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Abstract. Decision trees that are based on information-theory are useful paradigms for learning from exam-
ples. However, in some real-world applications, known information-theoretic methods frequently generate non-
monotonic decision trees, in which objects with better attribute values are sometimes classified to lower classes
than objects with inferior values. This property is undesirable for problem solving in many application domains,
such as credit scoring and insurance premium determination, where monotonicity of subsequent classifications
is important. An attribute-selection metric is proposed here that takes both the error as well as monotonicity
into account while building decision trees. The metric is empirically shown capable of significantly reducing the
degree of non-monotonicity of decision trees without sacrificing their inductive accuracy.
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1 Introduction

Suppose a college admissions committee decides to use decision trees to determine whom
to admit based on standardized test scores and grades. For reasons such as fairness and
liability, the college would not want to use a decision tree that admits an applicant with
certain scores, and then rejects another who scores as high or higher on each measure.
Similarly, a life insurance company would not wish to rely on a decision tree that quotes a
young and healthy applicant a higher premium rate than one that has been quoted to an old
and unhealthy person.

The classifications in both the school admissions and the life insurance premium problems
are required to be monotonic with respect to the attribute values. These problems are,
therefore, called monotonic classification (MOC) problems. MOC problems are important
because they are very common, and deal with many aspects of our life. In addition to the
examples given above, MOC problems include, among others, credit scoring (Carter, 1987),
consumer choice (Jacoby, 1974), school and transportation selection, investment decisions,
referee and editorial decisions (Larichev, 1988), employee selection, lecturer evaluation,
and certain social workers decisions (Ben-David, 1992), The examples that are used to
construct decision trees for real-world MOC problems are frequently non-monotonic with
respect to each other, in particular, when the examples are taken from past human decisions
(Jacoby, 1974; Hayes-Roth, 1983).

Ideally, decision trees, for MOC problems should be monotonic, regardless of whether
their training sets are monotonic or not. Unfortunately, information-theoretic top-down-
induction decision tree (TDIDT) algorithms (Quinlan, 1986), that use entropy as the criterion
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Figure I. Non-monotonic decision trees.

for attribute selection may produce non-monotonic decision trees. Figure 1 illustrates two
such cases of simplified credit scoring decision trees. The attributes are assets, and income
+ assets respectively. The decisions are shown at the leaves. It is quite evident that the
decision tree of assets does not make much sense. A client with low assets is authorized a
$ 5K line of credit, while one with more assets is refused. It is easy to show that the income
+ assets decision tree suffers from similar anomalies.

TDIDT algorithms that use the E-score as their attribute selection metric do not consider
the order within the attribute values and among the classes. The same observation applies
to Mantaras's distance-between-partitions measure (Mantaras, 1991), and to Nunez's back-
ground knowledge (Nunez, 1991). Consequently, TDIDT algorithms are not well adapted
to deal with MOC problems. The above shortcoming is shared by some other well known
learning from examples paradigms: Feed-forward neural networks (Rumelhart, 1986),
most of Michalski's AQ family of models (Michalski, 1983), CN2 (Clark & Niblett, 1989),
and Fisher's COBWEB (1987), suffer from the same limitation while dealing with MOC
problems.

However, decision trees are also required to provide acceptable inductive accuracy. Un-
fortunately, in real-world cases, these two goals often conflict. Clearly, the tradeoff between
monotonic classifications and inductive accuracy is domain dependent. Legal requirements,
if applicable, push toward monotonicity of classifications (see above). Human-related con-
siderations also motivate the use of monotonic decision trees, since end-users often consider
non-monotonic classifications of MOC problems as unacceptable (see also Larichev &
Moshkovich, 1988; Ben-David, 1992).

This paper presents a metric that can improve the monotonicity of decision trees, with
little, or no loss of accuracy. The metric's properties are empirically studied on five real-
world MOC problems.

2 Monotonicity and decision trees

We begin with a few formal definitions.

DEFINITION 1. Let X = (x 1 , x2 xn) and Y = ( y 1 , v 2 , . . . , yn) denote two instances
in the same problem domain, described by attributes 1 through n. All the attribute values,
xis and yis, are assumed to be ordinal (i.e., ordered) or numeric. An order between X and
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Table 1. A monotonic training set.

Example

#1
#2
#3

Income

high
high
low

Assets

plenty
low
medium

Credit history

good
bad
bad

Class

$ 10K
$5K

no credit

Y is defined as follows:

X = Y if xi=yi Vi = l,2 n
X > Y if xi>yi Vi = l ,2, ...,n
X>Y i f x i > y i OR x i = y i V = l , 2 , . . . , n
X<Y if xi<yi Vi = l , 2 , . . . , n
X < Y if xi<yi OR xi=yi Vi = l , 2 , . . . , n

The non-monotonic relation between attribute-class pairs is defined now:

DEFINITION 2. Let (X, Cx) and (Y, Cy) represent two attribute-class pairs, where X and
Y are attribute values as in Definition (1). The classes of X and Y are denoted by Cx and Cy

respectively. The attribute-class pairs ( X , C X ) and (Y, Cy) are non-monotonic with respect
to each other if:

X < Y A Cx > Cy OR
x > y A Cx < Cy OR
X = Y A Cx = Cy

The monotonic relation between attribute-class pairs can now be defined as:

DEFINITION 3. Two attribute-class pairs (X, Cx) and (Y, Cy) are monotonic with respect
to each other if they do not meet any of the conditions set forth in Definition (2).

The definition of monotonicity between attribute-class pairs can be extended to attribute-
test/answer-node paths in decision trees.

DEFINITION 4. Let (P, Cp) and (Q, Cq) be two attribute-test/answer-node paths in the
same decision tree, were P and Q are attribute-tests, and Cp and Cq are answer-nodes. The
paths (P, Cp) and (Q, Cq) are monotonic with respect to each other if they do not comply
with any of the conditions set forth in Definition (2).

DEFINITION 5. A decision tree is monotonic if all its attribute-test/answer-node pairs are
monotonic with respect to each other.

To illustrate a basic problem that frequently occurs while building decision trees for MOC
problems, consider the following example: Credit worthiness is determined by considering
income level, assets, and credit history. There are only three examples in our simplified
case, and they are shown in Table 1.
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It is easy to show that all the examples of Table 1 are monotonic with respect to each
other. We apply now the ID3 algorithm to the examples of Table 1. The E-score (i.e.,
entropy) of income, E(income) — 0.667 bits (2/3 * 1 + 1 /3 * 0). The entropy vanishes
on assets, E(assets) — 0. Although the examples in the training set were all monotonic
with respect to each other, the resulting decision tree, shown on the right side of Fig. 1, is
non-monotonic. It is, however, unambiguous as far as information theory is concerned. We
formalize the above observation in the following proposition:

PROPOSITION 1. A training set in which all the examples are monotonic with respect to
each other is not guaranteed to generate monotonic decision trees via information-theoretic
TDIDT algorithms that use entropy for attribute selection.

PROOF. The example of Table 1.

Clearly, statistical outlier-detection techniques may be employed on non-monotonic ex-
amples. However, these methods are not guaranteed to be effective, since non-monotonic
examples are not necessarily outliers. Note that even if those methods could have always
ended with monotonic training sets, we have just seen that information-theoretic metrics
cannot generally guarantee the generation of monotonic decision trees from monotonic
training sets.

3 Building accurate monotonic decision trees

While information-theoretic metrics attempt to minimize the error without regard to mono-
tonicity, other known algorithms, such as matrix-based methods, and the OLM (Ben-David,
1989; 1992), result in purely monotonic decision trees without regard to error. The main dis-
advantage of both currently known TDIDT algorithms and monotonicity-oriented methods
for solving MOC problems stems from their bias toward a single goal. In most real-world
MOC applications, however, tradeoffs between accuracy arid monotonicity do exist. This
section proposes a metric that allows such tradeoffs.

TDIDT algorithms are quite well known, and will not be reiterated here. Matrix-based
methods represent relations among k branches of a decision tree by a k x k symmetric
matrix M. The mij element of M is 1 if branch i is non-monotonic with respect to branch
j, and 0 otherwise. Each row (column) is associated with a counter, in which the sum
of the respective row (column) is recorded. Beginning with those branches that are non-
monotonic with respect to most of the other branches, their rows and columns are deleted,
and the counters are updated. The branch pruning repeats until either all row (column)
counters are zero (i.e., the tree is monotonic), or the matrix M becomes of size 1 x 1 . The
matrix M is called a non-monotonicity matrix.

Another algorithm that can be used for generating monotonic decision trees is the Ordinal
Learning Model (OLM) (Ben-David et al., 1989, 1992). The OLM picks a branch of a
decision tree at random and declares it monotonic. It later picks a second branch at random.
If the second branch is monotonic with respect to the first, it is also declared monotonic.
Otherwise, the second branch is discarded. The monotonicity checks continue for all the
branches. Each branch has to be monotonic with respect to its predecessors that already
have been declared monotonic. Otherwise, it is rejected. This simple conflict resolution
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strategy is relatively fast, and it will be used here later in the Empirical Results section.
Other, more complex, conflict resolution methods are discussed in the above mentioned
publications as well as in the references therein.

Unlike the above single goal models, a new metric is proposed here that takes into account
both error and monotonicity considerations. We first define a measure of non-monotonicity
of decision trees:

DEFINITION 6. A non-monotonicity index is the ratio between the actual number of non-
monotonic branch pairs of a decision tree, and the maximum number of pairs that could
have been non-monotonic with respect to each other in the same tree.

To find the non-monotonicity index of a given decision tree with k branches, construct a
k x k non-monotonicity matrix M as discussed earlier. The sum of M 's entries is denoted W.

At most (k2 — k) entries of M may be labeled non-monotonic (a branch cannot be non-
monotonic with respect to itself). The non-monotonicity index of a decision tree with
attribute tests a1, a2,..., av is defined as:

Consider, again, the assets .decision trees of Fig. 1. There is one non-monotonic pair of
branches in the assets tree:

(low, $ 5K), (medium, no credit).

The non-monotonicity matrix is always symmetric, hence Wassets = 2. The number of
branches is kassets = 3. Therefore, the non-monotonicity index of the assets decision tree is

The income + assets decision tree of Fig. 1 has two pairs of inconsistent branches:

(high, plenty, no credit), (high, medium, $ 10K), and

(high, plenty, no credit), (low, (don't care), $ 5K),

Note that if the (don't care) is replaced by low, the latter pair is clearly non-monotonic with
respect to each other. Therefore

The non-monotonicity index is used in the following definition:
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DEFINITION 7. The order-ambiguity-score of a decision tree is defined in terms of the
non-monotonicity index.

The order-ambiguity-score is added to the E-score as follows:

DEFINITION 8. The total-ambiguity-score is the sum of the E-score, as defined in the ID3
algorithm, and the order-ambiguity-score.

The metric that is proposed here selects the attribute with the lowest total-ambiguity-
score. The total-ambiguity-score has some desirable properties for MOC problems. Unlike
ID3's E-score, it considers both the error as well as monotonicity. The value of the order-
ambiguity-score increases with the non-monotonicity index. The use of a logarithmic scale
for the definition of the order-ambiguity-score is only natural, since the total-ambiguity-
score is defined as the sum of the E-score (which is logarithmic), and the order-ambiguity-
score.

The above definition of the total-ambiguity-score does not imply that monotonicity con-
siderations necessarily dominate the tree building procedure. Rather, the value of the
order-ambiguity-score is lower than 1 for non-monotonicity indices lower than 0.50. In
realistic MOC problems, such as those to be studied in the next section, the values of the
non-monotonicity indices are substantially lower than 0.5, and one has to verify that the
values of the order-ambiguity-scores are not too low relative to the E-scores.

An effective way of expressing tradeoffs between entropy and monotonicity can be
achieved by introducing an additional parameter to the total-ambiguity-score.

The parameter R expresses the relative importance of monotonicity relative to inductive
accuracy in a given problem. When R = 0, the total-ambiguity-score uses only its E-
score component as the hill-climbing guide. If R has a very high value, monotonicity
considerations dominate the building of the decision tree. Several iterations with different
values of R on a sample of the training set may be helpful for determining an appropriate
value for R.

To illustrate how the proposed metric works, we apply now the ID3 algorithm to the data
of Table 1, using the total-ambiguity-score instead of the E-score as the attribute selection
metric. We choose R = 2, to express the relative importance of monotonicity versus
ambiguity, and trace the computation:
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Figure 2. MID's decision tree.

The total-ambiguity-scores of income and credit history are the lowest, and we assume
that the attribute income is selected as the first attribute-test.

The total-ambiguity-score of income + assets is checked now:

Unlike the decision tree that has been obtained earlier by applying ID3 with the E-score
metric on the same training set, the decision tree that results of applying ID3 with the
total-ambiguity-score is monotonic, and its E-score vanishes as well. Figure 2 shows the
resulting decision tree. In order to distinguish between the original version of ID3 that uses
the E-score and the monotonicity-oriented version of ID3 that uses the total-ambiguity-
score as its metric, the latter will be called here MID.

The additional computation of the total-ambiguity-score, relative to ID3's E-score, stems
from the monotonicity checks, and the calculation of the order-ambiguity-scores. It can
be shown that in the worst case, the number of monotonicity checks is O(d2n2), where
d denotes the number of attributes, and n is the number of examples in the training set.
The number of order-ambiguity-score calculations is identical to the number of the E-score
calculations in ID3.

An empirical evaluation of the effectiveness of the total-ambiguity-score metric i: given
in the next section.

4 Empirical results

Two key questions that arise with respect to the total-ambiguity-score metric are examined
here using five real-world MOC problems:
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Table 2. Details of the data sets.

No. of attributes
Number of possible values:

Attributes
Classes

Number of examples

MOD

5

6
2

121

ERA

4

7
7

125

EFE

8

5
5

124

ESL

4

10
10

122

LEV

4

5
5

125

Table 3. Main results.

Method/Domain

ID3:

MID(R= 1):

MID(R = 10):

MID(R = 100):

MID (R = 1000):

ID3 + OLM:

MAE
Non-monotonicity (%)
MAE
Non-monotonicity (%)
MAE
Non-monotonicity (%)
MAE
Non-monotonicity (%)
MAE
Non-monotonicity (%)
MAE
Non-monotonicity (%)

MOD

0.244
14.757
0.245

14.089
0.231

13.174
0.233

13.174
0.233

13.174
0.267
0.000

ERA

1.002
8.230
0.992
7.403
0.998
7.144
0.998
7.144
0.998
7.144
1.410
0.000

EFE

0.638
9.389
0.670
8.591
0.647
8.156
0.668
7.771
0.668
7.771
0.502
0.000

ESL

0.641
3.056
0.638
2.694
0.618
2.414
0.635
2.414
0.635
2.414
0.637
0.000

LEV

0.696
4.246
0.701
4.002
0.670
3.401
0.670
3.401
0.670
3.401
0.752
0.000

A. Does the proposed metric succeed in generating decision trees that have significantly
lower non-monotonicity indices when compared with decision trees that are generated
using the E-score metric?

B. Does the proposed metric bring about any significant loss of classification accuracy
relative to the E-score?

We begin by introducing the problem domains.
Moody's Bond Rating (MOD): Includes ratings of bonds according to several key financial

ratios. The bonds are partitioned to two groups: 'Good' bonds with Moody's AAA, AA,
and A ratings, and 'risky' bonds with lower Moody's ratings.

Employee Rejection/Acceptance (ERA): The data set includes attributes of hypothetical
applicants for a job, and evaluations of Business Administration students regarding their
qualifications.

Examination Form Evaluation (EFE): Includes attribute values of proposed matriculation
examinations, and experts' judgements about their quality.

Employee Selection (ESL): This data set includes actual attribute values of applicants
for an industrial opening, and judgments of recruiting experts about their qualifications for
these jobs.

Lecturers Evaluation (LEV); Includes attribute values of hypothetical lecturers, and opin-
ions of Business Administration students about their teaching qualifications.

All the above data sets involved actual human decisions, and they all included non-
monotonic examples. All the attribute and class values were integers. The examples for
ERA, ESL, and LEV were randomly selected from larger data sets, such that the training
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Figure 3. MAEs and non-monotonicity indices; MID (R = 1,100) vs. ID3.

sets and holdout samples had the same size in all the application domains. This strategy
was adopted in order to reduce the number of variables in the experiment.

More details about the data sets are shown in Table 2.
The experiment was conducted as follows: Each data set was randomly partitioned into

a training set and a holdout sample on a 50%-50% basis. This procedure was repeated
ten times (at random) for each data set. The total-ambiguity-score was used by ID3 with
four values of R (R = 1,10, 100, and 1000), and the inductive capabilities of the resulting
decision trees were tested using the respective holdout samples. The ID3 algorithm was
similarly applied using the E-score. The non-monotonic branches of ID3's decision trees
were later removed using the OLM. The latter experiment is labeled ID3 + OLM. Table 3
summarizes the main findings. Table 3 shows the mean absolute error (MAE) for the
holdout samples (i.e., (predicted class value—true class value|). The non-monotonicity
indices of Definition (6) are shown in percents rather than as fractions (i.e., 100 * /). All
the empirical results that are reported in this paper are averages of the 10-fold validation
method discussed above. Appendix A details the relevant statistics, as well as the mean
square error (MSE).

Figure 3 shows the MAEs of the total-ambiguity-score's decision trees (MID, R = 1,
100) relative to those of ID3. The non-monotonicity indices of the former relative to ID3



38 BEN-DAVID

Figure 4. MAEs of ID3 + OLM and MID (R = 1) vs. 1D3.

are also shown. All the results are expressed as percents relative to ID3. Figure 3 clearly
shows that the total-ambiguity-score resulted in decision trees with lower non-monotonicity
indices than the E-score. A significant statistical difference (at a confidence interval of 0.95)
has been observed between MID's and IDS's non-monotonicity indices in MOD, EFE, ESL,
and LEV (R = 10, 100, and 1000). This observation also applies to ERA, but within a
slightly lower confidence interval. More importantly, no (statistically) significant difference
between the MAEs of the two metrics has been observed in any application domain.

The MAEs of ID3 + OLM and MID (R = 1) are similarly shown in Fig. 4. In three
problem domains (MOD, ERA, and LEV) the MAEs of ID3 + OLM deteriorated relative
to the corresponding MAEs of ID3. This deterioration was statistically significant (at a
confidence interval of 0.95) in ERA and LEV, and insignificant in MOD. In two application
domains (EFE and ESL), the MAEs improved. However, only in EFE was this improvement
statistically significant. The observation that ID3 + OLM's MAEs deteriorated in some
application domains and improved in other domains (when compared with ID3) is not
surprising, since the OLM does not consider the error during its operation.

Figure 5 shows another important property of ID3 + OLM. The variances of ID3 +
OLM's MAEs increased substantially (relative to the variances of ID3's MAEs) in two
application domains, ERA and ESL. Both these differences were statistically significant.
MID's variances of MEAs, on the other hand, were relatively close to those of ID3. This
observation is also explained by the fact that the OLM does not consider accuracy during
its operation.

5 Conclusions and further research

It has been argued that monotonicity of classifications is a very important consideration
while solving MOC problems. Unfortunately, current TDIDT attribute selection measures
do not take monotonicity into account. They may result in non-monotonic decision trees,
even when all the examples in the training set are monotonic with respect to each other.
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Figure 5. Variances of MAEs; ID3 + OLM and MID (R = 1) vs. ID3.

Unlike the E-score, the total-ambiguity-score metric that has been proposed here considers
both monotonicity as well as inductive accuracy.

Using five real-world problem domains, it has been shown that the total-ambiguity-score
generates decision trees with significantly lower non-monotonicity indices than those that
are generated by the E-score metric. More importantly, the former achieves this goal
without a significant deterioration of the inductive accuracy (again, when compared with
ID3's E-score).

Although the discussion has been focused on extensions to Quinlan's well known E-score
attribute selection measure, it is also pertinent to other attribute selection metrics, such
as Quinlan's gain-ratio, or Mantaras's distance-based attribute selection metric. TDIDT
algorithms that were not studied here, such as C4.5 (Quinlan, 1987), ID4 (Schlimmer &
Fisher, 1986), and ID5R (Utgoff, 1989), may also be adapted to deal with MOC problems
using a similar approach.

Since MOC problems are so common in human daily life, it is worthwhile to address some
interesting open questions in future research: For example, the order-ambiguity score, as
defined here, does not take into account the severity of non-monotonic conflicts. A measure
that considers the severity of these conflicts may be helpful for some applications. The
effects of windowing on the performance of the proposed metric are also of interest. Also,
it is worthwhile to investigate whether the inclusion of the order within the attributes and
classes in background knowledge can provide better results than those that were obtained
via the total-ambiguity-score metric.

Appendix A

General explanations

Appendix A shows detailed results by application. The statistic T tests the hypothesis
that the average value shown to its left significantly differs from the one obtained via ID3.
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Table A1. MOD.

Method

MSE:

ID3
MID (R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

MAE:

ID3
MID (ft = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

Non-monotonicity (%):

ID3
MID (R = 1)
MID (R = 10)
MID (R = 100)
MID (ft = 1000)
ID3 + OLM

Avg

0.244
0.245
0.231
0.233
0.233
0.267

0.244
0.245
0.231
0.233
0.233
0.267

14.757
14.089
13.174
13.174
13.174
0.000

T

0.406
1.008
0.877
0.877
1.091

0.406
1.008
0.877
0.877
1.091

1.617
2.591
2.591
2.591

24.550

Var

0.002
0.002
0.002
0.002
0.002
0.001

0.002
0.002
0.002
0.002
0.002
0.001

3.613
1.517
1.621
1.621
1.621
0.000

F

0.98
0.91
0.82
0.82
0.70

0.98
0.91
0.82
0.82
0.70

0.420
0.449
0.449
0.449
0.000

Table A2. ERA.

Method

MSE:

ID3
MID(R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

MAE:

ID3
MID(R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

Non-monotonicity (%):

ID3
MID (ft = 1)
MID (R = 10)
MID (R = 100)
MID (ft = 1000)
ID3 + OLM

Avg

1.621
1.618
1.628
1.628
1.628
2.957

1.002
0.992
0.998
0.998
0.998
1.410

8.230
7.403
7.144
7.144
7.144
0.000

r

0.205
0.284
0.284
0.284
4.708

1.285
0.404
0.404
0.404
5.268

1.456
1.738
1.738
1.738

11.554

Var

0.048
0.038
0.045
0.045
•0.045
0.798

0.009
0.007
0.007
0.007
0.007
0.061

5.083
2.057
1.351
1.351
1.351
0.000

F

0.787
0.929
0.929
0.929

16.501

0.724
0.772
0.772
0.772
6.444

0.405
0.266
0.266
0.266
0.000
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Table A3. EFE.

Method

MSE:

ID3
MID (R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

MAE:

ID3
MID (R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

Non-tnonotonicity (%):

ID3
MID (R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

Avg

1.134
1.182
1.104
1.138
1.138
0.769

0.638
0.670
0.647
0.668
0.668
0.502

9.389
8.591
8.156
7.771
7.771
0.000

T

0.908
0.346
0.038
0.038
3.805

1.794
0.290
0.969
0.969
3.987

1.543
2.053
2.347
2.347

14.049

Var

0.118
0.128
0.111
0.170
0.170
0.013

0.015
0.017
0.015
0.027
0.027
0.003

4.466
2.412
2.974
3.084
3.084
0.000

F

1.092
0.941
1.443
1.443
0.107

1.112
0.981
1.764
1.764
0.170

0.540
0.666
0.690
0.690
0.000

Table A4. ESL.

Method

MSE:

ID3
MID (R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

MAE:

ID3
MID (R = 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

Avg

0.902
0.911
0.856
0.901
0.901
0.923

0.641
0.638
0.618
0.635
0.635
0.637

Non-monotonicity (%):

ID3
MID(R= 1)
MID (R = 10)
MID (R = 100)
MID (R = 1000)
ID3 + OLM

3.056
2.694
2.414
2.414
2.414
0.000

T

1.174
1.325
0.016
0.016
0.235

0.389
1.038
0.271
0.271
0.104

1.578
2.317
2.317
2.317

17.324

Var

0.015
0.015
0.019
0.038
0.038
0.102

0.005
0.004
0.006
0.009
0.009
0.023

0.311
0.596
0.461
0.461
0.461
0.000

F

1.025
1.271
2.615
2.615
6.962

0.790
1.397
1.880
1.880
4.972

1.915
1.483
1.483
1.483
0.000
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Table A5. LEV.

Method

MSE:

ID3
MID(R = 1)
MID (R = 10)
MID(R = 100)
MID(R = 1000)
ID3 + OLM

MAE:

ID3
MID (R =1)
MID(R= 10)
MID(R = 100)
MID (R = 1000)
ID3 + OLM

Avg

0.958
0.984
0.914
0.914
0.914
1.079

0.696
0.701
0.670
0.670
0.670
0.752

Non-monotonicity (%):

ID3
MID(R = 1)
MID(R = 10)
MID (R = 100)
MID(R = 1000)
ID3 + OLM

4.246
4.002
3.401
3.401
3.153
0.000

T

0.813
1.106
1.106
1.106
2.101

0.549
1.841
1.841
1.841
2.252

1.579
2.583
2.583
2.299
9.675

Var

0.053
0.050
0.022
0.022
0.022
0.096

0.011
0.011
0.006
0.006
0.006
0.018

1.926
1.845
0.772
0.772
0.770
0.000

F

0.940
0.405
0.405
0.405
1.809

0.949
0.547
0.547
0.547
1.617

0.958
0.401
0.401
0.400
0.000

For example, the MAE of the MOD application domain (see Table Al) is 0.233 for MID
(R — 100), and the respective MAE of ID3 is 0.244. The T statistic, 0.877, indicates that
the difference between these two means is (statistically) insignificant within a confidence
interval of 0.95. The statistic F is written similarly. It tests whether the differences between
the variances are significant. The comparison is done against the respective variance that
was obtained by applying ID3.
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