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Abstract. The investigation of relations between protein tertiary structure and amino acid sequence is a topic
of tremendous importance in molecular biology. The automated discovery of recurrent patterns of structure
and sequence is an essential part of this investigation. These patterns, known as protein motifs, are abstractions
of fragments drawn from proteins of known sequence and tertiary structure. This paper has two objectives.
The first is to introduce and define protein motifs, and provide a survey of previous research on protein motif
discovery. The second is to present and apply a novel approach to protein motif representation and discovery,
which is based on a spatial description logic and the symbolic machine learning paradigm of structured concept
formation. A large database of protein fragments is processed using this approach, and several interesting and
significant protein motifs are discovered.
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1. Introduction and definitions

A task of growing importance in the management of biochemical and crystallographic
data is the ability to perform generalization and abstraction over large sets of related
physical observations. There exist recurrent patterns and rules of structural biochemistry
hidden in the Protein Data Bank (Bernstein et al., 1977); machine discovery techniques
can help to uncover these patterns and rules. Generalized patterns can facilitate efficient
information retrieval and data incorporation, providing a conceptual framework to which
new structural data can be related. They can also be used for prediction of molecular
conformation from topological structure, since they often represent common 3D (three-
dimensional) structural features. The analogous investigation of relations between protein
structure and amino acid sequence is a topic of tremendous importance in molecular
biology. It is necessary to understand protein 3D structure before protein function and
activity can be understood at the molecular level.

Proteins are macromolecules comprising chains of structural building blocks known as
amino acids. Amino acids have a backbone and a side chain, and are classified into 20
groups based on the topological structure of their side chain. Each amino acid is typically
denoted by a single letter name. Proteins can be described at various levels of abstraction.
The primary structure of a protein is given by its linear (1D) sequence of amino acids.
The primary structure dictates the 3D structure of the protein in solution, although the
rules governing this determination have not yet been discovered. The secondary structure
of a protein is given by a sequence of structural identifiers, such as H (alpha-helix), E
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Figure 1. Representations of structure (primary, secondary, tertiary) for a small protein (Crambin: PDB code
1CRN), Top: primary structure given by a sequence of 46 amino acid identifiers. The primary sequence
is followed by a sequence of 46 secondary-structure identifiers (DSSP format: a "-" indicates unassigned
structure for the corresponding residue). Bottom: a 2D visual projection of the protein's tertiary structure
(virtual backbone representation).

(strand), or T (turn). Equivalently, a sequence of n elements is often described by n such
structural identifiers: the format produced by the DSSP secondary-structure assignment
program (Kabsch & Sander, 1983). Protein tertiary structure is described by the positions
of all atoms of the macromolecule in 3D space (see Figure 1).

In addition to the levels of secondary and tertiary structure, there are a variety of
abstract representation forms for protein 3D structure (Schulz & Schirmer 1979). One
such representation, encountered frequently throughout this paper, is the protein virtual
backbone. For a chain of length n, this comprises n representative points, one for each
residue. The chosen representative point is often the position of the Ca atom (one of
the amino acid backbone atoms) of the residue. In a protein virtual backbone, two
points are contiguous or virtually bonded if their residues are adjacent in the amino
acid sequence. The virtual bond angle (VBA), defined between three contiguous points
(a, b,c), is the angle between the vectors (b, a) and (b,c). The virtual bond dihedral
angle (VBDA), defined between four contiguous points (a, b, c, d), is the angle between
the planes (a, b, c) and ( b , c , d ) .

A protein fragment is an observed pattern of amino acid residues, for example, a
region of (1D) primary structure, or of (3D) tertiary structure. A protein motif is an
abstraction of one or more fragments. Protein motifs can be classified into four categories.
Sequence motifs are linear strings of residue identifiers with an implicit topological
ordering. Sequence-structure motifs are sequence motifs with predefined secondary-
structure identifiers attached to one or more residues in the motif. The sequence is
assumed to be predictive of the associated structure. Structure motifs are 3D structural
objects, described by positions of residue objects in 3D Euclidean space. Structure
motifs are free of sequence information, although most research enforces contiguity
of structure motif components. Finally, structure-sequence motifs are combined 1D-
3D structures that associate sequence information with a structure motif. Structure-
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Figure 2. Various types of protein motifs. Legend; X: any residue, G: glycine, V: valine, H: helix, E: J-strand,
T: turn, p:polar, s: small, h: hydrophobic.

sequence motifs need not indicate a fixed direction of implication between structure and
sequence. Figure 2 illustrates these four types of protein motifs, along with some further
subclassifications which are elaborated upon later in the paper. The first three motif
types are discussed by Thornton and Gardner (1989); the structure-sequence motif will
be presented in this paper.

Machine discovery of protein motifs of various types is currently an area of intense
interest in molecular biology. One of the objectives of this paper is to bring this important
application domain to the attention of the machine learning community. Section 2 of this
paper will survey previous research on protein motif discovery according to the above
categorization of motifs. The second aim of this paper is to present and apply a new
approach to protein motif discovery, which is based on knowledge representation ideas
of description logics and machine learning principles of structured concept formation.
Section 3 of this paper presents this new approach. The description logic facilitates
reasoning about subsumption of motifs — an ability not found in other protein motif
discovery systems — while the concept formation procedure creates a concept taxonomy
of generalized motifs. Section 4 presents some promising results obtained on a large
database of protein fragments.

2. Discovery of protein motifs

The field of empirical machine discovery encompasses the theories and autonomous
processes involved in finding novel regularities, concepts, or dependencies in data. It
is convenient to identify a protein motif with a concept, having a formal intensional
description in addition to an extensional meaning. In order to apply concept discovery
techniques, a rigorous mathematical semantics for a motif is necessary to determine
whether an observation lies within that concept's extension.

There has been a considerable amount of research on machine discovery of protein
motifs. Most, but not all, of this work relies on some form of numerical clustering: frag-
ments are described by a set of numeric features, a distance metric on these descriptions
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is defined, and motifs emerge as cluster centroids during the clustering process. The
technique presented in this paper uses, by contrast, a conceptual clustering technique;
fragments are structured objects, a measure of relational or structural similarity is defined,
and motifs are most specific generalizations of fragments.

This section will describe and compare a handful of methods in terms of their repre-
sentation theory, the type of motif under consideration, the semantics given to motifs,
the motif evaluation mechanism employed, and the pragmatics of discovered motifs. A
more extensive survey appears in my Ph.D. dissertation (Conklin, 1995). Though the
results presented in Section 4 will be concerned mainly with structure-related motifs,
it is informative to review sequence motif work as a backdrop for discussing the more
general structure-sequence motif.

2.1. Sequence and sequence-structure motifs

Protein sequence motifs are the most commonly encountered motif type in the molec-
ular biology literature. It is generally assumed that similarities in protein sequence are
indicative of structural and functional similarity. Thus the discovery of sequence motifs
from structurally similar proteins or protein fragments is an important method for un-
covering relationships between protein structure and sequence. Protein sequence motifs
can facilitate the incremental acquisition and indexing of sequence data into knowledge
bases organized according to sequence similarity (Taylor, 1986).

Sequence motifs can be discovered from a maximal alignment of one or more pro-
tein sequences, followed by the abstraction of residues at aligned positions. There is
an extensive literature on the comparison of sequence motifs: see Lathrop et al. (1993)
for a good survey of this work. Conserved residues are those identical at corresponding
alignment positions. It is uncommon to find long connected sequences of conserved
residues in non-homologous proteins (Sternberg & Islam, 1987), hence the need arises
to construct histograms of residue distribution at alignment positions to produce a con-
sensus sequence motif. Taylor (1986) uses a more general abstraction scheme; a domain
theory is used to classify amino acids into nondisjoint groups based on physicochemical
properties such as hydrophobicity and polarity which are expected to have an influence
on protein folding. Following Rooman and Wodak (1991), we shall refer to sequence
motifs containing property identifiers as property motifs (see Figure 2).

Much of the work on protein secondary-structure prediction is based on the a priori
definition of sequence motifs that are predictive of a certain type of secondary-structure
identifier. These sequence-structure motifs (referred to by Thornton and Gardner as
"structure-related sequence motifs") manifest an inherent directionality of implication
from sequence to structure. The work of Rooman, Wodak, and colleagues has been
influential in establishing important sequence-structure predictivity results. Rooman and
Wodak (1988) associate with each amino acid in a motif a standard secondary-structure
identifier (e.g., Figure 2, motif 3). A discovery procedure develops short sequence
regular expressions with structure associations. They demonstrated that, while not enough
associations are derived to predict a complete protein structure, a number of reliable and
predictive motifs do exist. In a similar study, Rooman et al. (1990b) replace the standard
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secondary-structure identifiers with elements produced by structure motif discovery (see
next section).

Rooman et al. (1989) take a number of sequence motifs, reported in the literature
as characterizing local secondary structure, and subject them to a rigorous validation
against a database of 75 proteins. Out of 12 sequence motifs, only one is found to be
predictive of secondary structure. The hypothesized reason for this poor performance is
the over-generality of the motifs tested. Rooman et al. present experimental evidence
indicating that there is a direct relationship between motif specificity and predictivity.

2.2. Structure motifs

The accurate prediction of protein tertiary structure from amino acid sequence, while the-
oretically possible, has remained one of the great open problems in molecular biology.
Though the prediction problem is typically reduced to a more manageable one — the
prediction of secondary structure from sequence followed by the packing of secondary
structures into 3D — recently there has been increasing interest in the automated dis-
covery and use of structural elements less coarse than the standard secondary structures.
There are three main reasons for this development. First, there is a wide discrepancy
between different methods for secondary-structure assignment from tertiary structure
(Zhang et al., 1993). A prediction system relying on one assignment method for training
and evaluation is modelling to some extent its particular characteristics (Colloc'h et al.,
1993). Second, unidentifiable folding patterns are usually classified as "random coil,"
even though these regions are neither random nor undefinable (Prestrelski et al., 1992).
Finally, the packing of secondary-structure elements is itself a non-trivial task and is
dependent on accurate secondary-structure predictions. By contrast, structure motifs are
building blocks that can be used to precisely describe the tertiary structure of a new
protein (Jones & Thirup, 1986).

Structure motifs are typically discovered by numerical clustering. These procedures
require a fixed set of numeric parameters to describe observations, and a distance metric
over these multidimensional vectors. In all structure motif discovery research surveyed
in this section, the initial numeric parameters are simply the list of 3D coordinates of
fragment components. The "visual" similarity of two fragments is thus highly dependent
on the coordinate frame of the protein(s) from which the fragments were extracted. This
problem can be circumvented in three ways: 1) by standardizing fragment descriptions
before comparison; 2) by using numeric features invariant with respect to Euclidean
transformations (rotations and translations), or 3) by first performing an optimal alignment
of the fragments in 3D space before their comparison. There are drawbacks with each
approach; the first implicitly forces a fragment alignment that is possibly suboptimal, the
second is sensitive to the chosen features, and the third complicates the semantics of a
motif. Further weaknesses with these approaches are discussed at the end of this section.

Hunter and States (1991) standardize fragments by placing their center of mass at the
origin, orienting the x, y, and z axes relative to the principal axes of the moment of
inertia tensor of the fragment. The authors note various problems with this standardization
method; foremost is the fact that small changes in fragment data can flip the choice of an
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axis, confounding the motif/fragment relationship. Bayesian classification techniques are
used to produce clusterings which are evaluated according to Bayes' formula with a prior
distribution favoring fewer classes; given two clusterings, each with the same number of
classes, the method will prefer the clustering which has a tighter fit to the data. Motifs
are represented by a probability distribution over Cartesian coordinates for the backbone
atoms of each residue. Thus motifs are probabilistic concepts; fragments fall into a class
with a certain probability. In contrast to other approaches reviewed below, amino acids
are represented by line rather than point data, since all backbone atoms are used.

Rooman et al. (1990a) use an invariant representation scheme. The similarity between
two fragments is computed by a Ca distance root-mean-square (DRMS) metric1 (Rooman
et al., 1990a). Similar to the work of Prestrelski et al. (1992) and Zhang et al. (1993),
fixed-length contiguous fragments from a protein virtual backbone are used. A fragment
is an instance of a class by virtue of being within a DRMS distance threshold from the
prototypical motif of that class. Similar to the work of Hunter and States, a structure motif
is a 3D coordinate description, and can be depicted and perhaps evaluated by a chemist
using molecular visualization software. A fragment clustering yields a dendogram of
cluster merges; this structure must be pruned to produce a library of motifs. Rooman et
al. (1990a) discuss different pruning techniques, and point out the dependence of any
technique on the pragmatics of the motif library. In a first experiment, a fixed number
(four) of general motifs is sought after, for each fragment length from four through seven.
These motifs are correlated with four standard secondary structures. The four discovered
classes are used in the sequence-structure analysis (Rooman et al., 1990b) discussed in
the previous section. In a second experiment, Rooman et al. (1990a) cluster heptamers
and only retain motifs which contain, on average, 50 members. Some of these motifs
are subjected to a structure-sequence analysis (see next section).

Unger et al. (1989) first perform an optimal alignment of two fragments in 3D before
their comparison, using a best-molecular-fit routine (e.g., Kabsch, 1976). Virtual back-
bone, described by Ca positions of residues, are clustered using a k-nearest neighbor
algorithm. Whereas Rooman et al. (1990a) use the DRMS metric, based on intra-
fragment distances, Unger et al. first optimally align the structures and use the "aligned"
root-mean-square deviation (ARMS) between the two aligned point sets2 (Cohen & Stern-
berg, 1980) as a measure of similarity. Various criteria are used to evaluate the proposed
clustering, including the production of a reasonable number of discovered motifs, and a
reasonable goodness of fit to the training fragments.

Nussinov and Wolfson (1991) use large-scale structural comparisons to discover protein
structure motifs. Unlike the approaches surveyed above, a protein is not divided into
contiguous training fragments; rather, two proteins are compared in their entirety to
identify atoms that are superposable in 3D. A set of such points forms a structural motif.
A technique from computer vision known as geometric hashing is used to compute
the geometric alignment parameters which produce the most superposable atoms. Two
interesting features of this method are that motifs need not refer to contiguous sequential
regions, and that they can contain arbitrarily many components.

Table 1 summarizes several structure motif discovery results. The first column indi-
cates the method for computing similarity between two fragments; whether they are first
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Table 1. Structure motif discovery results ( — : not reported, f: per protein pair).

Paper

Zhang et al., 1993
Prestrelski et al., 1992
Hunter & States, 1991
Rooman et al., 1990a
Rooman et al., 1990a
Onizuka et al., 1993
Nussinov & Wolfson, 1991
Unger et al., 1989
Matsuo & Kanehisa, 1993

similarity

invariant
invariant
standardized
invariant
invariant
invariant
alignment
alignment
alignment

fragment length

7
8

5/6
4-7

7
5-129

full protein
6
7

# fragments

6,422+6,242
2,378

9,556/9,491
13,000
13,000

2
13,000
15,320

# motifs

6
113

27/—
4

>10
16
1+

103
37

standardized, aligned during comparison, or whether features invariant under Euclidean
transformations are used. The second column indicates the training fragment size; there
is some consensus on a length from six to eight. The third column indicates the number
of training fragments used. Finally, the last column indicates the number of retained mo-
tifs. It is apparent that there is little agreement on the optimal motif library size. As we
have seen, however, different research has different pragmatic goals for the discovered
motif libraries.

2.3. Structure—sequence motifs

Structure-sequence motifs assign both sequence and 3D coordinate information to residues
This motif type is different from the sequence-structure motif in that the motif itself must
have an explicit 3D structure. The sequence-structure motifs described in the previous
section do not fall into the category of structure-sequence motifs because the 3D structure
is only implicit in the association of a residue with a structure identifier.

Structure-sequence motifs are currently receiving a great deal of attention in the molec-
ular biology literature. The "inverse" structure prediction problem, where a sequence is
predicted for a given structure, relies on a compact library of structure-sequence motifs.
The sequence portion of these motifs can be a conserved or property sequence, and may
be probabilistic in that propensities for different amino acids at each sequence position
are indicated. A motif, which may be noncontiguous, is "threaded" by the amino acid
sequence of unknown structure, with an evaluation function judging the goodness of fit
of the input sequence to the motif sequence for a particular threading (Jones et al., 1992;
Ponder & Richards, 1987). One attraction of this approach is that the number of possible
protein structure classes may not be very large — on the order of one thousand (Chothia,
1992) — and that an exhaustive search over a compact library of structure-sequence
motifs may be feasible.

Many researchers concerned with the discovery of structure motifs (see previous sec-
tion) have attempted to generalize their techniques to produce structure-sequence motifs.
This involves an analysis of the sequences within a discovered structure class. Unger et
al. (1989) tabulate statistics on the frequency of each amino acid types at every position
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in a structure motif, producing a consensus sequence motif. Preliminary results indicate
that the local 3D structure of a fragment can sometimes be predicted by assignment of
the fragment to a motif based on these frequency tables. Zhang et al. (1993) also tabu-
late the relative frequency of each of the amino acids for the central residue in their six
discovered structure motifs. Finally, Rooman et al. (1990b) obtain a property sequence
motif for discovered heptamer structures. These sequences, however, are only weakly
specific and are not likely to be predictive of the associated structure.

Each of these three simple extensions to structure motif discovery are restrictive in
that a single property or conserved sequence must be associated with a structure; it is
not possible to represent a structure which is associated with a disjunction of sequences.
This is a problem because the consensus sequence of a discovered structure motif will
tend towards the flat distribution. The discovery method presented in Section 3 of this
paper removes this restriction. Also, most structure-sequence work reflects a pragmatic
bias to the prediction of structure from known sequence. As we have seen, an equally
useful task is the prediction of sequence from hypothetical or known structure.

2.4. Discussion

Table 2 classifies the protein motif discovery work discussed above according to three
dimensions. Column 2 indicates the motif type. Columns 3 and 4 indicate the semantic
theory which dictates the meaning of a motif, and hence the motif-fragment relationship.
In a model-theoretic semantics, the extension of a motif is a set — the set of all fragments
with the same properties and relationships as the motif. In a probabilistic framework, a
motif also denotes a set, but here the elements of the set have a probability of occurrence.
A similarity semantics can be given in two ways, one where the motif is assigned a
distance threshold 6 (as in the work of Rooman et al., 1990a), another where there is
no bound and the motif denotes something similar to a "fuzzy" set. Researchers in
protein motif discovery are often not clear about which semantics is intended. Table 3
summarizes the three main semantic theories of protein motifs. For example (row 1), if
a motif X has a similarity (6) semantics, then a fragment Y must meet the condition
d ( X , Y) <_ 6, where 6 is a researcher-specified constant.

Table 2 shows that, in the work surveyed, protein motifs have not been given a common
semantics. Structure motifs have usually been represented using prototypes that have a
similarity semantics, whereas sequence motifs have usually been represented by logical
definitions with a model-theoretic semantics. Structure-sequence motifs often inherit a
confused dual semantics.

Most protein motif discovery work uses a restricted semantics for structure motifs, in
that a motif can only subsume a fragment of the same length. This leaves little flexibility
for reasoning about relative generality of motifs, an important capability (Rooman &
Wodak, 1991). Unger et al. (1989) note that the ARMS (and DRMS) measures of
structural similarity can give counterintuitive results, not necessarily reflecting topological
or qualitative similarities. The following section proposes a representation that has a
model-theoretic semantics for both structure and sequence motifs and addresses many of
the issues raised in this survey.



MACHINE DISCOVERY OF PROTEIN MOTIFS 133

Table 2. A comparison of different protein motif representations ( — : not applicable to this type of motif)

Paper

Taylor, 1986
Smith & Smith, 1990
Rooman & Wodak, 1988
Rooman & Wodak, 1991
Rooman et al., 1990b
Hunter & States, 1991
Rooman et al., 1990a
Nussinov & Wolfson, 1991
Prestrelski et al., 1992
Onizuka et al., 1993
Matsuo & Kanehisa, 1993
Unger et al., 1989
Blundell et al., 1987
Sali & Blundell, 1990
Zhang et al., 1993
Conklin et al., 1993

Motif type

sequence
sequence
seq-struct
seq-struct
seq-struct
struct
struct
struct
struct
struct
struct
struct-seq
struct-seq
struct-seq
struct-seq
struct-seq

Semantic Theory
Sequence

model
similarity
model
model
model
—
—
—

probability
model
similarity
probability
model

Structure

_

probability
similarity
similarity
similarity
similarity
similarity
similarity
similarity
similarity
similarity
model

Table 3. The relationship between a motif X and a fragment Y in various semantic theories.

Semantic theory

similarity (5)
similarity
probabilistic
model

X

prototype
prototype
probability distribution
logical sentence

# values for truth

2

many
2

notation

d(X,Y) < 8
d(X,Y)
P(Y\X)
|= Y => X

3. Discovery in a Spatial Description Logic

The first part of this paper presented the important application of protein motif discovery,
and surveyed a number of existing approaches. Many issues were raised and discussed,
including the semantics given to motifs, the motif evaluation mechanism employed,
and the pragmatics of discovered motifs. This part of the paper will present a new
approach to protein motif representation and discovery which is based on knowledge
representation ideas from description logics and machine learning principles of structured
concept formation.

Concept formation systems construct a hierarchical organization of intensional concept
definitions (Gennari et al., 1989), and should therefore be based on a theory of concept
generality and subsumption. Description logics (Nebel, 1990) are a restricted first-order
formalism with specialized inference rules for detecting extensional subsumption. De-
scription logics provide an elegant underlying formalism for concept formation work,
useful for both background knowledge and discovered concepts. Section 3.1 briefly
reviews general description logics, and presents SDL, a spatial description logic specif-
ically tailored to reasoning about structured concepts.
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A structured object is composed of parts along with defined relations among these
parts. A structured object may be composite, recursively comprising other structured
objects as parts, or atomic.3 The level of a structured object is defined inductively as
follows. The level of an atom is 0. The level of a composite object is one greater than the
maximum of each part level. Although SVC is capable of describing multilevel objects,
only level-0 and level-1 objects will be encountered in this paper. Supervised concept
learning with structured objects falls into the general area of relational learning, which is
being explored currently by inductive logic programming researchers (Muggleton, 1992).
The incremental conceptual clustering of structured objects is addressed by the field of
structured concept formation — see Thompson and Langley (1991) and Conklin (1995)
for reviews of the field.

Section 3,2 presents a structured concept formation system which discovers SDL con-
cepts. The structural similarity of two fragments is measured according to the number
of parts participating in a relation-preserving correspondence between them. A match
between two compellingly similar fragments is used to build a generalized motif, which
is then classified into an evolving concept taxonomy. The structured concept formation
procedure was applied to a large database of fragments drawn from different structural
classes of proteins. Section 4 presents these results.

Concept discovery is a highly underconstrained task, and it is essential that some form
of selective acquisition and retention (Markovitch & Scott, 1993) of discovered concepts
be performed. The concept formation system described in Section 3.2 strives to create
a taxonomy which is a fast information retrieval system for fragments. In Section 4,
structure-sequence motifs are evaluated according to their predictive power, that is, the
ability of the sequence of a motif to predict its associated structure. Examples of high-
quality, predictive discovered motifs are presented in Section 4.

3.7. A Spatial Description Logic

Description logics are a frame-based representation scheme which make a clear division
between concepts (called the terminology) and instances of those concepts (described
using assertions). A terminology is created using the defconcept and defprimcon-
cept statements which associate concept names with concept terms. The concept term
any is predefined. Concept names may not be defined more than once in a terminology.
Concept terms are constructed from other concept terms using concept constructors such
as conjunction, negation and disjunction.

The central reasoning method in description logics is reasoning about subsumption of
concepts. In any consistent model of a terminology, each concept defines an extension:
the set of objects in a domain of interpretation that are instances of the concept. One
concept C extensionally subsumes another concept D in a terminology T, denoted T (=
C y D or more simply C >T D, if its extension is a superset of the other's in all
possible models of T. Two concepts C and D are extensionally equivalent, denoted
C =T D, if they co-subsume each other. The subsumption relation induces a concept
taxonomy. This is a lattice denoting the partial order of subsumption between concept
names. For example, the relation amino-acid >:T Glycine is depicted by the concept
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Figure 3. A concept taxonomy depicting a portion of Taylor's (1986) domain theory.

taxonomy Figure 3. This small taxonomy illustrates a portion of Taylor's (1986) domain
theory of amino acids; Taylor's complete classification can be represented in description
logic terms. The concept Glycine, for example, is defined by the statement

which states that all glycines are necessarily small and hydrophobic. The taxonomy of
Figure 3 also displays a subsumption relationship between two protein motifs motif2
and motif l, as discussed later in this section.

All description logics possess inference rules for detecting subsumption between two
concept terms; these procedures compute the validity of the sequent T h C >_ D (read
"from background knowledge T, it can be inferred that C subsumes D"). One of the
main facilities of a description logic is a classifier, which places a new concept in its
"correct" location in the taxonomy, just below all most specific subsumers (MSS), and just
above all most general subsumees (MGS) (Woods, 1991). As a new concept progresses
down the taxonomy during the classification process, concepts which are increasingly
specific and similar to the new concept are encountered.

Description logics have a method for expressing relationships between objects; these
so-called roles are restricted to binary relations. In order to facilitate reasoning about
structured objects, a spatial description logic called SDL has been crafted. The main
addition made by STL to standard description logic principles is the image term. Image
terms are used to represent structured concepts, and are formed by associating a symbolic
image with a set of relation identifiers.

A symbolic image is described by a spatial data structure comprising a set of concept
terms with their coordinates in multidimensional space. Informally, a symbolic image is
a set of components, or term/coordinate pairs. Formally, the abstract data type Image is
given by the following signature:
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Many other operations on images can be defined using these constructors: for example,
a replace operation which changes a component, a move operation which transfers a
single part to a new location, an overlay operation which "merges" two images, or a
extract operation which retains only those components of an image lying in a given
region of space. The canonical form of a symbolic image is given by a sequence of put
operations. This canonical form will be abbreviated below simply as a set of components.

An image term is formed by associating a symbolic image with a set of relation iden-
tifiers that are preserved by the image. These relations are analogous to description
logic roles, except that they are computed by functions which directly manipulate the
symbolic image data structure. Functions that operate on symbolic images, computing
n-ary relations, take n-tuples of components as arguments. The SVC representation
language provides a diagrammatic rather than a sentential representation (Larkin & Si-
mon, 1987) of structured concepts. Diagrammatic representations have a number of nice
properties for structured concept representation, including simple and elegant rules for
structural subsumption and generalization (Table 4), compactness of description, and an
exact structural and geometrical correspondence with objects from the domain. The latter
property will be important in Section 4 where one of the motif evaluation criteria is the
average "visual" similarity of instances.

The semantics of SVC is straightforward, deriving from standard description logic se-
mantics, except that image terms have a unique interpretation. The extension of an image
term is the set of all things with the mentioned parts in the mentioned relationships (an
illustration of image term semantics will be given below). The induced extensional def-
inition of image term subsumption has a structural counterpart. One image term [I, R]
structurally subsumes another [ J, R] if and only if there exists a relational monomor-
phism (Haralick & Shapiro, 1993) between their canonical forms that also preserves
subsumption. Thus [I, R] >rr [J, R] if and only if there exists an injective function /
from the components of I to the components of J such that first(a) >T first(/(a)) for
all components a of I, and for all tuples of components related (not related) in J, f
maps them to components in J which are also related (not related). Table 4 lists four
additional structural subsumption rules for SDL.

3.1.1. Protein motif representation in SDL,

The SVC representation language has been used successfully in other domains of chem-
istry, for example, to represent hexopyranose sugar configurations (Conklin et al., 1992).
An earlier paper (Conklin et al., 1993) showed how SVC could be used to represent all
four protein motif types. The discussion here will be mainly concerned with structure-
sequence motifs.

Sequence motifs can easily be represented in SVC using a 1D coordinate space4:

Various semantics have been assigned to sequence motifs, particularly in cases where
insertion and deletion of residues are allowed. For now we ignore these cases and
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Table 4. Four structural subsumption rules for SDL. T is a terminology, C and D are concept terms, A is a
symbolic image, P is an image component, c is a coordinate, and R, R' are relation identifier sets.

assume that sequence motifs preserve the topological or graph-theoretic distance between
residues:

The expression p.w refers to the solitary w dimension of the component p. Sequence
motifs are constructed by associating this distance relation with a sequence.

To represent protein structure motifs it is necessary to use relations that are invariant
under Euclidean transformations. Examples include hydrogen bonding, distance ranges,
angle ranges, and ternary spatial relationships. To represent structure and structure-
sequence motifs we simply place the parts in a 4D space, using the w dimension to
represent topological order, and the x, y and z dimensions to represent the Cartesian
coordinates:

As an example of a relation defined over this space, consider the 4-ary A (delta)
relation, which is defined in terms of the VBDA (vbda) between a chain of contiguous
(contig) residues (for brevity, contiguity conditions are omitted for the L, Z, and J
relations):
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This qualitative relation takes on four discrete values — U, L, Z, J — and tracks how
a fragment winds through 3D space. It is called A because it looks at the change in
direction of a fourth part relative to three other parts. The idea of partitioning the space
of VBDAs to create structure descriptors was proposed independently by Conklin et al.
(1993) and Ring et al. (1992). The particular partitioning above is due to Ring et al., and
is based on a statistical analysis of a large number of protein tetramers. It is attractive
for protein motifs since repetitions (called structural sequences) of L and J identifiers
correspond closely to the standard a and B secondary structures, respectively (Levitt &
Greer, 1977).

To define a structure-sequence motif, we first create a symbolic image for a fragment
from the Protein Data Bank. For example:

The defined identifier 5ADH-heptamer-203 can now be used in constructing a structure-
sequence motif:

asserting that this symbolic image preserves the topological distance and A relations.
The defconcept construct introduces necessary and sufficient conditions for concept
membership. Due to the defimage naming facility of SDL, an individual database
fragment need only be defined once, and motifs are constructed by associating relations
and applying both primitive image operators and generalization operators to that fragment.

Generalization is based on inverting the last three subsumption rules of Table 4. For
example, a motif more general than motif 1 (defined above) can be constructed by a
single application of the replacement rule:

This motif is more general than motif 1, since constraints on one of its parts (the glycine)
have been weakened (i.e., (small and hydrophobic) >T Glycine). The extension
of motif 2 includes not only instances with a glycine (appropriately related to other parts
of the motif); any residue that is both small and hydrophobic (e.g., alanine, threonine) can
be substituted. Thus motif 2 <±r motif 1, and this is depicted by the concept taxonomy
of Figure 3.

The semantics of image terms is given by equivalence to first-order predicate calculus.
Figure 4 illustrates this translation for the image term of motif 2. Images are decomposed
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Figure 4. The logical equivalence semantics for the image term of motif2 (see text. Section 3.1.1) which
preserves the distance and delta relations. Left: a depiction of the symbolic image. Amino acid abbrevi-
ations are standard: amino acid property abbreviations are given in the Appendix. Right: the translation of
the image term into a one-variable lambda predicate. For brevity, many of the topological distance terms are
omitted from the translation.

according to a fundamental relation (Thompson & Langley, 1991) called part. The
structural sequence for this helical motif is LLLL. Note the use of Haussler's (1989) 3*
quantifier, which ensures that each quantified variable refers to a distinct object. The
extension of a one-variable lambda predicate, with respect to a domain of interpretation,
is all objects in the domain for which the predicate is true. Under this semantics, it
can be shown that the last three subsumption rules of Table 4 are sound: the proofs are
straightforward and are omitted here.

An STL concept taxonomy is a lattice structure with concept names as nodes. These
concept names are defined using defconcept, and will usually refer to image terms.
Very general motifs are placed at high levels of the taxonomy. The actual database
fragments will be at the leaves of the taxonomy. The taxonomy structure is incrementally
revised by a machine discovery procedure, which is the topic of the next section.

3.2. Discovery in the Spatial Description Logic

The IMEM (Image MEMory) system (Conklin & Glasgow, 1992) is a similarity-based
structured concept formation system which discovers, revises, maintains and organizes an
SDL knowledge base of images. The original purpose of IMEM was as a generalization-
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Table 5. The IMEM algorithm. Top-level call: incorporate(image).

incorporate (image)

let M be the most specific subsumers of image

for each concept C in M do

(a) place a subsumption link between C and image

(b) merge ( image, C)

merge (image, C)

for all immediate subsumees D of C such that S (image, D) > r do

(a) form a new concept which is a common subsumer of image and D, and give

it a unique name U

(b) classify(U)

classify(N)

if N is equivalent to an existing concept, create a pointer from N to that

concept

else place N in the current concept taxonomy just below all most specific

subsumers, and just above all most general subsumees

based memory (Lebowitz, 1987) for efficient retrieval of images (structured objects) for
analogical reasoning. Though IMEM can be seen as a conceptual clustering system —
grouping instances into classes of high similarity — it is perhaps better viewed as a system
for learning by analogy (Winston, 1980). A high-level description of the algorithm is
given in Table 5. The IMEM method differs from concept formation methods such as
UNIMEM (Lebowitz, 1987) and COBWEB (Fisher, 1987) with respect to the structured
hypothesis space used, the rigorous denotation of links in the concept hierarchy, and in
the way similarity is measured. IMEM learns by recalling images similar to an input
image, and by performing a generalization and a classification step. The concepts of
image term subsumption and classification were outlined in the previous section: this
section will focus on the similarity-matching and generalization steps.

IMEM exploits a well-known principle of information retrieval: a hierarchy of clusters
can balance both the precision and recall of retrieval and improve retrieval efficiency
(Salton & Wong, 1978). As Levinson (1985) has noted, a concept taxonomy can be used
for close-match retrieval simply by computing the most specific subsumers (MSS) of an
input concept, followed by a close-match computation with each instance of each MSS.
This close-match retrieval principle is also exploited in the merge step (see Table 5),
with minor modifications for efficiency purposes; first, only the immediate subsumees
of each MSS are scanned for similarity, and secondly, generalization only occurs with
concepts more similar than a researcher-specified threshold r.

There are many techniques for measuring the similarity between two structured ob-
jects in machine learning (e.g., Falkenhainer et al., 1989; Bisson, 1992; Winston, 1980).
Similarity theory is also an active research area in structural chemistry (Johnson & Mag-
giora, 1990). The similarity of two images in IMEM is primarily structural. IMEM was
originally devised as a memory for analogical reasoning, and implements the structure
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mapping principle of analogy (Falkenhainer et al., 1989). The generalization operation
in the merge step uses a computed structural mapping, which explicitly applies the part
deletion subsumption rule (Table 4), and generalizes the matched components with the
replacement rule. The use of the relation subset rule will be encountered in Section 4.

3.3. Image similarity

Two image terms C and D are structurally equivalent if they have the same relation sets,
the same number of parts, and if these parts are identically related. More precisely, there
must exist a relational isomorphism which maps the parts of one image to the parts of
the other. The similarity of two images having the same relation sets can be measured in
terms of the number of part deletions needed to bring them into structural equivalence,
that is, according to the size of a partial relational isomorphism between them. Similarity
also recursively takes into account the similarity of corresponding image parts.

My Ph.D. dissertation presents an axiomatic theory of similarity for SVC. A similar-
ity coefficient ST must obey several properties, including symmetry and monotonicity.
It can be shown that the Dice and Tanimoto similarity coefficients, popular in chemical
information retrieval systems (Willett, 1990), have these properties. The following propo-
sition, proved in my dissertation, establishes the close relationship between similarity and
subsumption in SDL .

PROPOSITION 1 (INDEXING) Let T be a terminology, C and D be any two image
terms such that C >T D. For any image term I, if D >r I, then S T ( D , I) > S T ( C , I).
Furthermore, the inequality is strict whenever the relation C X-y D is proper (i.e.,
C £T D).

The impact of the indexing proposition is that the concept taxonomy can be used to
index images for close-match retrieval. The proposition guarantees that as a target image
descends a concept taxonomy, fewer and more closely matching source images will be
retrieved. Thus retrieval is directed, and need not involve enumeration of images.

3.3.1. Least common subsumers

The computation of a structural similarity valuation between two images C and D nec-
essarily produces a set of partial relational monomorphisms between them. Each one
of these functions induces a common subsumer L which, by definition, is structurally
equivalent to a subimage of C and a subimage of D. The parts of L are produced by
computing a common subsumer of corresponding parts in C and D. If the relational
monomorphism is maximal (i.e., not a sub-function of any other) and a least common
subsumer is computed for corresponding parts, the image term L will be a least common
subsumer of C and D.

To illustrate this, refer to Figure 5, which shows two images C and D (top left and right)
and below them a least common subsumer. Although not apparent from the diagrams, the
structural sequence of C is LLJU, and the structural sequence of D is LLJJ. A maximal
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Figure 5. A least common subsumer (middle) of two images (left, right). The two fragments are not structurally
equivalent under the delta relation; one part must be dropped from each to make them so. See Section 3.3.1
for further details.

relational monomorphism between C and D has six elements. Hence one part must be
deleted from both C and D (the cysteine (C) and the threonine (T), respectively) to bring
them into structural equivalence. The least common subsumer (bottom) therefore has
six parts, each of which are least common subsumers of corresponding parts of C and
D. The background knowledge T used during the least common subsumer computation
contains Taylor's domain theory of amino acids.

4. Experimental results

4,1. Heptamer motifs

To evaluate the performance of IMEM on structure-sequence motif discovery, a large
database of protein fragments was constructed from 99 proteins. These proteins are
a union of those used by Hunter and States (1991) and Rooman and Wodak (1991),
and each has a resolution better than 2.5 A. They also span a variety of distinct protein
structural families. A database of 17138 virtual backbone heptamer fragments was created
by sliding a window of length 7 over each protein virtual backbone sequence. Taylor's
(1986) domain theory of amino acid physicochemical properties was coded as background
knowledge in SDL. The additional amino acid classes of hydrogen-bond acceptor and
donor (used by King and Sternberg, 1990) were coded. Fragments preserved the A and
the topological distance relations (see Section 3.1.1).

The IMEM method (Table 5) was applied to the fragment database (its order was
randomized), with one small modification: when a new structure-sequence motif was
created, a "pure" sequence motif (reversing the third subsumption rule of Table 4) and
a "pure" structure motif were generated and classified. The generation of corresponding
sequence and structure motifs for every structure-sequence motif produces an efficient
indexing structure for fragment classification, and provides an elegant and efficient way to
evaluate motif sequence-structure predictivity. For the heptamer experiments, fragments
are used to create a motif only if they are structurally equivalent.

The efficiency of classification in SDL degrades (at worst) linearly with the number
of concepts in the taxonomy. Nevertheless, the fragment database is very large, and to
reduce overall discovery time concept formation was disabled after 2000 fragments were
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Table 6. A sequence-structure contingency table used for the chi-
square assessment of a discovered motif (motif 5314 of Table 7).

Structure
Sequence

yes
no

yes
11
62

73

no
2

17063

17065

Totals
13

17125

17138

Table 7. Examples of discovered predictive protein structure-sequence heptamer motifs. Id: a unique identifier
for the motif. Amino acid property abbreviations are given in the Appendix. Structural identifiers are defined in
Section 3.1.1. M+ : the number of fragments subsumed by the motif; M _ : the number of fragments subsumed
by the sequence, but not by the associated structure; DRMS: mean DRMS (Section 2.2); a: standard deviation;
X2. chi-square value computed from the sequence-structure contingency table for the motif. Table 6 displays
the contingency table for motif 5314.

Id

5314
4791
6085
3450
6012
3105
6479
6711
5091
5270
5382
3993

Sequence

(s)(ayn)(adp)(s)(h)(P)(h)
(adpt)(adp)(X)(aP)(G)(dp)(adpt)
(G)(l)(h)(S)(h)(G)(dp)
(V)(l)(adps)(A)(A)(H)(C)
(h)(l)(T)(A)(hs)(H)(C)
(X)(adpt)(Q)(hs)(s)(S)(hs)
(dp)(X)(h)(X)(dyp)(T)(L)
(t)(s)(h)(adp)(adyps)(A)(hs)
(h)(h)(ayp)(r)(l)(X)(N)
(h)(ap)(A)(l)(X)(c)(h)
(X)(A)(X)(l)(dhp)(s)(1)
(s)(s)(H)(s)(A)(G)(hs)

Structure

JZLZ
ZJLJ
ZUZJ
LJUZ
LJUZ
ZLLU
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL

M+

11

5

9
7
9
6
5
5
8

12
14
5

M-

2
1
0
0
0
0
0
0
0
1
3
0

DRMS

0.49
0.82
0.48
0.23
0.22
0.66
0.24
0.14
0.29
0.34
0.40
0.38

c

0.43
0.68
0.41
0.07
0.07
0.48
0.07
0.03
0.12
0.23
0.18
0.14

X2

2174.10
681.02

2698.42
2136.12
2746.76
3019.41

19.53
19.53
31.25
41.46
40.26
19.53

processed. The remaining fragments were then classified: in this manner accurate statis-
tics on the previously discovered motifs are obtained. About 2500 sequence-structure
motifs were discovered by IMEM. Each represents a recurrent association between se-
quence and structure. This experiment explored whether some of the motifs had a
sequence which was predictive of local tertiary structure. To this end, those motifs for
which the sequence is probably not predictive were filtered out from the original set.

Each discovered motif was passed through three successive filters. First, the ratio
M+/N — where N is the number of fragments subsumed by the sequence portion of
the motif, and M+ is the number of fragments subsumed by the structure-sequence motif
— must be greater than 0.8. This ensures that more than 80% of the instances of the
sequence motif have the same structure, and therefore that the sequence may be predictive
of the corresponding structure. Second, the mean DRMS of all instances of the motif must
be less than 0.95 A5. This is done because it does not necessarily follow that motifs,
qualitatively similar according to the A relation, are also quantitatively or "visually"
similar. This filter ensures that the structure portion of the motif is a good building
block. Finally, the third filter applies a chi-square test of statistical independence to the
discovery. This is a standard technique for evaluating the significance of a suspected
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Table 8. Examples of variable-length discovered motifs.

Id

7205
6791
5289
3816
6664

Sequence

(C)(X)(G)(D)(S)(G)(G)(s)(h)
(N)(S)(l)(s)(X)(X)(dp)(D)(I)(h)(L)(L)(K)(L)(ayp)(dhp)
(X)(dhp)(dp)(h)(N)(h)(aps)(r)(ayps)
(s)(dp)(V)(A)(X)(h)(h)(hs)
(ap)(X)(h)(X)(dp)(L)(X)(dyp)(X)(G)(h)(X)

Structure

LLZLZJ

LLJZLZZZJJJJJ

JZJZJJ

LLLLL

LLLLLLLJZ

M+

9
3
4
7
5

M-

1
0
0
0
0

association (Zembowicz & Zytkow, 1992). A 2 x 2 contingency table for the motif
is constructed (see Table 6), and a Bonferroni-adjusted chi-square test at a significance
level of 0.01 is applied6. This test gives support to the conclusion that the sequence and
structure of the motif are significantly correlated and not merely random associations.

If a motif C passes through all three filters, then all motifs D such that C >r D
are not considered. In this manner, the most general motifs satisfying all three filters
are retained. After application of the filters to the 2500 discovered motifs, 144 motifs
were retained. A few of these are presented in Table 7. The mean DRMS for many
motifs (e.g., 6479, 6711) is very low. Some motifs (e.g., 3450, 3993) have several
specific conserved residues indicated. Some motifs (e.g., 5382) are quite general: this
indicates their wider applicability for tertiary-structure prediction. Many of the structural
sequences are LLLL — referring to the common helical structure — but several other
structural sequences are also exhibited.

4.2. Variable-length motifs

Given the apparent success of the heptamer analysis, it is reasonable to ask: do there
exist longer predictive motifs, and can these be automatically discovered? To answer
these questions, a training set was created by sliding a window of length 20 over all
99 proteins, creating 15747 20-mers. In contrast to the heptamer analysis, here IMEM
was permitted to delete parts from fragments when creating least common subsumers.
Concept formation was disabled after 1000 fragments were processed. About 300 motifs
were discovered, and about half of these passed through the three filters. Several motifs
were very long — nearing length 20 — and many shorter motifs were also discovered.
Table 8 lists just a few of the discovered variable length motifs. Motif 6791 has 16
parts, with several specific residues indicated. Motif 7205 has a very specific sequence,
yet covers nine fragments. It is also quite interesting in other respects. It represents an
abstraction of residues 191 through 199 in the family of serine protease proteins. This
region represents the most highly conserved region in serine proteases, and contains the
active-site serine residue 195 (Smith & Smith, 1990).
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4.3. Discussion and future work

These results address a key question posed by Unger et al. (1989), showing that it is
possible to automatically discover protein structural building blocks that carry sequence
specificity. These structural building blocks are encapsulated in structure-sequence motifs
and expressed as SDL concepts. Filters were used to prune the set of discovered motifs.
Though the filters were tailored for sequence-structure predictivity, there is no reason why
structure-sequence predictivity could not also be explored in this discovery framework.
For such an experiment, it will probably be necessary to use long training fragments to
allow for a wider distribution of structural sequences.

Discovered motifs could be used for protein tertiary-structure prediction, and increasing
the length of discovered motifs may allow us to consider tertiary interactions which are
nonlocal in the protein sequence. Interactions between distant residues, and the failing
of structure prediction methods to take them into account, is one of the hypothesized
reasons for the limited prediction success that has been achieved. In general, with longer
motifs, more contiguous residues can be predicted, and less tertiary alignment of predicted
portions needs to be performed. It is, however, too restrictive to discover motifs of only
one size. An advantage of IMEM is that it can discover variable-length motifs.

The efficiency of the IMEM discovery algorithm depends on its incrementality com-
bined with the use of an evolving concept taxonomy for fast close-match retrieval of
concepts. Due to incrementality, a different ordering of the training data may produce
quite a different concept taxonomy. Once a motif is discovered and classified, it hides
its instances from future fragments which it does not subsume (although note that other
motifs may subsume some of the instances). For example, in the experiments above, a
sequence motif alone will hide some new fragments from subsumed structure-sequence
motifs. Although not always desirable, the effect can be exploited by using sequence mo-
tifs suspected to be predictive (Rooman et al., 1989) as background knowledge. Driven
by empirical data, the discovery system will elaborate these sequence motifs, and also
confirm whether they occur in similar structures.

A visual inspection of several discovered motifs has revealed that pairs of motifs —
while not subsuming each other — are often quite similar in their sequences. While they
both may be predictive, their least common subsumer may not be. This points to the
idea of extending SDL to deal with disjunction and negation to more concisely express
the components of protein motifs. Indeed, parts of Taylor's original domain theory of
amino acid types is expressed using disjunction and negation. Work on compiling a more
extensive knowledge base of amino acids is in progress.

On a related note, all previous structure-sequence discovery work has assumed that
the components of motifs — amino acid identifiers — are devoid of manipulable 3D
structure. An extension of previous work is to base the discoveries of a system on
the internal spatial structure of the amino acids. There are two approaches to such
an extension. One is to code, as background knowledge, the definitions from manual
amino acid rotamer classifications (Ponder & Richards, 1987). Another approach is to
use IMEM to autonomously discover its own rotamer classes. Both approaches require
a knowledge representation, such as SVC, capable of describing multilevel structured
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objects. Initial results on level-2 protein motif discovery with IMEM is reported by
Conklin et al. (1994). Future work could also focus on using discovered heptamer
motifs to parse or "tile" a protein. This may provide the basis for the discovery of
recurrent level-3 (super-secondary) structural motifs.

5. Conclusions

The field of molecular biology is rich in applications for machine learning. This paper
has presented and surveyed the important application domain of protein motif discovery.
A novel representation and discovery scheme was outlined, wherein all types of protein
motifs have a model-theoretic semantics, and structured concept formation is used to
discover recurrent motifs. The organization of a knowledge base by subsumption guides
new training fragments to other similar fragments, which are generalized and classified
into an evolving concept taxonomy. Some promising results on a large database of
protein fragments were presented.

The main emphasis of this paper was on structure-sequence motifs — patterns of
3D structure with attached sequence information. Until now, approaches to structure-
sequence motif discovery were limited to the a posteriori construction of a conserved or
property sequence motif for instances of a discovered structure motif. These approaches
do not represent structure motifs associated with a disjunction of sequences, and will
produce overly-general and weakly predictive structure prediction rules. The system
presented in this paper is the first to fully integrate the representation and discovery
of protein structure and sequence motifs. The discovery of protein motifs is part of a
larger research program which is concerned with the automated discovery of associations
between molecular topological structure and 3D conformation in large molecular struc-
ture databases (Conklin, 1995). Description logics and the machine learning paradigms
of structured concept formation and learning by analogy have been influential in this
research.
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Appendix

Amino acid property abbreviations

abbreviation

X
t
h
y
s
c
V

n
r
1
d
a
P
Z
B

description

any amino acid
tiny
hydrophobic
hydrophylic
small
charged
positive
negative
aromatic
aliphatic
hydrogen-bond donor
hydrogen-bond acceptor
polar
GLX
ASX

amino acids with property

all
ACS
AFGHIKLMTVWY
SNDEQR
ACDGNPSTV
DEHKR
HKR
DE
FHWY
ILV
WYHTKCSNQR
YTCSDENQ
CDEHKNQRSTWY
QE
DN

Notes

I.

where X and Y are two protein fragments of the same length n, indexed by i and j, respectively. ]| • || is
the vector norm function, so that ||a - b|| is the Euclidean distance between points a and 6.

2.

where X and Y have been aligned to minimize this expression. Steinberg and Islam (1987) relate DRMS
and ARMS for protein fragments by the approximation

3. In the context of description logic theory, Nebel (1990) uses the term atomic concept instead of concept
name. In this paper the term atomic refers to objects that are not decomposable into substructures. The
term primitive - as in Lathrop et al. (1987) and Thompson and Langley (1991) — is not used as it has a
specific denotation in description logic theory.

4. An abstract notation is used for type declarations and relation definitions, however the syntax for concept
declarations and image terms is similar to that used in the implementation of SDL.

5. Unger et al. (1989) consider two hexamer fragments X and Y to be compellingly similar if ARMS (X, Y) <
1.0. Substituting this value into the approximation given in footnote 2 yields 0.95.
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6. In a first pass through the motifs, only those which refute the null hypothesis of statistical independence
at the 0.01 level of significance (x2 > 6.64) are retained. However, the null hypothesis will be falsely
rejected — a Type I error — for 1 in 100 tests. To preserve experiment-wise significance levels, it is
therefore necessary to modify the chi-square test with a Bonferroni adjustment (Harris, 1985). This divides
the significance level by the number n of tests made, and produces a new critical value for x2. If n motifs
pass the three filters then these motifs are sent through the third filter again, using an adjusted significance
level of 0.01/n.
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