs we have developed, the reader
might rightfully expect both to appear in DD, the resulting sufficient conditions of the
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figure 10. Generalizing meta-interpreter: Clause analysis.

Figure 11. Generalizing meta-interpreter: Meta-Goal solution.

generalization. However, boxed clauses are 'necessarily' true, and hence need not be re-
checked during the application of a derived rule. Instead, it is the conjunction of utilized
unboxed clauses which constitutes the simplest expression of the sufficient conditions for
GG. Removing boxed clauses from DD requires a simple reduction predicate reduce, which
replaces arbitrary occurrences of D P by true within DD. (As reduce is relatively trivial,
we omit its definition; instead see Dietzen (1991).)

Explanation-based generalizations may then be derived as follows:

do_ebg G (GG = DD') = wsolve G GG DD,
reduce DD DD'.
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8.3. Operationality

Incorporating operationality criteria within the preceding prototype requires providing the
meta-interpreter with access to an operationality predicate oper. The revision involves in-
serting the following clause at the head of the solve predicates. We illustrate the change
for wsolve; an analogous change is necessary in ssolve:

wsolve G GG DD = oper G, !,
DD = GG, wsolve_orig G.

where wsolve__orig is the version of wsolve that does not perform EBG—i.e., that given
within Figure 7.20 The computation proceeds in the same manner, but EBG is suspended
during the solution of operational subgoals. Instead, DD is bound to the current general-
ized goal GG, which, because it is operational, becomes one of the sufficient conditions
of the resulting generalization. The above clause is expected to be used for recursive in-
vocations of solve—i.e., during the solution of subgoals; if a top-level goal is made opera-
tional, the resulting explanation-based generalization is trivial.

It is the user's responsibility to specify the computation necessary to determine oper
of particular goals. Should no clauses be provided for oper, the above implementation
behaves in the same manner as the original. Moreover, this formulation of operationality
is dynamic, in that oper may be defined and redefined within the course of the computa-
tion (Hirsh, 1988).21

8.4. Direct implementation

The above XDProlog implementation in XProlog has been extremely valuable for ex-
perimenting with different variations of XDProlog and the EBG algorithm, and further for
providing a formal specification of each. It is, however, extremely slow due to the addi-
tional level of interpretation, which also precludes the application of XProlog optimiza-
tions (such as hashing rules based upon predicate names). Furthermore, the meta-interpreter
is not powerful enough to handle XProlog primitives (e.g., cut or arithmetic), or to realize
the !! convention,22 or to implement primitives for controlling EBG as well as those for
manipulating and assimilating rules derived through EBG. (Again, a discussion may be
found in Dietzen (1991).) We have addressed the above deficiencies by extending our ex-
isting XProlog interpreter, eLP, to realize XDProlog and EBG.

9. Conclusion

To date, the application of the machine learning technique of explanation-based generalization
has largely been limited to first-order representation languages. Such encodings do not
lend themselves to the natural and concise expression and manipulation of higher-order
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objects such as functions and predicates. To facilitate generalization over these higher-order
values, we have expanded the paradigm to higher-order explanation-based generalization,
and further have provided a formal characterization of higher-order EBG through the higher-
order logic programming language XProlog and concepts of modal logic. Potential applica-
tions include learning systems that manipulate programs, logical formulas, mathematical
expressions, and natural language.

Our presentation herein has focused upon the formulation and illustration of higher-order
EBG within the framework of XnProlog. In order to derive and exploit these generaliza-
tions, there must be mechanisms for initiating EBG within XDProlog (in our view, under
the programmer's direction), and also for extending the existing logic program with newly
derived clauses. The latter consideration is problematic in that the standard construct by
which Prolog programs are extended, assert, is not semantically well-behaved. For this
and other reasons, assert is not part of XProlog. Elsewhere, we propose new constructs,
rule and rule_ebg, that provide for programmable generalization and assimilation (§6),
and that offer a straightforward semantics reconcilable with XProlog (Dietzen, 1991).

Broadly speaking, then, our work should be viewed as a language design effort. This
distinction is fundamentally important to the evaluation of our efforts. Unlike typical 'stand
alone' learning systems, XaProlog does not pose its own learning problems. Instead, by
integrating learning mechanisms within the programming language, we defer one of the
most difficult problems faced by a 'learner': determining over what computations to at-
tempt learning, or in other words, determining when to learn. While XnProlog is not itself
a learning system, it is intended to serve as a high-level foundation for the implementation
of such systems.

Many questions remain, but perhaps the predominant one is whether a relatively com-
plete, higher-order learning system can be effectively realized within XDProlog. While we
have provided example scenarios—both of EBG's direct use to reduce XProlog search, and
of its role within an apprentice learner to encapsulate the results of interactive problem
solving—we have not yet produced such a system. This is largely due to limitations of our
present implementation, both in performance and in functionality (e.g., its lack of a mouse
interface) (Dietzen, 1991). Also of particular interest to the authors is the further develop-
ment of the 'language-based' approach to learning (of which XDProlog is an exemplar)
to encompass other EBG methodologies (e.g., generalizing iterative and recursive theories,
(Cohen, 1988; Shavlik, 1990)) and other paradigms of generalization (e.g., similarity-based
methods, (Hirsh, 1989)).

Appendix A. Tail recursion via program transformation

As it may be of interest to the less casual reader, this section illustrates the nature of pro-
gram transformation by enumerating the individual steps of the tail-recursive factorial deriva-
tion. The actual higher-order transformations and meta-program for applying them may
be found within Dietzen (1991).
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0. We begin with the initial definition of fact.

fix \fact. lam \n. if (equals n 0)
1
(appl fact (n - 1)) * n

1. n-expand term in the object-language; that is, insert a lam and an appl. ('...' elides
the body of fact.)

lam An. appl (fix \fact. . . . )
n

(The above n is distinct from that within fact's body.)

2. Insert a multiplication by 1. This transformation relies upon right_identity (Ax. \y.x * y)
1.

lam An. (appl (fix \fact. . . . )
n)*1

3. Abstract over 1; that is, make it a parameter. This introduces a second argument which
is to become the accumulator within the eventual tail recursive version.

appl (lam Am. lam An.
(appl (fix \fact. . . . )

n ) * m )
1

4. Name the resulting two argument function fact1: since fix specifies the expansion of
recursive functions, one may think of it a mechanism for function definition. This in-
itial definition of fact1 will be used later in the derivation.

appl (fix y fact1. lam Am. lam An.
(appl(fixAfact. . . . )

n)*m)
1

5. Unfold the recursive definition of fact; that is, expand the fixpoint operator once.

appl (fix \fact1. lam Am. lam An.
(appl (lam An'. if(equals n' 0)

1
((appl (fix \fact. . ..) n' - 1) * n'))

n) *m)
1
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6. B-reduction in the object-language; that is, appl (lam Xn'. Fn') n =B Fn.

appl (fix Xfact1. lam X/m. lam Xn.
(if (equals n0)

1
((appl (fix \fact. . ..) n - 1) * n))

*m)
1

1. Distribute * over if.

appl (fix \fact1. lam \m. lam Xn.
if (equals n0)

1 *m
((appl (fix \fact. . ..) n - 1) * n) * m)

1

8. Simplify the then-clause using the fact that left—identity (Xx.Xy. x*y) 1.

appl (fix Xfact1. lam \m. lam Xn.
if (equals n0)

m
((appl (fix \fact. ...)n-\)*n)*m)

1

9. Reassociate the multiplicative expression of the else-clause, since associative Xx. Xy. x * y.

appl (fix \fact1. lam Xm. lam Xn.
if (equals n0)

m
((appl (fix \fact. . . . ) n - 1) * (n * m))

1

10. Observe that within step 9 the subexpression

(appl (fix \fact. .. .) n - 1) * (n * m))

is a higher-order instance of the original definition of fact1 given in step 4:

fix \fact1 . lam Xm. lam Xn.
(appl (fix Xfact. . . . )

n)*m)
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The only difference is the values of the arguments m and n. This means that we may
fold the above expression into a factl invocation.

appl (fix \factl . lam \m. lam \n. if equals n 0
m
(appl (applfact1 (n * m)) (n - 1)))

1

This completes the derivation.
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Notes

1. For an introduction to modal logic, see Chellas (1980).
2. Del Cerro offers another approach to incorporating modal logic within the logic programming framework

that has nothing to do with EBG (del Cerro, 1986; del Cerro & Penttonen, 1987). For treatments of automated
theorem proving in modal logics outside of logic programming, see Wallen (1987) and Thistlewaite, McRob-
bie and Meyer (1988).

3. To accomplish this, some EBG systems employ the trick of writing the clause as adjacent X X = true.
4. There are already many such interpretations: D can stand for 'formally provable', or for truth in all reachable

worlds in a Kripke semantics, (Hughes & Cresswell, 1968), etc.
5. Keller reviews existing formulations of operationality (Keller, 1988).
6. Perhaps one reason that the partition between domain and training theory has not received more considera-

tion within the literature is that the mechanism of operationality typically precludes 3-clauses from entering
into generalized proofs.

7. Knight presents an overview of unification research in Knight (1989).
8. For a discussion of logic programming with constraints, see Jaffar and Lassez (1987).
9. Donat & Wallen also address the step from first- to higher-order EBG over the domain of symbolic integra-

tion (Donat & Wallen, 1988). Higher-order generalization allows extremely general rules to be extracted from
particular problem solutions. Our work focuses on how to control EBG to avoid over-general generalizations,
and yet at the same time take advantage of the higher-order nature of the language. Donat & Wallen's work
concentrates on how one could still usefully apply very general learned rules. To that end they introduce
some control constructs into the higher-order unification process.



HIGHER-ORDER AND MODAL LOGIC 53

10. Donat and Wallen's approach (1988) instead utilizes a first-order representation of integrals (from which they
produce higher-order generalizations). This first-order encoding requires additional constraints manifest in
the constant primitive, which pervades their derived rules and which is avoided within our higher-order
encoding.

11. Our tactic-based approach to integration may be considered a rudimentary theorem prover. In fect, XProlog
has much to generally suggest it as a language for implementing theorem provers (Felty & Miller, 1988):
XProlog combines logic programming's support for search and unification with the expressiveness afforded
by higher-order language and additional logical connectives. And, of course, theorem proving tasks formulated
within XDProlog admit EBG.

12. For a discussion of these issues see Prieditis and Mostow (1987, pp. 496-497), Minton (1988), and Donat
and Wallen (1988).

13. For the same reasons that suggest it as a language in which to write theorem provers, XProlog is an attractive
implementation language for formal program development tools (Hannan & Miller, 1988; Miller & Nadathur,
1987).

14. Hill also considers the application of EBG to the domain of program development (Hill, 1987). However,
Hill's research utilizes a first-order encoding, and focuses upon a particular application within formal pro-
gramming: the generalization of abstract datatype representations. Our work is directed, instead, toward the
realization of a common language, X Prolog, in which a multiplicity of programming and theorem proving
methodologies can be realized.

15. While the derivation never establishes that a = b, this follows from the fact that a = (op a b) = b using
right_identity op b and left identity op a.

16. We are grateful to Jack Mostow for this observation, (Mostow, 1989).
17. Within Prolog the recall of Pob could be handled directly through the clause predicate, but XProlog does

not currently provide this functionality.
18. A thorough discussion of cut may be found in Sterling and Shapiro (1986).
19. As in Prolog, a top-level XProlog clause (in this case, smatch) is implicitly universally quantified over its

variables. In order to apply that clause, the interpreter creates an instance by replacing those universal variables
(e.g., Y) with new logical variables, thereby facilitating the unification of the clause head with the pending goal.

20. To maintain the separation of meta- and object-levels, the definition of oper is more elegantly included within
Pob , and hence the determination of operationality is expressed as wsolve_orig (oper G).

21. Since dynamic operationality criteria are subject to change, derived rules often incorporate some representa-
tion of the utilized criteria to insure the continued integrity of those rules. This formulation of operationality,
however, does not admit the expression of these preconditions.

22. In fact !! represents more than just a convenience. The problem is that the generalizations produced by our
prototype contain variables that must be universally quantified before application. Suppose we derived the
rule p x. The problem is that p x = (p a, p b) is not true since in the course of proving p a, x is instantiated
to a. Of course, it is the case that (Vx p x) = (p a, p b), because the universal quantification allows x
to be multiply instantiated. But XProlog provides no mechanism by which existing free variables (such as
x) can be captured with an inserted quantifier.
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