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The field of molecular biology is rich in problems that seem almost tailor-made for ma-
chine learning approaches. Indeed, molecular biology was one of machine learning's
earliest application areas (Stormo, Schneider, Gold, & Ehrenfeucht, 1982). While bio-
logical systems are notoriously complex, there exists a level of interpretation at which
the informational molecules—DNA, RNA, and proteins—that underlie such systems are
simply strings of symbols. Determining how such strings fold up in three dimensions,
how they are recognized as signals by other macromolecules, or how they otherwise
participate in the physiology of the cell, are challenging problems both for experimental
biologists and for computational biologists who attempt to make inferences or derive
clarifying generalizations from examples.

Relating molecular sequence to structure, and structure to function, are the ultimate
goals, and all such analyses take place against the backdrop of evolution; the fact that
many of these macromolecules are more or less related to each other by various types
of "family trees" adds another whole set of clues, tasks, and complications to the field.
Even finding the relevant information can be challenging: for example, genes (regions
of DNA that code for proteins) are scattered sparsely throughout the DNA of higher
organisms, and are themselves interrupted by non-coding sequences, so that detecting
the coding regions is a thorny task that has only in recent years been addressed with
increasing success by machine learning techniques (Craven & Shavlik, 1994). In fact,
arguably the machine learning application with the largest impact on molecular biology
is Uberbacher and Mural's (1991) GRAIL system, which uses neural networks to find
genes in DNA sequences submitted via the Internet.

DNA sequences are drawn from a four-letter alphabet of molecules called bases. The
primary role of DNA is to code for protein sequences, which have a 20-letter alphabet
of molecules called amino acids. It is the manner in which these proteins fold that
determines their behavior in the cell. The folded shape of a protein and the chemical
properties of the amino acids exposed on the protein's surface determine which bio-
chemical reactions the protein can participate in. The translation between the alphabets
of DNA and protein takes place via intermediary macromolecules called RNA, which
also fold up and which have their own set of computational challenges (although these
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challenges are not addressed in this issue). Further background on molecular biology
can be found in Hunter (1993), as well as this issue's articles.

This collection of articles is an outgrowth of the First International Conference on
Intelligent Systems for Molecular Biology (Hunter, Searls, & Shavlik, 1993), which
initiated what has become a successful annual conference. The eight papers herein
address a range of important problems involving DNA and proteins. The papers employ
a variety of machine learning methods, and they not only improve the state-of-the-art
in molecular biology, but they also contribute new, general-purpose machine learning
techniques. Each paper underwent rigorous review by at least one molecular biologist
and one machine learning researcher. We have ordered the papers in a biologically
meaningful way—from collecting DNA sequences in the biological laboratory, to finding
interesting portions of these sequences, to predicting the structure of DNA and proteins,
and finally to predicting the function of proteins.

In the first paper, Parsons, Forrest, and Burks address a problem of great pragmatic
interest to the genome community. While DNA consists of strings that typically ex-
tend for millions of bases, biologists receive the data from their automated sequencing
machines in short fragments that are several hundred bases long, representing randomly
selected substrings of a much longer region. Reassembling the longer string from the
many overlapping fragments is not as straightforward as it might seem; it is in fact a
permutation-ordering problem related to the traveling-salesman task. Parsons et al. apply
genetic algorithms to this task, using specially-tailored operators and fitness functions,
and compare their results with the greedy algorithms that are the current state-of-the-art.
Analogous problems recur at many different levels and scales in genome analysis, and
techniques such as GA's and simulated annealing have found wide use in these so-called
"contig construction" tasks.

Milosavljevic's article describes an approach to machine discovery in DNA analysis.
He presents an imaginative treatment of a fundamental problem in computational biology:
detecting similarities between strings, indicative of a possible common ancestry. The
problem with traditional common-string search methods is that they can be confounded
by regions of low complexity, that is, substrings that have many short repeats and are
thus impoverished in "information content." The common practice is to mask out such
regions to avoid false positives, essentially giving up on finding repetitive but subtly
related strings. Milosavljevic proposes the use of algorithmic mutual significance in
comparing strings. In essence his technique applies Occam's Razor to decide whether
it is more or less parsimonious to describe strings together, in terms of their mutual
similarity, or separately.

Bailey and Elkan address motif discovery from macromolecular sequences, a key prob-
lem in genome analysis, and also suggest a general-purpose method for expanding the
range of problems that can be solved with the Expectation Maximization (EM) approach.
In molecular biology, a motif is a pattern (often described as a regular expression or a
probability matrix) that appears in many molecular sequences because it plays a par-
ticular functional role. The innovation in Bailey and Elkan's approach is to relax the
constraint that each training sequence contain exactly one instance of the pattern to be
induced. In real molecular data, it is likely that some of the examples used in training
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will be included in error (i.e., not contain the motif at all), and that other examples will
contain multiple copies of a motif. Further, since there are many different motifs present
in the data, Bailey and Elkan propose a method for finding multiple motifs from the same
sequences. They convincingly demonstrate the effectiveness of their methods using two
DNA testbeds, and their results suggest that the method is likely to be useful in other
pattern-finding tasks as well.

Cohen, Kulikowski, and Berman's article addresses the structure of DNA molecules.
Their task is to predict where water molecules are likely to be found in relation to a DNA
molecule (so-called "hydration patterns"). Starting with information derived from X-
ray crystallography—the classic, rather time-consuming technique for determining three-
dimensional molecular structures—Cohen et al.'s algorithm learns to predict hydration
patterns for new structures. An intriguing aspect of their approach is that the system
itself designs inductive learning experiments. Because of uncertainties in the domain and
limited numbers of exemplars, their algorithm must choose appropriate sets of training
cases, attributes, and classes. It combines the results of such experiments with domain
knowledge and domain-independent heuristics, then iterates. The resulting classifiers
prove to be superior to those derived by other techniques.

The next three papers address the prediction of protein structure. The ultimate goal of
protein structure prediction is to predict the tertiary structure of the protein—namely, the
spatial locations of every atom in the protein after the protein has folded up in a solvent.
However, most research has studied less-daunting tasks as stepping stones to this goal.
The most common task has been to predict what is called secondary structure, a much
simpler, local description of a protein's spatial structure (Qian & Sejnowski, 1988; Rost
& Sander, 1993).

Lapedes, Steeg, and Farber describe an interesting approach to the automatic discovery
of novel protein secondary-structure classes that are more predictable from amino-acid
sequences than are the three standard classes (alpha-helix, beta-sheet, and "random"
coil). They use an unsupervised learning method to optimize a measure of correlation
between the outputs of two feed-forward neural networks; one network receives a partial
amino-acid sequence as its input, while the other's input is a local representation of the
protein's tertiary structure. Following training, the first network can classify the amino-
acid sequences of new proteins. Their results indicate that such methods can discover
non-trivial classifications that share some features of the standard secondary-structure
motifs, yet are easier to predict from amino-acid sequences. Their novel classes may
also prove useful as an intermediate step in algorithms that estimate the full tertiary
structure of proteins.

Conklin investigates a task closely related to that of Lapedes et al. He addresses the
recognition of protein structural motifs: sequences of amino acids that are predictive of
local three-dimensional structure. Conklin uses a spatial description logic and techniques
for structured concept formation to investigate the discovery and organization of motifs
in the major protein-structure database (Protein Data Bank). An important aspect of his
motif representation is that it includes both spatial coordinates and amino-acid properties.
His method discovered several interesting motifs predictive of local tertiary structure,
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which is significant since few such predictive motifs have been previously identified.
His article also provides a substantial review of work on recognizing protein motifs.

loerger, Rendell, and Subramaniam also address the identification of a protein's tertiary
structure from its amino-acid sequence. They improve an important step in a method
commonly used by biologists called homology modeling, which is a type of nearest-
neighbor classification. Often the best way to predict a protein's structure is to find a
similar protein sequence whose tertiary structure is already known and then adapt that
structure. By considering possible representations for protein sequences, loerger et al.
essentially search for improved distance metrics—for comparing two protein sequences—
that lead to better recognition of proteins with similar structure. Their approach increases
predictive accuracy on their testbed by several percentage points. They also discuss the
general problem of using domain knowledge to improve the input representation used in
a machine learning task.

An extremely important task is to predict the function of a protein given its amino-acid
sequence. While inferring the protein's tertiary structure can aid this task, it is also
possible to try to learn to predict function directly from sequence. In the final paper, Wu,
Berry, Shivakumar, and McLarty train neural networks to classify protein sequences into
functional classes known as "superfamilies." Members of a given protein superfamily
bear not only a functional resemblance to each other, but share moderately similar amino-
acid sequences as well. The challenge in superfamily recognition is to find a good input
representation for the variable length (and often quite long) protein sequences. Starting
with an n-gram frequency table, Wu et al. apply a novel singular value decomposition
method to generate a highly compressed representation of a given protein sequence. This
compressed input representation efficiently captures the similarity among the strings of
a superfamily, and using this representation improves accuracy of the classifying neural
network over more commonly-used input representations.

As can be seen, computational biology is an important application area for machine
learning. It is one where a wide variety of machine learning approaches are applicable,
interesting unanswered research questions exist, and large testbeds are publicly available
via the Internet. We hope you enjoy reading the papers in this special issue and will
perhaps be tempted to participate in this exciting field.
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