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Abstract. Algorithmic mutual information is a central concept in algorithmic information theory and may
be measured as the difference between independent and joint minimal encoding lengths of objects; it is also a
central concept in Chaitin's fascinating mathematical definition of life. We explore applicability of algorithmic
mutual information as a tool for discovering dependencies in biology. In order to determine significance of
discovered dependencies, we extend the newly proposed algorithmic significance method. The main theorem of
the extended method states that d bits of algorithmic mutual information imply dependency at the significance
level 2-d+O(1). We apply a heuristic version of the method to one of the main problems in DNA and protein
sequence comparisons: the problem of deciding whether observed similarity between sequences should be
explained by their relatedness or by the mere presence of some shared internal structure, e.g., shared internal
repetitive patterns. We take advantage of the fact that mutual information factors out sequence similarity that is
due to shared internal structure and thus enables discovery of truly related sequences. In addition to providing
a general framework for sequence comparisons, we also propose an efficient way to compare sequences based
on their subword composition that does not require any a priori assumptions about k-tuple length.

Keywords: Minimal length encoding, DNA sequence analysis, Machine discovery, Algorithmic mutual infor-
mation. Algorithmic significance

1. Introduction

Algorithmic mutual information is a central concept in Chaitin's fascinating mathematical
definition of life (Chaitin, 1979). The definition indicates that this abstract concept
from algorithmic information theory (Chaitin, 1987b; Li & Vitanyi, 1993) captures the
deepest properties of the structure of biological knowledge. In this paper we explore
applicability of algorithmic mutual information as a tool for discovery in biology. In
order to determine significance of algorithmic mutual information, we extend the newly
proposed algorithmic significance method. The main theorem of the extended method
states that d bits of algorithmic mutual information imply dependence at the significance
level 2- d + 0 ( 1 ) . We apply the method to one of the main problems in DNA and protein
sequence comparisons: the problem of deciding whether observed similarity between
sequences should be explained by their relatedness or by the mere presence of some
shared internal structure, e.g., shared internal repetitive patterns. In addition, we employ
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Chaitin's mathematical definition of life to demonstrate that the same method can be
applied to discover large-scale dependencies that are characteristic for living systems.

It is becoming increasingly apparent that many DNA sequences exhibit internal struc-
ture: either a simple bias in sequence composition, or repetitions of certain words within
the sequence. (While in this paper we focus on DNA sequences, this statement holds for
amino acid sequences of proteins as well.) A common internal structure may cause two
sequences to appear similar even though they are not related: for example, two DNA
sequences that contain many repetitions of a tetramer TCAG may appear similar, even
though independent multiplication of the tetramer may be a preferred explanation for
their similarity.

To avoid the spurious similarities, "masking" procedures are proposed (Claverie &
States, 1993; Wootton & Federhen, 1993; Altschul, Boguski, Gish, & Wootton, 1994).
These procedures simply eliminate sequences of lower complexity from comparisons.
The main drawback of these methods is that they cannot discover related sequences
of lower complexity, even though the sequences themselves frequently carry enough
information about their relatedness.

The problem can clearly be phrased in terms of the parsimony (Occam's razor) prin-
ciple: is it more parsimonious to explain similarity of two sequences by postulating
relatedness or independence? To formulate the question more precisely, we measure
parsimony of the two competing hypotheses in terms of encoding lengths. We define
two sequences, one target t and the other source s. Let I ( t ) denote the number of bits
needed to encode t by taking advantage of its internal structure (as in Milosavljevic &
Jurka, 1993a) and let I(t\s) be the number of bits needed to encode t relative to s by
taking advantage of their mutual similarity (as in Milosavljevic, 1993). The difference
I(t; s) — I(t) - I(t\s) between the first and the second encoding length is an approxi-
mation of the algorithmic mutual information between the two sequences. Any internal
structure would lead to the decrease of I ( t ) , and, if the structure is also present in s,
to the decrease of I(t\s) as well. Thus, any shared internal structure would not affect
I(t; s) and its contribution to the similarity between the sequences would be factored
out. In addition to this desirable property, we will show that d bits of mutual information
imply dependency between individual objects at the significance level of 2-d+°(1). This
general method of proving dependencies represents an extension of the recently proposed
algorithmic significance method (Milosavljevic & Jurka, 1993a).

In the following we present in parallel both the general method and its practical appli-
cation to DNA sequence comparisons. The practical application will be used both as a
motivation and as a test-case for the general method. We start with an encoding method
for DNA sequences.

2. Encoding Length and Similarity

In this section we review methods for concisely encoding sequences by taking advantage
of repeated subwords. A target sequence t can be encoded in I(t\s) bits by replac-
ing some words in it by pointers to the occurrences of the same words in the source
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sequence s. This is a standard technique in data compression (Storer, 1988). Consider
an example where the target sequence is

GATTACCGATGAGCTAAT

and the source sequence is

ATTACATGAGCATAAT.

The occurrences of some words in the target may be replaced by pointers indicating the
beginning and the length of the occurrences of the same words in the source. In the
following, a pointer is denoted by a pair of integers in parentheses, the first indicating
the position of occurrence in the source and the second the length of the common word;
for example,

G ( 1 , 4 ) C C G ( 6 , 6 ) ( 1 3 , 4 ) .

One can think of the encoded sequence as being parsed into words that are replaced by
pointers and into the letters that do not belong to such words. One may then represent
the encoding of a sequence by inserting dashes to indicate the parsing; for example,

G-ATTA-C-C-G-ATGAGC-TAAT.

To calculate the exact number of bits needed to encode letters and pointers, we assume
that the encoding of a sequence consists of units, each of which corresponds either to a
letter or to a pointer. Every unit contains a (log 5)-bit field that either indicates a letter
or announces a pointer (throughout the paper, logarithms are base 2). A unit representing
a pointer contains two additional fields with positive integers indicating the position and
length of a word. These two integers do not exceed n, the length of the source sequence.
Thus, a unit can be encoded in log 5 bits in case of a letter or in log 5 + 2 log n bits in
case of a pointer.

If it takes more bits to encode a pointer then to encode the word letter by letter, then
it does not pay to use the pointer. Thus, the encoding length of a pointer determines the
minimum length of common words replaced by pointers. In order to take advantage of
shorter common words, we must encode the pointers more concisely.

Pointers can be encoded more concisely under two plausible assumptions. The first
assumption is that the common words occur in similar order in both the target and in
the source, in which case the position of a common word in the source can be indicated
relative to the previous common word; this relative distance may fall into a smaller
range than the absolute position and thus it may be represented in fewer bits. The
second assumption is that the lengths of the common words fall into a smaller range.
Under these two assumptions, one may encode a pointer in much less than log 5+2 log n
bits.

If a word to be replaced by a pointer occurs more than once in the source, then the
information about the particular occurrence contained in the pointer may be more than is
necessary. The pointer could specify only the set of occurrences and not any particular
occurrence, and thus the pointer itself would require fewer bits.
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So far we have discussed only encoding of t relative to s and the number of bits
I(t\s). A sequence t can be similarly self-encoded in I ( t ) bits by replacing a repeated
occurrence of a word by a pointer to its previous occurrence within the same sequence.
If there is enough repetition within a sequence, I(t) will be small. We omit the details
here because they have been discussed elsewhere (Milosavljevic & Jurka, 1993a).

3. Extended Algorithmic Significance Method

In the following we extend the recently proposed algorithmic significance method (Milosavl-
jevic & Jurka, 1993a) by showing a high level of mutual information is unlikely to occur
by chance. The method itself is very general and is also applicable to a wide variety of
problems that may not be related to sequence analysis, as discussed in Section 6. The
theorems presented below are applicable not only to sequences of finite length, but also
to objects from any other countable domain. The particular problem of sequence com-
parison is here used as a motivation for the development of theorems that form the basis
of the general method. The derivations below require some background in information
theory (e.g., Cover & Thomas, 1991; Li & Vitanyi, 1993); if you wish to avoid technical
details, you may skip to Theorem 2.

In the following derivations we start from the fact that high likelihood ratios are unlikely
to occur by chance and then we switch from probabilities to encoding lengths to show
that high algorithmic mutual information is unlikely to occur by chance as well.

Let P0 and PA be probability distributions over sequences (or any other kinds of
objects from a countable domain) that correspond to the null and alternative hypotheses
respectively; by po(t) and pA(t) we denote the probabilities assigned to a sequence t by
the respective distributions. The likelihood ratio for sequence t is PA(T) . The following
elementary inequality states that high likelihood ratios are unlikely to occur by chance

LEMMA 1 For any null hypothesis P0 such that p 0 ( t ) > 0 for every t and for every
alternative hypothesis PA,

Proof: Lemma 1 is a direct consequence of the Markov inequality applied to the
likelihood ratio PA(t) Since the expected value E 0 { p A ( t ) ] by the null hypothesis equals
1, by Markov inequality,

After taking logarithms,
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where

In our specific application, the null hypothesis P0 will be the distribution of probabilities
under the assumption that the target sequence is independent from the source. For
example, if we assume that every letter is generated independently with probability px,
where x € {A,G,C, T} denotes the letter, then the probability of a target sequence t

is p 0 ( t ) = IliP"(t) , where nx(t) is the number of occurrences of letter x in t. The
alternative hypothesis PA will be the distribution under assumption that the sequences
are related.

We now define the alternative hypothesis PA in terms of encoding length. Let A denote
a decoding algorithm that can reconstruct the target t based on its encoding relative to
the source s. By IA(t|s) we denote the length of the encoding. We make the standard
assumption that encodings are prefix-free, i.e., that none of the encodings represented in
binary is a prefix of another (for a detailed discussion of the prefix-free property, see
Cover & Thomas, 1991; Li & Vitanyi, 1993). We expect that the targets that are similar
to the source will have short encodings. The following theorem states that a target t is
unlikely to have an encoding much shorter than — log po(t).

THEOREM 1 For any distribution of probabilities P0, decoding algorithm A, and source
s,

Proof: Since algorithm A specifies a uniquely decodable code, by Kraft-McMillan
inequality, ^(2-IA(t /s)< 1. Thus, there is a normalizing constant b > 1 such that
531 b 2 ~I A ( t / s ) = 1, and we can now define the alternative hypothesis as the distribution
PA that assigns probability P A ( \ S ) = b2|-IA(t/s) to target t. By substituting b2-1A(t/s)
for pA(t\s) in Lemma 1 we obtain

Finally, since log b >_ 0, we obtain

Similar theorems have been proven in the context of competitive encoding (Cover &
Thomas, 1991) and testing theory (for a review of testing theory, see Li & Vitanyi,
1993). The theorem is the basis for the algorithmic significance method where presence
of patterns is proven by exhibiting significantly shorter encodings of the observed data
than expected by the null hypothesis; the method has been applied to discover simple
DNA sequences (Milosavljevic & Jurka, 1993a).

Invariance theorem (for a review see Li & Vitanyi, 1993) states that there exists a uni-
versal encoding method that gives encodings that are as short as the encodings produced
by any other method, up to an additive constant. The decoder for the universal method
is a universal prefix-free Turing machine: the shortest encoding is the shortest program
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for the machine that outputs target t; in case of relative encoding, the machine may also
have access to a source s. We now assume that A is one such universal machine and
that IA(t|s) is the length of the shortest program.

A universal encoding method can also be used to define a null hypothesis. Let A0

denote a universal machine and let |p| denote the length of a program p. Halting prob-
ability t (for a detailed study of t, see Chaitin, 1987a) is the probability that A0 halts
when p is constructed bit by bit by random flips of a coin. That is,

The probability PAO (t) that a halting program outputs t is computed as follows:

Probability distribution PAO, discovered by Solomonoff (for a review of history, see
(Li & Vitanyi, 1993)), has a remarkable property: it cannot be refuted at an arbitrary
significance level by any other computable distribution. However, since our alternative
hypothesis is conditional on s, we still have a chance. We now assume that P0 = PAO-
The universal coding theorem (Li & Vitanyi, 1993) tells us that - log pA0(t) = I A 0 ( t ) +
(9(1), where IA 0 ( t ) denotes the length of the shortest program for A0 that outputs t. By
substituting IA 0(t) for — log po(t) in Theorem 1, and by moving the additive constant
O(l) into the exponent on the right-hand side, we obtain the following:

Algorithmic mutual information I(s;t) is defined as the difference IA O ( t ) - I A ( t \ s ) ,
so that the inequality above can now be rewritten in the following compact form:

THEOREM 2

This theorem is the basis for the extended algorithmic significance method, which
enables discovery of significant dependencies in observed data via algorithmic mutual
information. This is an ultimate, albeit impractical, method for deciding relatedness of
two sequences: algorithmic mutual information I(s;t) = IA0(t) ~ IA(t/s) t akesinto
account both sequence complexity, measured by IA0(t), and similarity, measured by
IA(t\s).

In order to make this method practical, we need to apply encoding schemes for which
encoding lengths are easy to compute. Thus, we approximately estimate the universal
encoding lengths I A O ( t ) and I A ( t \ s ) by I ( t ) and I(t\s), which are the encoding lengths
obtained by applying the self-encoding and relative-encoding schemes from the previous
section.



DISCOVERING DEPENDENCIES 41

The introduction of specific encoding schemes introduces certain bias in the process
of inference (which is absent in case of the universal, albeit non-computable, encoding
scheme). This bias may in principle be also expressed in terms of a probability distribu-
tion. Since the encoding schemes presented in the previous section capture the kind of
patterns that indeed occur in the data, they may be thought of as adequate approxima-
tions of the encoding by universal machines. In the next section we present an efficient
encoding algorithm for our specific encoding scheme.

4. Minimal Length Encoding Algorithms

Not surprisingly, the algorithms for computing minimal encoding lengths I(t) and I(t\s)
are very similar. A standard algorithm for computing I(t) has already been presented
elsewhere (Milosavljevic & Jurka, 1993a). In this section we present a slight variant of
the same algorithm that can be used for computing I(t\s). The only difference between
the two algorithms is that in the former pointers point to the occurrences of words within
the same sequence while in the latter they point to the occurrences of words in the source
sequence.

The algorithm for computing I(t\s) takes as an input a target sequence t, a source
sequence s, and the encoding length p >_ 1 of a pointer. Since it is only the ratio
between the pointer length and the encoding length of a letter that matters, we linearly
scale the two values so that the encoding length of a letter becomes 1.

Let n be the length of sequence t and let tk denote the (n — k + l)-letter suffix of t
that starts in the kth position. Using a suffix notation, we can write t1 instead of t. By
I(tk\s) we denote the minimal encoding length of the suffix tk. Finally, let l ( i ) , where
1 <- i <- n, denote the length of the longest word that starts at the iih position in target
t and that also occurs in the source s. If the letter at position i does not occur in the
source, then l(i) = 0. Using this notation, we may now state the main recurrence:

Proof of this recurrence can be found in (Storer, 1988).
Based on this recurrence, the minimal encoding length can now be computed in linear

time by the following two-step algorithm. In the first step, the values l ( i ) , 1 <- i <- n
are computed in linear time by using a directed acyclic word graph data structure that
contains the source s (Blumer, Blumer, Haussler, Ehrenfeucht, Chen, & Seiferas, 1985).
In the second step, the minimal encoding length I(t\s) = I ( t 1 \ s ) is computed in linear
time in a right-to left pass using the recurrence above.

5. Experiments

The algorithm for pairwise comparisons using mutual information I(s; t) = I ( s ) - I(s\t)
was implemented in C++ on a Sun Sparcstation under UNIX as part of a larger suite of
programs for analysis of repetitive DNA sequences (Milosavljevic, to appear) (to obtain
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information about the availability of the programs, send "software" in Subject-line to
pythia@anl.gov). We present two experiments that illustrate the potential of the method.

5.1. Experiment 1

In the first experiment, the program was applied to identify occurrences of repetitive pat-
terns in a 4-kbp segment of the human tissue plasminogen activator (TPA) gene (Friezner-
Degen, Rajput, & Reich, 1986). The segment 22,001-26,000 that was extracted from
the GenBank (Bilofsky & Burks, 1988) entry under accession number K03021, is il-
lustrated in Figure 1. The segment was split into consecutive windows of length 200
with an overlap of 100 basepairs. Every pair of nonoverlapping windows was compared
using mutual information I(s; t) in order to identify pairs of windows that contain related
sequences.

An encoding length threshold of 31 >- 7 + 2 * log 4000 bits was chosen so that the
probability of any pair of windows having mutual information beyond the threshold would
be guaranteed not to exceed the value of 0.01; one should note that the additive constant
from Theorem 2 has been ignored in this calculation, so that the significance value has
mostly a heuristic value. A pointer length of 6 bits was chosen for self-encoding and of
12 bits for encoding one sequence relative to the other (that is, it was assumed that that
the distance between consecutive common words and common word length can each be
encoded in 3 bits on average in case of self-encoding and in 6 bits in case of relative
encoding).

As indicated in Figure 1, the segment was known to contain occurrences of two Alu
sequences, one between positions 253 and 545 and the other between positions 3620 and
3911, as well as an imperfect (TGATAGA) * N run between positions 1888 and 2458.
The idea was to show that the windows containing the two occurrences of Alus would
be identified while the windows containing different parts of the long (TGATAGA) * N
segment would not be considered similar because of their internal structure and despite
their mutual similarity in terms of subword composition.

The following three pairs of windows exhibited mutual information above the threshold:

pair

1
2
3

I(s;t)

51
37
32

window 1

201-400
1901-2100
301-500

window 2

3601-3800
2201-2400
3601-3800

Figure 1. Segment 22,001 - 26,000 from the TPA gene.
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Figure 2. Parsing of window 201-400 and its local alignment with window 3601-3800.

Pairs 1 and 3 correspond to the two occurrences of Alu sequences. Figure 2 contains
the self-parsing of the window 201-400, exhibiting the internal structure of the Alu
sequence, as well as a local alignment with the window 3601-3800.

Pair 2 consists of two windows within the (TGATAGA) * N region. Figure 3 con-
tains the self-parsing of the window 1901-2100, exhibiting the internal structure of the
(TGATAGA) * N sequence, as well as a local alignment with the window 2201-2400.

The local alignment indicates that the two windows indeed share more structure than
merely due to the presence of the (TGATAGA) * N internal repeat: note that if we
denote TGA by x and TAG A by y, then the segment between positions 80 and 115 in
window 1901-2100 and the segment between positions 70 and 104 in window 2201-2400
can both be approximately represented as AAAyxyyxyyxTAAA. This indicates that,
in addition to the simple multiplication of the TGATAGA repeat, larger units of DNA
have multiplied as well, increasing the mutual information beyond the threshold. Indeed,
a closer inspection of other segments of DNA within the (TGATAGA) * N region
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indicates that the same large unit occurs in a slightly more decayed form in several
copies, which were not detected.

5.2. Experiment 2

In the second experiment, the program was applied to identify related sequences between
the TPA segment from the previous subsection and the segment 11,001-15,000 of the
human C-FMS proto-oncogene for CSF-1 receptor (PO) gene, GenBank (Bilofsky &
Burks, 1988) entry under accession number X14720. The PO segment, illustrated in
Figure 4, was split into consecutive windows of length 200 with an overlap of 100
basepairs. Every window was compared using mutual information I(s;t) to all the
windows from the TPA segment (Figure 1) in order to identify related sequences between
the PO and TPA segments. The thresholds and pointer lengths were set the same way
as in the previous experiment.

As indicated in Figure 4, the segment was known to contain an Alu fragment between
positions 2861 and 3016 as well as a (TAGA) * N run between positions 938 and
1012. It was expected that the Alu fragment would be identified as similar with the Alu
sequences from the TPA segment, while the (TAGA) * N would not be identified as
similar to the (TGATAGA) * N region, because their overall similarity is exclusively
due to the similarity in their internal structure.

The output of the program fully met the expectations. The only pairs of windows
with similarity scores above the significance threshold were the ones corresponding to
the Alu regions. Because of their internal structure, and despite their similar subword
composition, the (TGATAGA) * TV and (TAGA) * N regions were not considered
similar. Figure 5 contains the self-parsing of the window 901-1100 from the PO segment

Figure 3. Parsing of window 1901-2100 and its local alignment with window 2201-2400.
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Figure 4. Segment 11,001 - 15,000 from the PO gene.

Figure 5. Parsing of PO window 901-1100 and its local alignment with TPA window 2001-2200.

including the (TAGA)*N structure, as well as an alignment of the same window with the
window 2001-2201 from the TPA segment including the (TGATAGA) * N structure.
The alignment clearly indicates high similarity that is exclusively due to the shared
internal structure.

6. Discovering life

The extended algorithmic significance method can be used for discovery of a wide variety
of dependencies. The domain of applications includes, but is not restricted to DNA
sequence analysis. As we will demonstrate shortly, the method is particularly well suited
for applications in biology.

Before we proceed further, we should mention that the definition of mutual information
I(s; t) can be slightly modified so that it becomes symmetrical in s and t; the technical
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details involved in are reviewed elsewhere (e.g., Li & Vitanyi, 1993), so we omit them
here. We will use the fact that symmetrical version of mutual information can alterna-
tively be defined as the difference between the sum of individual encoding lengths and
their joint encoding legth. More precisely,

where I(s, t) denotes the joint encoding length. By substituting I(s; t) into Theorem 2,
we obtain

In other words, d bits of difference between the sum of individual encoding lengths
and the joint encoding length implies dependence at the significance level 2-d+o(1).

Chaitin (1979) considers the case where a domain of observations t is split into subseg-
ments t 1 , . . . , t k and then considers algorithmic mutual information, which is computed
as the difference between the sum of individual encoding lengths of t 1 , . . . , t k , plus
some overhead, and the joint encoding length. As an example, Chaitin considers multi-
dimensional patterns of squares, as illustrated in Figure 6. If the sum of the encoding
lengths of individual "windows" significantly exceeds the encoding length of the whole
then mutual information is significantly high. This occurs precisely in case when the
individual windows of observation are too small to capture a pattern, as illustrated in
Figure 6: the whole pattern can be encoded more concisely by taking advantage of its
regularity, which is invisible when only small pieces of the pattern are observed.

Chaitin then goes on to consider mutual information as a function of diameter D of
windows: if the patterns are small, mutual information becomes negligible even for small
D, while high mutual information for large D implies presence of even larger patterns
that cannot be observed through windows of diameter D. Chaitin convincingly argues
that the living world can be distinguished from the non-living by the following abstract
property, algorithmic mutual information in the non-living world becomes negligible
even for small diameters D while in case of the living world it remains high even for
large D.

It is interesting to point out that the extended algorithmic significance method can
be used to discover life, as defined by Chaitin. For a prespecified significance level
2 - d + O ( 1 ) and for a sufficiently large diameter D (to remove "interference" from the
patterns in the non-living world, e.g., physical laws) one simply has to show that mutual
information exceeds d bits.

Most interestingly, when constructing artificial examples of life, in his Theorem 5
Chaitin (1979) constructs hierarchical structures that resemble repetitive DNA sequences
studied in this paper. Chaitin argues that if replication occurs at different hierarchical
levels (e.g., tandem repeats of small segments vs. repetitions of larger segments that
include many small segments), then the resulting pattern cannot be fully observed unless
repetitions on the largest scale fit within a window. That is precisely the choice that
we are implicitly making in sequence comparisons: a smaller window accommodates
a single sequence while a larger one accommodates both sequences, and the problem
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Figure 6. A pattern that does not fit within any of the four small windows. The presence of the global pattern
implies high algorithmic mutual information between individual windows. This example is patterned after the
one that appears on the cover of Chaitin's book (1987b).
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is to decide on the size of the window. If small windows suffice for most concise
encoding then sequences are unrelated, i.e., patterns are local; if larger windows give
shorter encodings then sequences are related, i.e., the pattern is global.

An interesting recent example illustrating the need for large diameters of observation
is the reconstruction of the evolution of Alu sequences (Jurka & Milosavljevic, 1991;
Milosavljevic & Jurka, 1993b). The standard "bottom-up" methods for evolutionary re-
construction that are based on pairwise sequence comparisons have failed in this case: the
global evolutionary pattern of Alu sequences was invisible when only two Alu sequences
were considered at a time, as in Bains (1986). The evolutionary pattern becomes visible
only through a "top-down" approach where a large number of sequences are considered
simultaneously, as in Milosavljevic and Jurka (1993b).

7. Conclusion

Repetitive patterns in DNA sequences may be complex and hard to discover. When
comparisons are made by subword similarity alone, the DNA segments that share com-
mon internal repetitive patterns consisting of repetitions of very short words turn out to
be most similar, even though they are not related, because different occurrences of short
words tend to multiply independently. We have shown how the concept of algorithmic
mutual information can be used to discover similarities that are due to relatedness and
not due to shared internal structure.

Mutual information is in effect the difference between the complexities of two alterna-
tive hypotheses about the observed similarity between two sequences: one hypothesis is
based on internal structure (minimal length encoding based on internal structure) while
the other is based on pairwise similarity (minimal length encoding based on pairwise
similarity). In that sense, we resolve the two competing hypotheses by applying the
parsimony principle.

Perhaps the most important contribution of this paper is the extension of the algorithmic
significance method. The extended method is based on Theorem 2, which states that d bits
of algorithmic mutual information imply dependence between s and t at the significance
level 2-d+°(1) The method is general in the sense that by applying specific encoding
schemes we may discover dependencies of different kinds, while still relying on the
same method for establishing significance. DNA sequence comparison is only one of
many possible applications of this method; new applications in the context of massive
hybridization experiments and alternative sequence representations are currently under
development.

An additional contribution of this paper is a new approach to sequence comparison
based on subword composition. Current methods (reviewed in Pevzner, 1992) typically
require two arbitrary assumptions to be made for each similarity search: one about
the length of the longest common word that is to be considered and the other about
the threshold of similarity for significant matches. The method proposed in this paper
removes the need for any restrictions on word length while keeping the computation
time linear, and it also provides a bound on significance, thus removing need for any
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arbitrary thresholds. Experiments indicate that this systematic approach can eliminate
false positive matches.

Mutual information can also be applied to discover similarity based on sequence align-
ment. In case of alignments, the target sequence would have to be encoded using a set
of edit operations. A minimal length encoding approach to sequence alignment has been
discussed in Allison and Yee (1990).
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