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Abstract. Kohonen and others have devised network algorithms for computing so-called topological feature maps.
We describe a new algorithm, called the CDF-Inversion (CDFI) Algorithm, that can be used to learn feature
maps and, in the process, approximate an unknown probability distribution to within any specified accuracy.
The primary advantages of the algorithm over previous feature-map algorithms are that it is simple enough to
analyze mathematically for correctness and efficiency, and that it distributes the points of the map evenly, in
a sense that can be made rigorous. Like other vector-quantization algorithms it is potentially useful for many
applications, including monitoring and statistical modeling. While not a network algorithm, the CDFI algorithm
is well-suited to implementation on parallel computers.
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1. Introduction

/./. Kohonen's algorithm

Let X be a large vector space, and assume there is a probability distribution p that assigns
a finite probability p(jc) to each vector x in X. A well-known algorithm discovered by Kohonen
(1982, 1984) produces what are called self-organizing topological feature maps of X. Roughly,
a feature map partitions the space X into a predetermined number of subsets (called regions),
and chooses a representative vector from each region. The "map" (regions plus representa-
tives) should have two properties: (1) the probability density p(/f) of each region R should
be approximately the same; and (2) certain topological relationships among the represen-
tative vectors should be preserved, regardless of the actual distribution. Aside from this
broad characterization, there seems to be no agreement about the precise definition of a
correct feature map.

A brief overview of Kohonen's algorithm is as follows. The algorithm is given a graph
G = (V, E) of nodes V = {v,, . . . , vr} and edges E g V x V. The task is to map each
node v € Vto an "appropriate" location (vector) xv € Xin the vector space. Initially each
node is mapped an arbitrary vector in X.

Ignore the edges E for the moment, and consider only the nodes. As input, the algorithm
receives vectors from X drawn at random with replacement according to the unknown prob-
ability distribution p. Let x* be the next input vector drawn from this distribution. The
node vc whose current map location xv is closest to x* in X is determined. Then the loca-
tion xv is changed by moving it closer to the input vector:
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The scale factor 1 < a < 0 is gradually reduced to zero as more input vectors are proc-
essed; when it reaches zero, the map is complete.

In the final map, the nodes should be well distributed throughout the vector space. "Well
distributed" means that each node v represents a set of vectors in the neighborhood of
its location xv in the vector space, and that the total probability of the vectors associated
with v are about the same for each v. For example, if there are r nodes in V then each
node governs a neighborhood in X of probability about 1/r. In Kohonen's feature maps,
the neighborhood of X governed by the node v is taken to be the set of vectors for which
xv is the nearest neighbor among the set of r vectors.

Consider now the topology of the graph G as defined by the edge relations E. This topology
can be transferred to the vector space X if for each edge (v,, v2) in E we construct the
corresponding edge (xVi, xvj in the map. In addition to the distribution requirement, we
also stipulate that the edge relation on G should be preserved by the mapping to X. For
example, if G is a rectangular grid, then the resulting graph in X should likewise have
the general form of a grid. To accomplish this, Kohonen's algorithm moves, not only the
location of the vector vc closest to the input, but also the locations of those vectors adjacent
to vc according to E (i.e., joined by an edge to vc). It is remarkable how effectively this
simple procedure transfers the general shape of G to the vector space X, even when the
node locations are initially random.

Kohonen's algorithm and its variants have been used successfully in a number of applica-
tions, e.g., (Kohonen, 1988; Nasrabadi & Feng, 1988; Ritter & Schulten, 1988). Note-
worthy characteristics of his algorithm include the fact that it requires very little storage
and that each processor performs only very simple calculations. As a model of how neurons
are adaptively mapped in response to sensory information, it is also of interest to biologists.

A major limitation of all previously known feature-map algorithms is that they are very
difficult to analyze. Such analysis is important, since applications often depend on both
the speed of the algorithm and the accuracy of the resulting map. It happens that both theo-
retical and experimental studies of Kohonen's algorithm have shown that his procedure is
not ideal: there is a persistent tendency for nodes to cluster excessively in regions of lower
probability density (Hecht-Nielsen, 1987; Ritter & Schulten, 1986). As a result, applications
using Kohonen's algorithm have sometimes been modified in ad hoc ways to correct for
this deficit, (e.g., DiSieno, 1988).

1.2. Feature maps: A definition

We define a feature map as follows. Let G = (X, EG) be a graph (directed or undirected)
with nodes X and edges EG £ X x X. Let M - (Y, EM) be another graph such that
1y | < \X\. e is a parameter in the range 0 < e < l/\Y\, and p is a probability distribution
on the set of nodes X.

Let <j>: X -» ybe a surjective function from Xonto Y. Let = be the equivalence relation
on X such that x = x' iff <t>(x) = <t>(x'). The = -equivalence classes on X induce a quotient
graph, G/m whose nodes are the =-equivalence classes, and whose edges connect classes
Rt and R2 iff there is an edge in EG between some X-node in RI and one in R2.
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We say that <t> is a feature map of G (with respect to M, p, and e) if

• M is isomorphic to a subgraph of G/m; and
• for every m -class R over X, p(/?), the total probability of the set of nodes in R, is equal

to l/|y| ± e.

Intuitively, the mapping 0 partitions the nodes of the graph G into | Y\ approximately equi-
probable regions, in such a way that the edge relations in M are preserved in the quotient
graph.

A feature map problem consists of five parts:

• the graphs G and M;
• the accuracy parameter 0 < e < \J\Y\;
• a confidence parameter 6 such that 0 < 8 < 1;
• a fixed, but unknown, probability distribution d over the nodes X of G. This distribution

is observed by means of an infinite sequence of independent, random variables, {x,,
i > 1}, each selected according to p; the value of each x, is a node in X.

A general algorithm for the feature map problem will accept as input the graphs G and
M, the parameters e and 8, and the stream {x,, (2: 1}, and with probability at least 1-6,
it will construct a feature map 0 of G with respect to M and halt. The samples x, are
obtained by the algorithm in sequence and cost one unit of time each to read.

As a minimum complexity requirement, a feature map algorithm should run in time poly-
nomial in the size of the input and in the values 1/6 and 1/5. Since in practice G is often
quite large, an algorithm requiring time that is polynomial in the size of G may not be
fast enough for applications. Moreover, the general feature map problem has an NP-complete
subgraph-isomorphism problem embedded in it. For these reasons, feature map algorithms
are usually designed to solve particular cases of the general problem. G, for example, is
often limited to a family of graphs that can be encoded in ©(polylog \X\) bits.

Instances of the feature map problem may, of course, have no solution. For example,
this is the case if no partition of the nodes of G simultaneously satisfies the equal-probability
and subgraph-isomorphism requirements. A general algorithm will recognize when a given
feature map problem has no solution, print fail, and halt. In practice, however, algorithms
are designed to compute some mapping that may not be a correct feature map but is none-
theless useful for the intended application.

In all learning problems, the choice of representation is an important consideration,
because by choosing the class of hypotheses or concepts that a learning algorithm may
output, one trades expressiveness (and, with it, accuracy) against the computational require-
ments for finding the best hypothesis in the class to describe the input information. When
learning feature maps, the same choice comes into play. If |G| is large, the number of
possible maps 0 is huge, and some feature maps may require more than polynomial time
just to write them down. As a practical matter, therefore, we have to limit the family of
mappings <t> that we consider as potential feature maps. Typically this means admitting
only classes of subsets of X that can be represented efficiently with some encoding. Doing
so, however, may mean failure to find a correct feature map, even if one exists.
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For example, let G be an undirected graph consisting of the four points (1, 1), (1, 2),
(2, 1), and (2,2), connected by edges so as to form a square in the Cartesian plane. Assume
p assigns these points the probabilities 1/2, 1/6, 1/6, and 1/6, respectively. Let M be the
(undirected) graph with two nodes yt and y2 joined by an edge. If we admit only axis-
parallel (orthogonal) subsets of the nodes of G, such as {(1, 1), (1, 2)} or {(1, 2), (2, 2)},
then if e < 1/6, no feature map can be found. A correct feature map exists, however, for
arbitrary e: map the node (1, 1) to y, and the remaining nodes to y2.

1.3. Summary of the results

The main result of this article is an algorithm (called the CDFI aglorithm) that inverts a
univariate cumulative probability distribution function in a particular way. We show how
this simple algorithm can be used to obtain feature maps efficiently over one-dimensional
vector spaces. Unlike previously published feature map algorithms, ours is simple enough
to allow formal analysis for correctness and computational complexity. Moreover, while
not a "neural-network" algorithm, the CDFI procedure is naturally parallelizable in a
straightforward way using a feasibly small number of processors. We then show how one
can apply this algorithm to obtain feature maps of Euclidean n-spaces (the ones most often
used in applications). Examples of maps obtained in this way are exhibited.

The results of this paper were originally obtained within the context of NASA applica-
tions research, while studying different approaches to the unsupervised learning problem.
"Learning" here refers to the fact that the process must examine a stream of data and for-
mulate a stochastic model reducing the informational complexity contained in that data.
The quality factors of an algorithm for this problem include:

• time efficiency: the algorithm should converge quickly.
• space efficiency: the algorithm should require only a small amount of storage. This is

especially important for applications intended for space flight.
• accuracy: the resulting regions should differ in probability from one another by no more

than some arbitrary specified error.
• confidence: the knowledge that, even though stochastic events may occasionally cause

the algorithm to fail to achieve the above goals, the likelihood of such a failure can be
made arbitrarily small.

• robustness: the ability to achieve these properties independently of the actual distribution
over the space.

Learning algorithms with these properties (sometimes called PAC algorithms) have been
a topic of active research in recent years, beginning with the work of Valiant (1984).

2. The CDFI algorithm

Let G = (X, EG) be an undirected graph with TV nodes X, labeled for convenience by the
integers (1, . . . , N}, and EG, the set of edges (/, i -I- 1), 1 < f ^ N - 1. As noted
earlier, AT is often quite large—too large to store and too large to enumerate. The input
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for our algorithm includes an infinite stream *,, x2, ... of integers in X drawn independently
and randomly according to some unknown multinomial probability distribution on X. The
probability that the integer x € X will be presented next is written p(x). The cumulative
probability function, P(x), gives the probability that the next integer will be x or less:
P(x) = Eys, p(y).

The target graph M is, likewise, an undirected graph of h nodes (where 1 < h < N),
joined by edges (i, i + 1) into a line. Forming a feature map, then, consists of partitioning
the set of integers from 1 to N into h regions of nearly equal probability. To state it equiva-
lently but in somewhat different terms, let mo, mlt ..., mh be integers such that m0 = 0,
mh = N, and m,_i < m, for 1 < i s h. Let Rt be the set of integers belonging to the
subinterval (m/_i, mj. We write p(/?,-) for the probability that the next input belongs to
R,. Then the m, are to be chosen so that

In practice, two circumstances may cause our algorithm to fail. One is plain bad luck:
if the algorithm bases its calculations on a highly unrepresentative sample of X, then (1)
may not be satisfied. But probability theory shows that "most" samples of sufficient size
are representative, and that we can quantify the likelihood of an improbable sample. By
these techniques the algorithm limits the probability of this type of failure on any random
run to an arbitrarily small fraction 6 > 0 specified by the user. The other circumstance
is poor spread: if a few symbols in X have very high probability, then it may be impossible
to satisfy (1). For example, it may happen that a single symbol occurs with probability
one. In such situations, some of the regions found by our algorithm may not satisfy (1).
As noted above, we consider poor spread as an anomalous problem instance and shall be
content to have our algorithm report failure in such cases.

The algorithm is given the two parameters: d and e, satisfying 0 < 6 < 1 and 0 < e < \lh.
d is an upper bound on the likelihood that one or more of the intervals constructed by the
algorithm is unacceptable (too big or small), and e is the maximum permitted variation
in the interval probabilities, as in equation 1.

For 0 < i ^ h, we define the sequence m(0), m(l), . . . , m(h) of h + I integers as follows:

(Note that m(0) = 0.) Intuitively, m(i) is the smallest integer in X for which the likelihood
is at least i/h that the next integer we observe will be m(i) or smaller. For example, m(h/2)
is the statistical median of X. The output of the CDFI Algorithm is a set of estimates m(i)
for the values of m(i). Given these values, we can take as intervals /?,- = (m(i - I), m(i)]
(for 1 :< i < h). If a is the maximum probability of any node in X, then there must be
some node whose cumulative probability is between i/h and (i/h) + a. Hence P(m(i)) ^
(i/h) + a. Since P(Rt) = P(m(/)) - P(«0' - 1)), we have
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Hence, unless some node has a probability larger than e, each of the regions /?, have prob-
ability within e of \lh. An interval R, is said to be unacceptable if |p(/?() — i/h\ > e, and
acceptable otherwise. Our objective is to see that all intervals Rt computed from the output
of the CDFI algorithm are acceptable, with probability at least 1 - 6. We shall find that
the following condition ensures that a solution is possible:

Mappability Condition: For no x € X is p(x) > e/2.

2.1. Estimating m(i)

Consider the problem of estimating m(i) (for 1 < i < h) such that condition (1) holds
with the specified confidence. If space efficiency were not a consideration, we could use
a very simple histogram procedure that obtains a sample xt, . .., xv from the distribution
and determines the smallest value m(i) in the sample such that a proportion of at least i/h
of the sample are no greater than m(i). The sample size v required to satisfy the accuracy
and confidence requirements simultaneously for each of the m(i) can be determined by
statistical techniques based on the uniform convergence of random variables to their expec-
tations (Pollard, 1984; Haussler, 1990). The time required to find the element m(i) is then
Q(v). However, the cost of storing all v sample points is prohibitive for many purposes.
We shall, therefore, seek an incremental algorithm, one that stores only a small, constant
number of sample points and whose space requirements are 0(log v) instead of 0(c). Such
an algorithm can be used even on a small microprocessor with limited memory, for a wide
range of values of the parameters h, e, and 6.

Also, instead of a loop that runs the procedure to estimate m(i) h times (one for each
value of i), we envision a procedure of which h copies can all execute in parallel and share
the same sample data. With h up to about 1000, today's SIMD architectures can readily
handle this amount of parallelism.

Now suppose we could ask an "oracle" for the cumulative probability P(x) of any x € X.
Then a straightforward search for the least x such that P(x) > i/h would find m(i) easily
and quickly. Unhappily, we do not know how to obtain such an oracle. Instead, we shall
assume, and later construct, an oracle1 (P with the following behavior.

The oracle <S>:

• Input to the oracle: values i, h such that 1 < i < h; a symbol x € X; and the parameters
e and d.

• Output from the oracle: indication of one of the following:
AI\ P(x) < i/h - e/2 with probability at least 1 - 6.
A2: P(x) > i/h with probability at least 1-6 .

Roughly, the oracle takes as inputs x, i, and h and in return tells us, with high probabil-
ity, whether P(x) is below i/h or not. Also, the oracle admits that it can make mistakes,
but it bounds by 8 the probability that its response is erroneous.
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Figure 1. The search algorithm.

Based on this oracle, we define the Search Algorithm (Figure 1) that determines m(i)
for one value of i. As noted above, the h executions (one for each 1 < i < h) can occur
in parallel, since they do not interact with one another except for the sharing of input exam-
ples *,-.

How good are the estimates m(i) resulting from this algorithm? The following useful
lemma answers this question.

Lemma 1. When Algorithm 1 halts, with probability at least 1 - (b/h) it emits a value
x such that

(i) P(x) =» i/h - 6/2, and
(ii) P(JC - 1) < i/h.

Proof. First assume that the oracle never makes a mistake. Note that at termination U is the
emitted value x, and L= U - 1. If L = 0 then condition (ii) clearly holds since P(L) = 0.
Otherwise, L is modified at least once by step 2.1. Each such change to L occurs after
the oracle indicates that P(L) < i/h; at termination, therefore, (ii) holds.

Similarly, condition (i) holds if* = Af (i.e., if Uis never changed during the algorithm).
Otherwise, U is last assigned in the algorithm (step 2.2) after the oracle has responded
with outcome A2. In either case, P(U) ^ i/h - e/2.

The oracle may make a mistake on any answer with probability b/h flog N~\ . Because
of the binary-search strategy, at most [log N~\ calls are made on the oracle. Thus the
probability of one or more erroneous responses from the oracle is no greater than b/h.
Hence with probability > 1 - (b/h) all oracle responses are correct, and the conditions
(i) and (ii) both hold. D

For each i the likelihood that the conditions of the lemma fail to hold is at most b/h.
Thus the probability is at most 5 that the conditions fail on one or more of the h executions
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of the algorithm. The confidence, therefore, is 1 - d, that all values of m(i) obtained from
Algorithm 1 satisfy Lemma 1. Note also that Lemma 1 is valid whether or not the Mappa-
bility Condition is true. When the Mappability Condition holds, we also have condition
(1) as a corollary.

Corollary 2. Suppose that the Mappability Condition holds, and that Algorithm 1 is exe-
cuted for each 1 < i < h. Then, with confidence 1 — 6 , for each of the regions /?,• =
(m(i - 1), m(0],

Proof. From the lemma, P(m(0) ^ i/h - e/2, and m(i) is the least x such that A2 holds.
Suppose that P(m(0) ^ i/h + e/2. Then either the Mappability Condition or condition
(ii) in the lemma must be violated. Thus |P(m(0) - i/h\ < e/2 for all 1 ^ i <, h (with
confidence 1-6), and the result follows directly. D

Consider briefly the time complexity of Algorithm 1. For each of the h values of i, there
are 0(log AO repetitions of the while loop, and each repetition requires an oracle call and
0(log N) tune to copy 0(log n) bits into L or U. Thus the time to compute m(i) on a serial
machine is ©((log AT)(log N + t)), where t is the cost of each oracle call. In practice we
have found that the time t for the oracle call dominates the total run time.

2.2. Constructing the oracle (P

Given an integer x, the oracle's task is to determine (within the specified confidence) whether
P(x) is < i/h - e/2 (response 4,) or > i/h (response A2). If i/h - e/2 < P(x) < i/h,
either response will do. The case where i = h is special and treated in the appendix; in
this section, we assume I £ i < h.

Consider a process that obtains a sample point xt from the distribution and responds
"Heads" if xt <i x and "Tails" otherwise. Then the probability of the "Heads" response
is P(;t), and the probability of the "Tails" response is 1 — P(x). In effect, this process
is a coin flip with a probability of P(x) of getting heads ("1"). Applying Hoeffding's ine-
quality (Vapnik, 1982), we can show that, by obtaining in sequence v = (8/e2)ln(2/6) sam-
ple points and counting the proportion of Heads (which we can do without storing more
than one point at a time), the process can estimate P(x) that is within ±e/4 of its true value,
with probability at least 1-6. Then if this proportion of Heads does not exceed i/h — e/4,
the oracle responds "Ai," and "A? otherwise. Specifics are in Figure 2.

It is hard to imagine a simpler oracle to implement. The sample size v required for each
point is polynomial in all the critical parameters; and the feet that this many sample points
must be obtained for each of the long N iterations of the Search Algorithm is mitigated
somewhat by the knowledge that all h processes can use the same data.

Still, we can do better. The problem with this implementation becomes apparent when
i/h is close to 1 and we are testing a point x for which P(x) happens to be close to zero.
To an observer it quickly becomes apparent that we are seeing nearly all O's when we expect
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Figure 2. Basic implementation of 9.

to see nearly all 1's. So we should be able to reach a decision with a much smaller sample
size than would be required if P(x) and ilh were closer.

What we require is a hypothesis test that adjusts its sample size dynamically, instead
of using a fixed sample size determined before the start of the experiment. Such a test
is called a sequential procedure, and the Sequential Probability Ratio Test (SPRT) due to
Wald (Wald, 1947; Mood & Graybill, 1963) is well suited to problems such as the one
faced by the oracle.

Details of the sequential version of the oracle are given in Figure 3. Basically, for each
new observation *,-, the quantity Z (representing the log-likelihood ratio of the sample) is
increased or decreased by a fixed amount based on whether xt < x. Then 2 is compared
with the boundary values, UPPER and LOWER. The oracle continues as long as Z remains
between the two boundary values. If it equals or surpasses UPPER, then "A? is the response;
if it is less than or equal to LOWER, then %" is the response. The boundary values have
been chosen so that the probability of an incorrect response is at most 6.

With a sequential procedure, the most interesting quantity is the expected sample size.
Unfortunately, for this problem it is difficult to say anything precise about the expected
sample size over the set of log N iterations, because this value depends critically upon the
particular distribution p. It has been shown that the SPRT is, in a strong sense, optimal

Figure 3. Sequential implementation of (P.
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in minimizing the expected sample size for all comparable tests with the same confidence
(Mood & Graybill, 1963).

Although the SPRT can in principle continue forever without returning a response, the
theory shows that this occurs with zero probability. Still, no fixed upper bound on the sample
size can be given. A reasonable approach to preventing "runaway" sampling is to combine
Algorithms 2 and 3, halting whenever one of the two versions of the oracle halts.

Comparing the worst-case complexities of the two versions, we can see that they both
require time 0(e~2 log(l/8)) and space of about 0(log N + log v) (the SPRT requires
slightly more space, on the order of a factor of log log h).

2,3. The complete algorithm

Our description of the CDFI Algorithm is nearly complete. With the above results as sub-
routines, the algorithm is as follows.

1. The program, given values of N, h, e and 6, creates h parallel processes, each executing
the Search Algorithm (Algorithm 1) for a different value of i, 1 < j < h.

2. Each of these processes calls on the "oracle" (P, which observes the input stream for
some number of observations until the termination conditions are satisfied. The oracle
assists the process in deciding whether P(JC) > i/h for various values of x during the
search.

3. The i'th process outputs m(i), its estimate for m(i).

The correctness of the CDFI algorithm is a consequence of Lemma 1, Corollary 2, and
the correctness of the oracle implementation. Given the complete set of values of m, we
take m(0) = 0 and change m(h) to N, so that the m values span the entire range of X.2
The h regions 7?, = (m(i — 1), m(i)] all satisfy equation 2 above, if the Mappability Con-
dition holds. The expected running time is polynomial in log N, h, log 1/6, and 1/e. Since
no more than one example at a time is stored, the storage requirements are quite small.

Theorem 3. If the Mappability Condition holds, Algorithm 2 partitions X into h regions,
each of probability \lh ± e, with confidence 1-6. With h CREW processors, it requires
(parallel) time of 0(log2 N + t~2 log N log 6~') and space of 0(/i(log N + log v)).

D

The map <A that sends each of the nodes in /?, to the f th node in the graph M gives us
a feature map for the graph G.

If the Mappability Condition does not hold, the regions /?, may not satisfy equation 2.
To detect whether it is satisfied, we may obtain a sample of points and determine the pro-
portion of those points in each region. This is, again, a problem of estimating the parameter
of a binomial distribution to within some given accuracy and confidence, and the same
techniques apply as in developing the oracle 6°. Of course, if m(f) = m(i + 1) for any
i, then we know immediately that the condition does not hold.
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3. Feature maps using the CDFI algorithm

The basic CDF-Inversion Algorithm maps a totally ordered sequence of nodes onto another
totally ordered graph. We now consider how it can be used to construct feature maps of
a ^-dimensional vector space X = Xt x ... x Xk, the situation treated in the literature.

We can view the tuple x = (*,, ..., xk) as an element of the set X of all possible
fc-tuples. After imposing an arbitrary linear order on X (e.g., lexicographic), we simply
run the one-dimensional algorithm and let the regions /?, define the feature map. For
vector-quantization applications, one chooses a vector in each region Rt to serve as a rep-
resentative for that region; in our experiments we have used the mean (center of mass)
vector in the region. Note that the algorithm enjoys all the properties of such maps listed
in Section 1.3.

Figure 4 shows the result of one run of this algorithm. Points in a triangular region of
a two-dimensional vector space were chosen with equal probability, and the one-dimensional
algorithm was used to produce a map with 35 points. The vectors were linearly ordered
left to right, low to high. In the diagram, circles indicate where the map points were placed
by the algorithm, and lines are used to show the topological ordering of the points (m(l) <
m(2) < .. .). The resulting line "snakes" through the region, much like the feature map
from Kohonen's algorithm under similar circumstances (Kohonen, 1984, p. 136). Note that
one map point fell outside the region, but this was consistent with the error tolerance of
the algorithm.3

Consider next how we might map a ^-dimensional vector space X = Xt X ... X Xk

onto a graph isomorphic to a two-dimensional grid of d, — d2 points. As noted above,
it is often necessary, for efficiency reasons, to limit the family of mappings that we con-
sider. In this very simple case, we shall look only for maps which partition X into orthogonal
boxes. Select two of the k dimensions of X. Ignoring all vector components but that of
the first chosen dimension, run the one-dimensional CDFI algorithm, replacing h in Algo-
rithm 1 by di, d by 6/2, and N by the size of the range of the component. The result is
a partition of X into a number of regions based only on the values of this first component.
Normally these regions will be d, in number unless a few values of the component occur
with exceptionally high probability (e/2). (In feet, the first component may be chosen on

Figure 4. Feature map (linear array) of a polygonal region.
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the basis of how well the Mappability Condition applies to projections of the space onto
that dimension.) The probability of each region is \ldl ± e, provided that the Mappability
Condition holds for the marginal probability distribution of the first component. For each
of these regions, we again run the CDFI algorithm to further section it into about d2 equi-
probable regions; for each of these dt executions, we specify d2 for h, d/(2dt) for 6, the
size of the range of the second component for N, and e(d2 — l)/d2 for e. Again, assuming
mappability, the probability of each of the resulting (sub-)regions will be

The likelihood that any of the regions deviate from this bound is at most 6/2 + di(8/2dt) = 6.
Figure 5 shows the result of one run mapping a two-dimensional vector space with a 30-

by-30 grid. Vectors were chosen uniformly from a polygonal subset of the space. Figure 5(a)

Figure 5. Two-dimensional map on a grid.



MAKING FEATURE MAPS 157

shows a 30-by-30 feature map; each point (*,, yt) has been connected by a line to its four
neighbors ((*,_,, y,-), (XM, y,), (*,-, y^i), and (*,, j,+1)) to show the topological ordering
of the points. In Figure S(b), the regions corresponding to the points are shown; one can
clearly see how the map points correspond to regions of comparable probability. The map
points shown at the grid intersections in the upper diagram are the center-of-mass points
of the corresponding region in the diagram below. (It is interesting to compare this diagram
with the corresponding one, Figure 6a, in Ritter & Schulten (1986).)

In general, the CDFI algorithm can be used to construct a particular family of feature
maps from a ̂ -dimensional vector space X to a k '-dimensional space M by imposing topo-
logical orderings on the two spaces and iterating the CDFI algorithm k' times. Different
maps can be obtained, for example, by mapping onto a Cartesian grid, a polar grid, or
any of a variety of other coordinate systems. This approach is useful only for small k' since
the cost of the algorithm increases exponentially with k' and the accuracy is likely to decline
with each iteration. It is interesting to note that the resulting feature map </>: X -» M is
order-preserving: if jc, ^ x2, then <t>(xt) ^ <t>(x£, where < denotes the respective partial
topological orderings of X and M. Hence order-invariant properties of X are preserved by
the mapping 4>.

4. About the implementation

The algorithm has been implemented in C and on a Sun 3/60 Workstation with an MC68881
floating-point accelerator. No concurrency or parallelism was introduced, but input data
points \i were shared among the h independent routines computing the m(i). The program
is compact: about 16 kbytes suffice for code and working storage when h < 1000. The
oracle <P was a sequential oracle similar to, but differing in significant details from, that
of Algorithm 3.

No heuristics were introduced in order to speed up the algorithm (although many good
heuristics suggested themselves). The only optimizations, aside from those provided auto-
matically by the compiler, came as a result of reordering some calculations and making
in-line calls to frequently used subroutines. These optimizations were made in about two
days' worth of experimentation, and as a result the speed of the program roughly doubled.

Another result of this work was the observation that the oracle consumes the largest pro-
portion of the computation time (at times, over 70%). Note that the use of parallel compu-
tation would not remove this bottleneck, since it is part of all h parallel processes. Evidently
the stringent accuracy and confidence conditions entail rather large sample sizes.

To cite a typical run time for this program, we programmed a uniform distribution over
N = 214 symbols, with e = 0.05, h = 10 and 5 = 0.2. The total sample size v used by
the algorithm for this problem was about 150,000 points, with a fluctuation of about 16%
from run to run. The time for this run to complete was about 4.5 minutes.

Using our implementation we were able to test the dependence of the sample size v re-
quired by the algorithm as a function of the size N of the vector space and the accuracy
e of the result. Some typical results are shown in Figure 6. As expected, we found that
v grew hi proportion to log N, except for very small N when fixed computational overhead
was a major portion of the run time. We were more interested, however, in the dependence
of v upon 1/e. The results were convincing that v grows as about 1/e2 (with N and 6 fixed).
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Figure 6. Measured sample sizes m versus N and 1/e.

5. Conclusions

We have presented a simple algorithm that divides a finite set into a fixed number of ap-
proximately equiprobable regions, with statistical guarantees about the accuracy and confi-
dence of the result. We have then applied the algorithm to obtain feature maps of vector
spaces, and determined clearly the properties of those maps. Our implementation has shown
that the algorithm is feasibly efficient, and simultaneously has identified the main bottleneck
as the oracle (P.

A brief comparison with other feature-map algorithms is useful. As noted, our algorithm
comes with rigorous definitions of the maps it produces and their accuracy. Kohonen's
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algorithm appears to be fester, although direct comparison is difficult since crucial parameters
controlling the convergence of the algorithm are left unspecified in the literature and in
practice are chosen heuristically. In both algorithms, processors perform only local compu-
tations, and computations are highly storage efficient. For multidimensional maps our algo-
rithm runs in stages (one for each map coordinate), whereas the network algorithms have
the advantage of computing the entire map in one stage. Finally if the algorithms are pre-
maturely terminated prior to convergence, the usefulness of the intermediate state of the
programs is different. Kohonen's procedure, for example, produces a map, but one whose
topology and distribution will be less correct, the more prematurely the algorithm is inter-
rupted; the CDFI algorithm provides a set of non-disjoint regions (each defined by the
U and L values in Algorithm 1) whose probabilities can be estimated and whose topological
relationship is correct.

It is likely that better feature map algorithms can be developed than the ones here, based
on the CDFI procedure. Instead of imposing an artificial total ordering on the input graph,
or mapping the space in stages by component, we suspect it is possible to map the entire
space in a single stage like Kohonen's algorithm, while satisfying the statistical accuracy
and confidence requirements.

A fundamental assumption of our feature-map algorithm—indeed, of all existing feature-
map algorithms—is that the individual observations of vectors in X are statistically indepen-
dent. In practice this is seldom the case; nevertheless the results of the algorithm can be
useful provided the time scale of statistical dependencies is small compared to the time
between observations. Extending this and other feature-map algorithms to handle time series
is an interesting and potentially useful problem. Recently Paredis (1989) has suggested one
approach.
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Notes

Portions of this work were presented at the Fourth International Symposium on Methodologies for Intelligent
Systems, October, 1989 and at the Fujitsu HAS-SIS Workshop on Computational Learning Theory, November, 1989.
1. In this article an oracle is merely a subroutine whose existence we assume for now and for which we later

provide an algorithm.
2. If the regions R, are not required to span the entire set X, then m(h) can be left unchanged. Otherwise the

process that computes m(h) (given in the Appendix) can be eliminated and m(h) set directly to N.
3. Other feature map algorithms also may place points in zero-probability regions, a fact that has not been

acknowledged.
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Appendix: Determining m(h)

Estimating m(i) when i = h is a special case for both the oracles given in Section 2. The
hypothesis test is to decide whether P(JC) ^ 1 - e/2 for a given value of*. If it is, then the
likelihood of observing no values > x in a sample of size v is (1 - e/2)*. When v = (2/e)
log d~l, this value is at most 5. Thus a simple oracle similar to the one in Figure 2 handles
the case i = h as follows:

Observe v = (2/e) log d~l sample points from the distribution. If all of them are ^ x,
reply "42." Else reply "4,."

A sequential version of this algorithm (complementing the oracle in Figure 3) does the
obvious thing:

Stop obtaining sample points when either (a) a point > x is observed, or (2) the sample
size reaches v', where v' is the least integer such that (1 - e/2)"' ^ & In the former
case, reply %," and in the latter, "A2."

This so-called curtailed-sampling procedure has been analyzed by Anderson and Friedman
(1962), where they prove the following strong optimality property (expressed using our
terminology): any oracle algorithm that always replies "A? in case P(x) = 1 and replies
"A? with probability at most 6 when P(x) > 1 - e/2 requires a sample size at least as
great as v1


