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Abstract. Parti-game is a new algorithm for learning feasible trajectories to goal regions in high dimensional
continuous state-spaces. In high dimensions it is essential that neither planning nor exploration occurs uniformly
over a state-space. Parti-game maintains a decision-tree partitioning of state-space and applies techniques from
game-theory and computational geometry to efficiently and adaptively concentrate high resolution only on
critical areas. The current version of the algorithm is designed to find feasible paths or trajectories to goal
regions in high dimensional spaces. Future versions will be designed to find a solution that optimizes a real-
valued criterion. Many simulated problems have been tested, ranging from two-dimensional to nine-dimensional
state-spaces, including mazes, path planning, non-linear dynamics, and planar snake robots in restricted spaces.
In all cases, a good solution is found in less than ten trials and a few minutes.
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1. Reinforcement Learning

Reinforcement learning (Michie & Chambers, 1968), (Sutton, 1984), (Watkins, 1989),
(Barto, et al., 1994) is a promising method for robots to program and improve them-
selves. This paper addresses one of reinforcement learning's biggest stumbling blocks:
the curse of dimensionality (Bellman, 1957), in which costs increase exponentially with
the number of state variables. These costs include both the computational effort required
for planning and the physical amount of data that the control system must gather. The
curse of dimensionality is also a problem in other areas of artificial intelligence, such as
planning and supervised learning.

Much work has been performed with discrete state-spaces: in particular a class of
Markov decision tasks known as grid worlds (Watkins, 1989), (Sutton, 1990). Most po-
tentially useful applications of reinforcement learning, however, take place in multidimen-
sional continuous state-spaces. The obvious way to transform such state-spaces into dis-
crete problems involves quantizing them: partitioning the state-space into a multidimen-
sional grid, and treating each box within the grid as an atomic object. Although this can be
effective (see, for instance, the pole balancing experiments of (Michie & Chambers, 1968),
(Barto, et al., 1983)), the naive grid approach has a number of dangers which will be
detailed in this paper.
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This paper studies the pitfalls of discretization during reinforcement learning and
then introduces the parti-game algorithm. Some earlier work (Simons, et al., 1982),
(Moore, 1991), (Chapman & Kaelbling, 1991), (Dayan & Hinton, 1993) considered re-
cursively partitioning state-space while learning from delayed rewards. The new ideas
in the parti-game algorithm include (i) a game-theoretic splitting criterion to robustly
choose spatial resolution, (ii) real time incremental maintenance and planning with a
database of previous experiences, and (iii) using local greedy controllers for high-level
"funneling" actions.

2. Assumptions

The parti-game algorithm applies to learning control problems in which:

1. State and action spaces are continuous and multidimensional.
2. "Greedy" and hill-climbing techniques can become stuck, never

attaining the goal.
3. Random exploration can be intractably time-consuming.
4. The system dynamics and control laws can have discontinuities

and are unknown: they must be learned. However, we do assume
that all possible paths through state-space are continuous.

The experiments reported later all have properties 1-4. However, the initial algorithm,
described and tested here, has the following restrictions:

5. Dynamics are deterministic.
6. The task is specified by a goal region, not an arbitrary reward

function.
7. The goal state is known.
8. A feasible solution is found, not necessarily a path which optimizes

a particular criterion.
9. A local greedy controller is available, which we can ask to move

greedily towards any desired state. There is no guarantee that a
request to the greedy controller will succeed. For example, in a
maze a greedy path to the goal would quickly hit a wall.

Constraints 5 and 6 mark a particularly large departure from the assumptions usually
made in the reinforcement learning literature. A more common formulation, especially
in discrete spaces, is the optimization of the expected long term sum of state dependent
rewards. The state transitions are typically stochastic. This more conventional reinforce-
ment learning formalism is described in many references such as (Barto, et al., 1983),
(Watkins, 1989), (Kaelbling, 1990), (Barto, et al., 1994), (Moore & Atkeson, 1993).
Parti-game is restricted to a smaller class of tasks, but within that class is designed
to attack reinforcement learning problems of much higher dimensionality than previous
algorithms. It is hoped that future versions of parti-game will be applicable to stochastic
systems and arbitrary reward functions.
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This paper begins by giving a series of algorithms of increasing sophistication, culmi-
nating in parti-game. We then give results for a number of experimental domains and
conclude with discussion of how constraints 5-9 may be relaxed.

3. The Parti-game Algorithm

The parti-game algorithm learns a controller from a start region to a goal region in a
continuous state-space. We now give four increasingly effective algorithms that attempt
to perform this by discrete partitionings of state-space. Algorithms (1) and (2) are
non-learning: they plan a route to the goal given a-priori knowledge of the world.
Algorithms (3) and (4) must learn, and hence explore, the world while planning a route
to the goal. Algorithm (1) is a planner which assumes that state transitions begin at
the center of cells, and generalizes this to the assumption of starting randomly within
a cell. Algorithm (2) avoids some of (l)'s mistakes by means of worst-case planning.
Algorithm (3) is a learning version of (2). Algorithm (4) is the parti-game algorithm. It
develops a variable resolution partitioning in conjunction with the planning and learning
of Algorithm (3).

3.1. Algorithm (1): Non-learning and fixed cells

A partitioning of a continuous state-space is a finite set of disjoint regions, the union
of which covers the whole of state-space. We will call the regions cells, and will label
them with integers 1,2, ...N. Throughout this paper we will assume the cells are all axis-
aligned hyperrectangles, though this assumption is not strictly necessary. It is important
to clarify a potential confusion between real-valued states and cells. A real-valued state,
s, is a real-valued vector in a multidimensional space. For example, states from the maze
depicted in Figure 1 are two-dimensional (x, y) coordinates. A cell is a discrete entity,
and Figure 1 is broken into six cells with identifiers 1... 6. Each real-valued state is in
one cell and each cell contains a continuous set of real-valued states. Define NElGHS(i)
as the set of cells which are adjacent to i. In Figure 1, NEIGHS(1) = {2,4}.

Algorithm (1) takes as input an environmental model and a partitioning P. The en-
vironmental model can be any model (for example, dynamic or geometric) that we can
use to tell us for any real-valued state, control command and time interval, what the sub-
sequent real-valued state will be. The algorithm outputs a policy: a mapping from cell
identifiers to the neighboring cells that should be aimed for. The algorithm depends upon
the NEXT-PARTITION function, which we define first. NEXT-PARTITION tells us which cell
we end up in if we start at a given real-valued state and keep moving toward the center
of a given cell (using a local greedy controller) until we either exit our initial cell or
get stuck. Let i be the cell containing real-valued state s. Continue applying the local
greedy controller "aim at cell j" until either cell i is exited or we become permanently
stuck in i. Then

(s,j) ( i if we became stuck
NEXT-PARTITION(s, j) =the cell containing the exittstate otherwise (1)
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Figure I. A two-dimensional continuous maze with one barrier: the black polygonal region near the bottom
right. State-space has been discretized into six square cells.

The test for sticking can simply be implemented as a test to see if the system has not
exited the cell after a predefined time interval. Depending upon the application other
sticking detectors are possible, such as an obstacle sensor on a mobile robot.

Algorithm (1) works by constructing a discrete, deterministic Markov decision task
(MDT) (Bellman, 1957), (Bertsekas & Tsitsiklis, 1989) in which the discrete MDT states
correspond to cells. Actions correspond to neighbors thus: action k in cell i corresponds
to starting at the center of cell i and greedily aiming at the center of cell k.

ALGORITHM (1).

1 Given N cells, construct a deterministic MDT with N discrete states 1 • • • N. The
set of actions of cell i is precisely NEIGHS (i). Define NEXT(i, k) as

NEXT)i,k) = NEXT-PARTITION(CENTER(i),k)                 (2

where CENTER(i) is the real-valued state at the center of cell i.

2 The shortest path to the goal from each cell i, denoted by Jsp(i), is determined by
solving the set of equations:

The equations are solved by a shortest-path method such as dynamic program-
ming (Bellman, 1957), (Bertsekas & Tsitsiklis, 1989) or Dijkstra's algorithm (Knuth,
1973).

3 The following policy is returned: Always aim for the neighbor with the lowest JSP.

This simple algorithm has immediate drawbacks. It will minimize the number of cells to
the goal, not the real distance. And it can easily find impossible solutions or fail to find
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Figure 2. Approximately 65% of the starting states (those in the shaded region) in cell 5 are such that they
will enter cell 6 if we aim for the center of 6. Thus p656 = 0.65.

valid solutions. As an example of the former, in Figure 1, Algorithm (1) would find the
solution path 5 —> 6 — 3. This is because it is possible to travel from the center of 5
and enter 6 (in the part of 6 to the left of the obstacle), and it is possible to travel from
the center of 6 and enter 3.

An extension to Algorithm (1) might initially appear to solve the problem. We could
remove the assumption that all paths between cells begin at the center of the source cell.
Suppose we produce a stochastic Markov decision task. Let pkij be an approximation of
the probability of transition to cell j given we have started in i and aimed at the center of
k. pkij is defined by the probability we end up in cell j from a uniformly randomly chosen
legal start point in cell i. The dynamic programming step of the previous algorithm is
altered so that it now solves the stochastic MDT:

Although intuitively appealing, this refinement does not help. In the example of
Figure 1 the resultant policy from state 5 will still be to aim for 6. As we see from Fig-
ure 2, p65|6 = 0.65, and from Figure 3, p363 — 0.-91.- The policy 5 —> 6 —> 3 is interpreted
as the transition graph in Figure 4 which has expected length 1/0.65 + 1/0.91 = 2.64,
and so is preferred over the longer but guaranteed policy of 5—> 4 —» 1 —» 2 —»3.

Other variants of this approximation by a stochastic system are possible, but they
all suffer from the same problem. They are using a Markov decision formalism for
something which does not have the Markov property. This is because from a given cell,
i, the neighbors that can be successfully reached depend on more than "i"; they also
depend on the current location within i.
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Figure 3. In a similar fashion to Figure 2, P363 = 0.91.

Figure 4. The cell transition probabilities if we follow the 5 —» 6 —< 3 policy according to the assumptions in
the text.
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Figure 5. The symbolic representation of the original problem as cells (circles), actions (solid arrows) and
outcomes (thin arrows).

3.2. Algorithm (2): Assuming the worst case

Instead of approximating the steps-to-goal value of a cell by the average steps-to-goal
of all real-valued states in the cell, we approximate it by the worst value. As before,
each cell has an associated set of actions, each labeled by a neighboring cell. Also, each
action now has a set of possible outcomes. The outcomes of an action j in a cell i are
defined as the set of possible next cells.

In Figure 5, the actions are denoted by black solid arrows and the outcomes by the
thin lines. For example, cell 5 has three actions: "aim at 4", "aim at 2" and "aim at 6".
The "aim at 6" action has, in turn, two possible outcomes. We might make it if we are
lucky, or else we will remain in 5. The OUTCOMES() sets are decisions that an imaginary
adversary will be allowed to make, seen in Algorithm (2).

ALGORITHM (2).

1 Define Jwc(i) as the minimum number of cells to the goal under the worst-case
assumption that whenever we have specified our current cell i and our intended next
cell j, an adversary is permitted to place us in the worst position within cell i prior
to the local controller being activated.

Solve the following set of minimax equations:



206 A.W. MOORE AND C.G. ATKESON

Figure 6. Cell 3 is scored as losing because if it aims for 1 the adversary can place it below the upper triangular
block and if it aims for 4 the adversary can place it to the left of the lower triangular block.

where Jwc(i) is allowed to take the value +00 to denote a cell from which our
adversary can permanently prevent us reaching the goal. Call such a cell a losing
cell.

2 The following policy is returned: Always aim for the neighbor with the lowest
Jwc() value.

The Jwc(.} function can be computed by a standard minimax algorithm (Knuth, 1973),
which is in turn closely related to deterministic dynamic programming algorithms.

This algorithm is pessimistic, but if it tells us that Jwc(i) — n then we can be sure
that if we follow its policy we will indeed take n or fewer cell transitions to get to the
goal starting from cell i. The trivial inductive proof is omitted.

In Figure 1, Algorithm (2) will decide that cell 5 is four steps from the goal and will
recommend heading towards 4. It avoids cell 6 because the minimax assumption scores
cell 6 as being oo steps from the goal. This is because if, in cell 6, we decide to use
action "aim for 3" the adversary will start us in the bottom left of cell 6. And if we use
action "aim for 5," the adversary will start us in the bottom right of cell 6.

It should be observed just how pessimistic the algorithm is. In the almost entirely
empty maze of Figure 6 the start cell will be considered a losing cell. So although the
minimax assumption guarantees success if it finds a solution, it may often prevent us
from solving easy problems. We will see that Algorithm (3) reduces the severity of this
problem because instead of considering the worst of all possible outcomes, the planner
only considers the worst of all empirically observed outcomes. Thus a block in a piece of
a cell which never was actually visited would not be identified as an outcome available
to the adversary. Algorithm (4) fully solves the remaining aspects of the problem by
increasing the resolution of losing cells.

3.3. Algorithm (3): A learning version of Algorithm (2)

An important aim of this work is to have a controller which does not begin with an
environmental model, but which manages instead to learn purely from experience. Algo-
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rithm (2) can be extended to permit this. The set of OUTCOMES(i, j) for each cell i and
neighbor j can be obtained empirically. Whenever an outcome given by OUTCOMES(i, j)
is altered, the game is solved with the new outcomes set. We still assume that the location
of the cell containing the goal is known.

A further detail must be resolved. In the early stages, what should be done for those
actions which have not yet been experienced? The answer is to assume by default that
any neighbor aimed for can be attained. Algorithm (3), based on these ideas, takes three
inputs:

• The current real-valued system state s.

• A partitioning of state-space, P.

• A database, D, of all previously observed cell transitions in the lifetime of the system.
This is a set of triplets:

(starting in i0, I aimed for j0 and actually arrived in ko)

(starting in i1, I aimed for j\ and actually arrived in k1)

The algorithm returns two outputs: The final system state after execution and a binary
signal indicating SUCCESS or FAILURE. The database is also updated according to
experience.

ALGORITHM (3).
REPEAT FOREVER

1 Compute the OUTCOMES(i, j) set for each cell i and each neighbor j E NElGHS(i)
thus:

• If there exists some k' for which (i,j, k') € D then:

• Else, use the optimistic assumption in the absence of experience:

2 Compute Jwc() for each cell using minimax.

3 Let i := the cell containing the current real-valued state s.

4 If i = GOAL then exit, signaling SUCCESS.

5 If Jwc(i) - oo then exit, signaling FAILURE.
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Figure 7. Cells 1 and 3 are losers because the adversary can force a permanent loop between them.

6 Else

, • - argmin max Jwc(k).
6.1 let j := j, E NEIGHS(i) k E OUTCOMES(i,j') JWC (k).

6.2 WHILE ( not stuck and s is still in cell i )

6.2.1 Actuate local controller aiming at j.

6.2.2 s •. = new real-valued state.

6.3 Let inew : = the identifier of the cell containing s.

LOOP

Step 6.1 computes which neighboring cell is best to aim at, subject to the assumption
that the adversary will place us in the worst previously-observed outcome.

An addition to the algorithm can reduce the computational load. If real time constraints
do not permit full recomputation of Jwccafter an outcome set has changed, then the
Jwccupdates can take place incrementally in a series of finite time intervals interleaved
with real time control decisions. Techniques like this are described in (Sutton, 1990),
(Peng & Williams, 1993), (Moore & Atkeson, 1993), (Barto, et al., 1994).

The following conjecture has not been proved but we expect few difficulties: If a
solution exists from all real-valued states in all cells, according to Algorithm (2), then
Algorithm (3) will, in fewer than N3 cell transitions, also find a solution from its initial
state, where N is the number of cells.

A final note about Algorithm (3) is necessary. More general systems than mazes will
produce more interesting games. Later we will see examples of non-uniform partitionings
and of dynamics that produce curved trajectories through space. Both cases can produce
more detailed game structures than stuck/non-stuck transitions, and Algorithm (3) is
applicable in these cases too. Such a structure is shown in Figure 7.
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Figure 8. A 12-cell partitioning in which it will not help to split the cell containing the current state.

3.4. Algorithm (4): Varying the Resolution

We do not wish the system to give up when it discovers it is in a cell for which Jwc = oo.
The correct interpretation of a losing cell is that the planner needs higher resolution, and
parti-game gives it that by dividing some coarse cells in two.

Interestingly, it is not necessarily worth increasing the resolution of the cell the system
is in, nor is it necessarily worth splitting all cells which have Jwc = oo. Figure 8
shows a case in which the current state is in a cell which it will not help to split. This
is because there is no transition to a non-losing cell from the current cell anyway (other
losing cells block us), so no matter how high we make its resolution our current cell will
remain a loser.

It is the cells on the border between losing regions and non-losing regions which should
be split. Under the assumption that all paths through state-space are continuous, and also
assuming that a path to the goal actually exists, there must currently be a hole in one of
the border cells which has been missed by the over-coarseness. This motivates the final
algorithm that we present.

The algorithm takes three inputs:

• The current real-valued system state, s.

• A partitioning of state-space, P.

• A database, D, of all empirically experienced (start, aimed-for, actual-outcome) triplets.

It returns two outputs: a new partitioning of state-space and a new database.

ALGORITHM (4): (Parti-game).

WHILE ( s not in the goal cell )
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1 Run Algorithm (3) on s and P. Algorithm (3) returns the resulting additions to the
database D, plus the new real-valued state 5, and a success/failure signal.

2 If FAILURE was signaled

2.4 Construct a new set of cells from Q", of twice the size, produced by splitting
each cell in half along its longest axis. Call this new set R.

2.6 Recompute all new neighbor relations and delete those members of database
D that contain a member of Q" as a start point, an aim-for, or an actual-outcome.

LOOP

3.5. Parti-game Details

Initialization
Before the very first trial, parti-game is initialized as just two cells: a goal cell covering
the goal region, and one other large cell covering the rest of state-space. At that point,
Algorithm (4) is called. Unless the system is very lucky, this trivial partitioning will
not be adequate to reach the goal using the greedy controller. At the point when this is
detected the initial, trivial partitioning will quickly start splitting.

Increasing the resolution
Notice that this algorithm increases the resolution at both sides of the win/lose border.
This prevents enormous cells from bordering tiny cells. There could be other algorithms
in which the cells to split are chosen differently. The question of which strategy is best
remains open for further investigation.

Planning and learning in parti-game
Parti-game performs planning and learning simultaneously.

• Planning consists of taking the partitioning that has been learned, and all the cell
transitions that have been experienced, and then computing the shortest path to the
goal cell.

• Learning consists of gathering cell transition data as the system physically moves
around its state-space. Learning also involves adapting the representation of the
state-space by splitting cells.
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Interestingly, these two components are of great help to each other.

• Learning is helped by planning because the usefulness of the data gathered is
greater than it would be without planning (if, for example, data was gathered by
choosing random actions). The planner always computes the shortest path to the
goal, subject to the assumption that any cell transitions not yet attempted will work.
This means that the learning is always highly relevant to the task: data is gathered
about the very cell transitions that are necessary to achieve the shortest possible path
according to the current output of the planner. Planning also identifies when cells
are losers, which is the engine behind the cell splitting mechanism.

• Planning is helped by learning because only the actual empirical experiences need
to be considered. Compare this to a conventional robot motion planning formalism
in which a geometric model of the configuration space must be first represented
and then reasoned with. Instead our planning only needs to look at an empirical
sample of real world transitions, meaning less computation if the models are complex,
no requirement to accurately model the world, and no need to plan around low
probability contingencies (such as the small blocks in Figure 6) unless they actually
occur. Planning is also helped by learning because the result of learning (the variable
resolution partitioning) changes the representation of the problem.

The goal cell
The goal cell is special. It never changes or gets split. The task is defined to be
solved when the system enters any part of the goal cell. In the experimental diagrams
in Section 4 it is the box marked "Goal".

When other cells are split, each new cell has to recompute all the neighbors that it is
next to. Any new cell which intersects the goal cell also includes the goal cell as one of
its neighbors.

4. Experiments

This section evaluates parti-game empirically by means of a number of simulated learning
tasks. All the experiments are broken into trials. On each trial the system is placed in
an initial state and the trial proceeds until the system enters the goal region. The details
of each experiment can be found in the Appendix.

4.1. Maze navigation

Figure 9 shows a two-dimensional continuous maze. Figure 10 shows the performance
of the robot during the very first trial. Figure 11 shows the second trial, started from
a slightly different position. The policy derived from the first trial gets us to the goal
without further exploration. The trajectory has unnecessary bends. This is because
the controller is discretized according to the current partitioning. If necessary, a local
optimizer could be used to refine this trajectory1.
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Figure 9. A two-dimensional maze problem. The point robot must find a path from start to goal without
crossing any of the barrier lines. Remember that initially it does not know where any obstacles are, and must
discover them by finding impassable states.

Figure 10. The path taken during the entire first trial. It begins with intense exploration to find a route out of
the almost entirely enclosed start region. Having eventually reached a sufficiently high resolution, it discovers
the gap and proceeds greedily towards the goal, only to be stopped by the goal's barrier region. The next
barrier is traversed at a much lower resolution, mainly because the gap is larger.
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Figure II. The second trial.

Figure 12. Starting inside the top left barrier.

The system does not explore unnecessary areas. The barrier in the top left remains
at low resolution because the system has had no need to visit there. Figures 12 and 13
show what happens when we now start the system inside this barrier.

4.1.1. Comparison with other Algorithms

In an attempt to compare the parti-game algorithm with other reinforcement learning
methods, we discretized the maze of Figure 9 and applied two discrete learning algo-
rithms: Q-learning (Watkins, 1989) and prioritized sweeping (Moore & Atkeson, 1993),
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Figure 13. The trial after that.

(Peng & Williams, 1993). The discretization, shown in Figure 14, was at the coarsest
resolution (50 x 50) which still permitted a path from start to goal. To prevent the
problems caused by the non-Markovian nature of coarse discretizations (described in
Section 3) the state transitions were also quantized: moves begin and end at the center
of cells, and there are four actions: North, East, South and West. State transitions are
deterministic.

In the first experiments, the discrete algorithms were not told the location of the goal.
The exploration mechanism was "optimism in the face of uncertainty" (Kaelbling, 1990),
(Sutton, 1990) in which any unvisited state-action pair was assumed to be zero steps
from the goal. In a deterministic problem, this strategy is guaranteed to find the op-
timal path (Koenig & Simmons, 1993). The deterministic assumption also permitted
Q-learning to use a learning rate a = 1. Prioritized sweeping was allowed 200 backups
per transition.

The results are shown in Table 1. Parti-game has considerably fewer steps for explo-
ration and fewer backups than either of the other algorithms. Those algorithms had a
disadvantage: parti-game was told the location of the goal. They were not. To provide
a more equal comparison, both discrete algorithms were run with prior knowledge of
the goal location. This was implemented by setting the default cost-to-goal value of any
unexplored state transition as the Manhattan distance | x - xgoal | + | y - ygoal\ \ from the
current state to the goal. Thus, initial exploration is biased towards the goal in a similar
manner to the expansion of nodes in an A* search.

Figure 15 shows the set of states visited before convergence when prioritized sweeping
was used. Only about 35% of the states needed to be visited.

As Table 1 shows, performance (measured both as steps and backups) improved con-
siderably when the discrete algorithms were told the location of the goal. In both cases
however, the number of physical steps needed for exploration still exceeded that of
parti-game. The total computational effort before convergence, measured by number of
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Figure 14. A 50 x 50 quantization of the maze in Figure 9.

backups, was less for Q-learning than for parti-game. If computation cost were the only
criterion, and physical movement of the robot was ignored, this Q-learning implemen-
tation would therefore be more desirable than parti-game. However, it should be noted
that if physical movement is ignored then classic search algorithms (such as A*, which
requires only 857 backups) greatly outperform all reinforcement learning algorithms,
including Q-learning, on the same discretized maze.

This comparison provides an informal measure of the strengths and weaknesses of parti-
game relative to some discrete reinforcement learning algorithms. It should be noted,
though, that many domain-dependent factors prevent general comparative conclusions to
be drawn. These include:

• Parti-game was not attempting to find an optimal solution but the discrete methods
were2.

• To help the discrete algorithms, the level of quantization was chosen carefully to be as
coarse as possible without blocking possible paths to goal. In general, the knowledge
of the correct level of quantization is not known. An advantage of Parti-game is that
it creates its own discretization.

• The discrete algorithms are applicable to non-deterministic problems and arbitrary
reward functions (though they may take longer to converge in these cases). The
current version of parti-game is only applicable to deterministic problems specified
by a goal region.
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Figure 15. The set of all states visited by Prioritized Sweeping while it was exploring for the shortest route to
the goal, the location of which it was told in advance.

Table 1. Comparing parti-game with four discrete reinforcement learn-
ing algorithms. The "Steps" column shows the number of steps of
exploration before the algorithm had converged on a path from start to
goal. One step is one fiftieth the width of the maze (In the continuous
simulation, parti-game's step sizes are one two-hundredth the width of
the maze, and the total number of its physical steps, 3816, has been
divided by 4 to compensate).

Algorithm

Parti-game

Q, goal unknown

PriSweep, goal unknown

Q, goal known

PriSweep, goal known

Physical Steps
before convergence

954

186,140

11,416

13,526

4,362

Backups
before convergence

20,682

186,140

340,680

13,526

24,879
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Figure 16. A frictionless puck acted on by gravity and a horizontal thruster. The puck must get to the goal as
quickly as possible. There are bounds on the maximum thrust.

• Most importantly, above two dimensions, the advantage of parti-game over straight-
forward discretization is much more substantial.

4.2. Non-linear dynamics

Figure 16 depicts a frictionless puck on a bumpy surface. It can thrust left or right with
a maximum thrust of ±4 Newtons. Because of gravity, there is a region near the center
of the hill at which the maximum rightward thrust is insufficient to accelerate up the
slope. Thus if the goal is at the top of the slope, a strategy that proceeded by greedily
choosing actions to thrust towards the goal would get stuck.

This is made clearer in Figure 17, a phase space diagram. The puck's state has two
components, the position and velocity. The hairs show the next state of the puck if it
were to thrust rightwards with the maximum legal force of 4 Newtons. Notice that at
the center of state-space, even when this thrust is applied, the puck velocity decreases
and it eventually slides leftwards. The optimal solution for the puck task, depicted in
Figure 18, is to initially thrust away from the goal, gaining negative velocity, until it is
on the far left of the diagram. Then it thrusts hard right, to build up sufficient energy to
reach the top of the hill.

The local greedy controller which parti-game uses is bang-bang. To aim for a cell
"north" in state-space—a cell with greater velocity—it thrusts with the maximum per-
missible force of +4N. To aim for a lower velocity cell it thrusts with -4N. To aim
for an "east" or "west" cell, the local controller merely controls its velocity (using a
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Figure 17. The state transition function for a puck that constantly thrusts right with maximum thrust.

Figure 18. The minimum-time path from start to goal for the puck on the hill. The optimal value function is
shown by the background dots. The shorter the time to goal, the larger the black dot. Notice the discontinuity
at the escape velocity.
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Figure 19. The trajectory of the very first trial, while the system performed its initial exploration of state-space.

trivial linear controller) to be equal to the velocity of the center of the destination cell.
Notice that if the velocity is greater than zero in all parts of a cell it is hopeless to
greedily aim for the cell on the left. It is also hopeless to aim at the cell on the right
if the current cell has negative velocity. In the experiments below, parti-game is given
this extra information. Forcing parti-game to learn this from experience approximately
doubles the learning time.

Figure 19 shows the trajectory through state-space during the very first learning trial,
while it is exploring and developing its initial partitioning. Figure 20 shows the resulting
partitioning and the subsequent trajectory3: on its second trial it has already learned
the basic strategy of "begin by getting a negative velocity, moving backwards, and only
then heading forward with full thrust." Figure 21 shows the interesting result of running
many more trajectories, each starting at random parts of state-space. Many cells are
created and refined, but only around the critical border in state-space which serves as the
escape velocity of the problem (also visible as the discontinuity in Figure 18). This high
resolution line arises not out of any pre-programmed knowledge of the escape velocity
but because the system does not need to increase the resolution of cells which fail to
intersect the escape velocity region.

4.3. Higher dimensional state-spaces

Figure 22 shows a three-dimensional state-space problem. If a standard grid were used,
this would need an enormous number of states because the solution requires detailed
maneuvers. Parti-game's total exploration took 18 times as much movement as one run
of the final path obtained.

Figure 23 shows a four-dimensional problem in which a ball slides on a tray with steep
edges. The goal is on the other side of a ridge. The maximum permissible force is low.
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Figure 20. The trajectory and partitioning of the second trial.

Figure 21. The partitioning after it has learned the task from 200 random start positions.
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Figure 22. A problem with a planar rod being guided past obstacles. The state-space is three-dimensional:
two values specify the position of the rod's center, and the third specifies the rod's angle from the horizontal.
The angle is constrained so that the pole's dotted end must always be below the other end. The pole's center
may be moved a short distance (up to 1/40 of the diagram width) and its angle may be altered by up to
7T/20 radians, provided it does not hit a barrier in the process. Parti-game converged to the path shown in the
right-hand panel after two trials, with 18 times as many exploration steps as there are steps in the final path.
The partitioning lines on the right-hand panel only show a two-dimensional slice of the full partitioning.

Greedy strategies, or globally linear control rules, get stuck in limit cycles within a valley.
The local greedy controller to navigate between adjacent cells is a bang-bang controller.
Parti-game's solution runs to the far end of the tray, to build up enough velocity to make
it over the ridge. The exploration-length versus final-path-length ratio is 24.

Figure 24 shows a 9-joint snake-like robot manipulator, which must move to a specified
configuration on the other side of a barrier. Again, no kinematics model or knowledge
of obstacle locations are given: the system must learn these as it explores. It takes seven
trials before converging on the solution shown, which requires about two minutes run-
time on a SPARC-I workstation. The exploration-length versus final-path-length ratio is
60. Interestingly, the final number of cells is only 85. This compares very favorably
with the 512 cells that would be needed if the coarsest non-trivial uniform grid were
used: 2 x 2 x • • • x 2. Unsurprisingly, for the 9-joint snake, this 512 uniform grid is
too coarse, and in experiments we performed with such a grid the system became stuck,
eventually deciding the problem was insoluble.

4.4. Comparison to uniform partitioning

In the preceding experiments it is interesting to ask to what extent the performance is
due to the adaptive partitioning method. We ran further experiments to find how quickly
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Figure 23. A puck sliding over a hilly surface (hills shown by contours: the surface is bowl shaped, with
the start and goal states at the bottoms of distinct valleys). The state-space is four-dimensional: two position
and two velocity variables. The controls consist of a force which may be applied in any direction, but with
bounded magnitude. Convergence time was two trials, with 24 times as much exploration as there are steps in
the final path (shown in the right-hand panel).

Table 2. Summary of parti-game's performance on the experiments within the preceding sections. Also
shown is the performance of the coarsest uniform quantization of state-space for which parti-game needs
to split no cells.

Point in maze

Puck on hill

Rod in maze

Slider on 2-d surface

9-joint snake

Regular Parti-game

Steps
before

converged

3,816

1,493

3,164

3,632

3,142

Backups
before

converged

20,682

353

129,981

2,466

22,236

Cells
when

converged

119

14

149

20

85

Uniform Parti-game

Steps
before

converged

4,205

9,895

8,594

9,337

Backups
before

converged

198,032

123,520

13.1 Million

137,996

Cells
in quant-

ization

1,024

256

8,192

256

Memory exhausted (> 218 cells)

parti-game converged on non variable resolution grids. A convenient way to test this
is to run a uniform version of parti-game in which, whenever the system is in a losing
state, the resolution is doubled in every cell in the entire partitioning. This enables us to
see the extent to which the variable resolution component of parti-game is responsible
for reducing the exploration and computation needed for convergence.

Table 2 shows that the amount of exploration (steps before convergence) was increased
by a factor between 1.1 and 6.5 for the uniform version of parti-game. The factor differ-
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Figure 24. A nine-degree-of-freedom planar robot must move from the shown start configuration to the goal.
The joints are shown by small circles on the left-hand panel which depicts two configurations of the arm:
the start position and the goal position. The solution (see right-hand panel) entails curling, rotating and
then uncurling. The robot may not intersect with any of the barriers, the edge of the workspace, or itself.
Convergence occurred after seven trials, with 60 times as much exploration as there are steps in the final path.

ence was even greater for computational and memory requirements. In all cases, more
than ten times the number of backups and more than ten times the number of cells were
needed by the uniform methods. In the three-dimensional and nine-dimensional state-
spaces these factors were particularly high—both measures were more than a hundred
times worse for the uniform parti-game.

5. Related work

A few other researchers in Reinforcement Learning have attempted to overcome dimen-
sionality problems by decompositions of state-space. An early example was (Simons,
et al., 1982) who applied it to 3-degree-of-freedom force control. Their method gradu-
ally learned by recording cumulative statistics of performance in cells. More recently,
we produced a variable resolution dynamic programming method (Moore, 1991). This
enabled conventional dynamic programming to be performed in real-valued multivariate
state-spaces where straightforward discretization would fall prey to the curse of dimen-
sionality. This is another approach to partitioning state-space but has the drawback that,
unlike parti-game, it requires a guess at an initially valid trajectory through state-space.
(Chapman & Kaelbling, 1991) proposed an interesting algorithm, which used more so-
phisticated statistics to decide which attributes to split. Their objectives were very hard
because they wished to avoid remembering transitions between cells and they did not
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assume continuous paths through state-space, and so they obtained only limited empirical
success.

In (Dayan & Hinton, 1993) a 2-dimensional hierarchical partitioning was used on a
grid with 64 discrete squares, and (Kaelbling, 1993) gives another hierarchical algorithm.
These references both attempt a different goal than parti-game: they try to accelerate Q-
learning (Watkins, 1989) by providing it with a pre-programmed abstraction of the world.
The abstraction, it is noted in both cases, may sometimes indeed lead to faster learning
and cart improve Q-learning if there are multiple goals in the problem. In contrast,
parti-game is able to build its own abstraction using geometric reasoning and so learns
more quickly (typically in fewer than ten trials and a few minutes of real time) and on
significantly higher dimensional problems than have been attempted elsewhere. The price
parti-game pays is that it is limited to geometric abstractions, whereas both Kaelbling's
and Dayan's methods may eventually be applicable to other abstraction hierarchies.

Geometric Decompositions have also been used fairly extensively in Robot Motion
Planning (e.g. (Brooks & Lozano-Perez, 1983), (Kambhampati & Davis, 1986)), sum-
marized in (Latombe, 1991). The principal difference is that the Robot Motion Planning
methods all assume that a model of the environment (typically in the form of a pre-
programmed list of polygons) is supplied to the system in advance so that there is no learn-
ing or exploration capability. The experiments in (Brooks & Lozano-Perez, 1983) in-
volve a 3-degree-of-freedom navigation problem and in (Kambhampati & Davis, 1986),
a fairly difficult 2-dimensional maze.

Finally, some relation can be seen between parti-game and adaptive multigrid meth-
ods used to accelerate the convergence of solutions to partial differential equations.
Adaptive multigrid methods that allow variations in resolution across the space typi-
cally use quad-tree or oct-tree data structures (McCormick, 1989). These approaches
subdivide a cell by splitting in all dimensions simultaneously. (Arcilla, et al., 1991)
describe adaptive triangulation approaches. Multigrid approaches have been used for
dynamic programming in solving for the value function specified by Bellman's equa-
tion (Hoppe, 1986), (Akian, et al., 1988), (Chow, 1990). As with the robot motion plan-
ning approaches described above, it is not yet clear how multigrid approaches can be
adapted to handle the learning problem in which the system dynamics are not completely
known in advance.

6. Discussion

6.1. Splitting

Given a cell we have decided to split, which axis should be split? Algorithm (4) states
that we split along the longest axis. This begs the question of where to split in the case
of ties. The current algorithm resolves ties with a fixed ordering on axes, but we could
be cleverer. In Figure 25 it is clear that a vertical split would be more useful than a
horizontal split. This kind of intelligent split choice, which pays attention to the locations
of outcomes, would not be difficult to incorporate.
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Figure 25. We have had two experiences of attempting to move North from two different points in the cell.
Only one succeeded.

6.2. Not forgetting

When a cell is split, the outcomes of its children are initialized to be empty and so
old data is forgotten. This is neither desirable nor necessary. Old trajectories could
be retained and used to initialize the OUTCOMES () sets of those children within which
earlier trajectory segments lay.

6.3. Learning the local greedy controllers

The parti-game algorithm requires that the user defines local greedy controllers. Is this
a large sacrifice of autonomy? We argue not: provided the continuity assumption holds,
learning greedy controllers merely requires gathering enough local experience to form a
local linear map of the low level system dynamics. This can be done with relative ease,
both in a statistical and computational sense. It is particularly easy given our working
assumption of deterministic system dynamics, but even in stochastic cases, developing a
local linear model from data may not be hard (Schaal & Atkeson, 1994).

6.4. Dealing with an unknown goal state

There is no difficulty for parti-game in removing the assumption that the location of the
goal state is known. Convergence will be considerably slowed down if it is not given,
but this is not the fault of the algorithm. If there are D state variables and the goal is
signaled when all state variables are simultaneously within ±6% of an unknown goal
value, then it is clear that an exploration of at least

/100\D

\26 )
(9)
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Figure 26. Parti-game cannot produce either of these kinds of suboptimality. No loops, and no unblocked
adjacent cells that contain separate parts of a solution trajectory.

points on a grid in state-space are needed to ensure the goal is reached even once,
whatever the learning algorithm.

A simple supplement to parti-game can be made to implement this kind of uniform
exploration. It begins with a uniform grid cell with

breaks on each axis and encourages exploration by estimating the JWc value of all
unvisited cells as zero. At this resolution at least one initial cell must be a proper subset
of the goal region, and so once the system has entered any part of each initial cell the
goal must have been discovered.

6.5. Attaining optimality

Parti-game is designed to find solutions to delayed reward control problems in reason-
able time without needing help in the form of initial human-supplied trajectories. The
algorithm works hard to find a solution but makes no attempt to optimize it. Empirically,
all solutions found have been good. There are a number of kinds of suboptimality that
parti-game will not produce. In the case of navigation, for example, parti-game cannot
produce loops or meanders, as shown in Figure 26.

The lack of guaranteed optimality in parti-game is a concession to the fact that there is
unlikely to be sufficient time in the lifetime of a reinforcement learning system to explore
every possible solution. Future research may reveal ways to achieve weaker optimality
guarantees:

• That the solution is locally optimal.

• A proof that even if the solution is not globally optimal, the global solution can
be no better than factor K (in terms of cost units for the task being learned) over
parti-game's solution.

Both these optimality statements will require extra assumptions about the state-space.
In the case of navigation problems, a proof would involve geometric assumptions. In
dynamics problems a proof might need to assume local linearizability of the dynamics
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within cells, and could use then use Linear Quadratic Gaussian (LQG) local control
design (see, for example, (Sage & White, 1977)).

For systems which can neither be characterized as geometric motion planning problems
nor dynamics problems, it is also possible that optimality might be provable. Future
research into this might incorporate admissible heuristics: a classical method in AI for
formally reasoning about the optimality of proposed solutions (Nilsson, 1971).

6.6. Multiple goals

Because it builds an explicit model of all the possible state transitions between cells, it
is a trivial matter for parti-game to change to a new goal. We have performed a number
of experiments (not reported here) that confirm this.

6.7. Stochastic dynamics

This is the hardest issue for parti-game to cope with. If a given action in a given cell
produces multiple results, how do we decide if this is due to inherent randomness or due
to overly coarse cells? In the latter case it will be helpful to increase the resolution and
in the former case it will not.

The easiest case will be noise in the form of

An example is an environment which randomly jogs a mobile robot between each move-
ment. We have performed some experiments with parti-game under this scenario (not
reported here), and have not yet seen it get stuck even when quite substantial noise was
added. In principle, though, any amount of noise could break the parti-game algorithm—
if trials were run indefinitely, eventually all of state-space would become partitioned to
unboundedly high resolution. An improvement to parti-game might use statistical tests
that try to explain outcomes in terms of location within the cell. This might help, but
further research is needed.

If the randomness is something that occasionally teleports the system to a random place
(breaking the assumption of paths being continuous through state-space), then parti-game
would probably need an entirely different splitting criterion. One possibility is a version
of the "G" splitting rule of (Chapman & Kaelbling, 1991).

6.8. The curse of dimensionality

We finish by noting a promising sign involving a series of snake robot experiments
with different numbers of links (but fixed total length). Intuitively, the problem should
get easier with more links, but the curse of dimensionality would mean that (in the
absence of prior knowledge) it becomes exponentially harder. This is borne out by the
observation that random exploration with the three-link arm will stumble on the goal
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Figure 27. The number of cells finally created against degrees of freedom for a set of snake-like robots.
The partitionings built were all highly non-uniform, typically having maximum depth nodes of twice the
dimensionality. The relation between exploration time and dimensionality (not shown) had a similar shape.

eventually, whereas the nine-link robot cannot be expected to do so in tractable time.
However, Figure 27 indicates that as the dimensionality rises, the amount of exploration
(and hence computation) used by parti-game does not rise exponentially. It is conceivable
(but not supported by further evidence in this paper) that real-world tasks may often have
the same property: the complexity of the ultimate task remains roughly constant as the
number of degrees of freedom increases. If so, this might be the Achilles' heel of the
curse of dimensionality.

7. Conclusion

This paper began with the problems of coarse partitionings of state-space. It then showed
how worst-case assumptions can solve these problems, and very effectively identify cells
that need to have their resolutions increased. There are many interesting avenues arising
from these ideas which remain open for further investigation.

Appendix

Experimental Details

All systems, though continuous in time and space, were simulated in small discrete time
steps.
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A.I. Point in maze

This system is used in section 4.1. The state, s = (x,y), is two-dimensional and must
lie in the unit square 0 < x < 1, 0 < y < 1. The action a = ( 6 x , S y ) is also two-
dimensional, and represents small displacements in the state. Actions are constrained
such that | a |= \/Sx2 + <5y2 <^1/200.The goal region is the square 0.9 < x < 0.95,
0.9 < y < 0.95. Writing s(t) as the state at time t and a(t) as the action at time t, the
dynamics are:

The local greedy controller chooses the action which moves closest to the local goal
SGOAL:

A.2: The puck on the hill

This system is used in section 4.2. The state, s = (x,x), is two-dimensional and must
lie in the region -1 < x < 1, -2 < x < 2. x denotes the horizontal position of the
puck in Figure 16. The action a is one-dimensional and represents the horizontal force
applied to the puck. Actions are constrained such that —4 < a < 4. The goal region is
the rectangle 0.5 < x < 0.7, -0.1 < x < 0.1. The surface upon which the puck slides
has the following height as a function of x:

The puck's dynamics are given by

where M = 1 and g = 9.81. This equation is integrated by

where h = 0.01 is the simulation time step. If any of the state variables exceed their
limits, the system is deemed to have crashed, and the trial is restarted at the start state.

The local controller is essentially bang-bang: it is a linear controller with very high
gains, the output of which is clipped to remain in the legal range -4 < a < 4.
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where Kp = 104 and Kv = 105.

A. 3: Rod in maze

This system is used in section 4.3. The state, s = (x,y,6), is three-dimensional. ( x , y )
denotes the position of the center of the rod and must lie in the unit square 0 < x < 1,
0 < y < 1. 9 denotes the angle of the rod from the horizontal, and is constrained to lie
in the range 0 < 6 < TT. Thus full rotation of the rod is not permitted: its bottom must
never be above its top. The action a = (6x, 5y, 66} is also three-dimensional, representing
small displacements in the state. Actions are constrained such that ^/6x2 + (jy2 < -^
and -^j < 56 < ^. The goal region is 0.8 < x < 0.9, 0.6 < y < 0.7, and B may be
any value. The rod has length 0.4. The dynamics are:

The local greedy controller chooses the action which moves closest to the local goal
SGOAL:

A.4: Puck sliding on two-dimensional surface

This system is used in section 4.3. The state, s = (x,y,x,y), is four-dimensional. The
dynamics and local controller are all essentially two-dimensional analogs of the puck on
the hill. One important exception is that the system does not enter a crash state if one of
the state variables exceeds its limits: instead the state variable is clipped to the closest
legal value.
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A.5: Multi-joint arm kinematics

This system is also used in section 4.3. In the given example, the state-space dimension
N = 9. The state s = (Oi, #2 • • • ON) denotes a set of joint angles. 6\ denotes the angle
from horizontal of the joint connected to the base (shown in Figure 24). For i > 1, Oi

denotes the angle between joint i and joint i - 1. The action a = (<5#i,<5#2 .. . <$# N }
represents small displacements in the state. Actions are constrained such that | a |< -^.
The state transition function is:

The local greedy controller chooses the action which moves closest to the local goal
SGOAL:
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Notes

1. Another method is to increase the resolution along the trajectory (Moore, 1991).

2. In practice, parti-game's solution was shorter than the optimal path in the discretized maze. This is because
the continuous actions of parti-game permit travel in arbitrary directions, not just North, East, South and
West.

3. Careful inspection of this diagram reveals that the trajectory changes direction not at the borders of cells
but instead within cells. This is because the current implementation waits until it is well within a cell
before applying the cell's recommended action.
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