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Abstract. This paper formalizes a new learning-from-examples problem: identifying a correct concept definition
from positive examples such that the concept is some specialization of a target concept defined by a domain theory.
It describes an empirical study that evaluates three methods for solving this problem: explanation-based generalization
(EBG), multiple example explanation-based generalization (mEBG), and a new method, induction over explana-
tions (IOE). The study demonstrates that the two existing methods (EBG and mEBG) exhibit two shortcomings:
(a) they rarely identify the correct definition, and (b) they are brittle in that their success depends greatly on
the choice of encoding of the domain theory rules. The study demonstrates that the new method, IOE, does not
exhibit these shortcomings. This method applies the domain theory to construct explanations from multiple train-
ing examples as in mEBG, but forms the concept definition by employing a similarity-based generalization policy
over the explanations. IOE has the advantage that an explicit domain theory can be exploited to aid the learning
process, the dependence on the initial encoding of the domain theory is significantly reduced, and the correct
concepts can be learned from few examples. The study evaluates the methods in the context of an implemented
system, called Wyl2, which learns a variety of concepts in chess including "skewer" and "knight-fork."
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1. Introduction

Explanation-based generalization (EBG) is usually presented as a method for improving
the performance of a problem-solving system without introducing new knowledge into the
system, that is, without performing knowledge-level learning [Dietterich, 1986]. The prob-
lem solver begins with an inefficient, but correct, domain theory (DT) that defines a target
concept (TC). The learning process consists of repeatedly accepting a training example
(E), applying the domain theory to prove that E is an instance of the target concept, and
then extracting the weakest preconditions of that proof to form an efficient chunk that pro-
vides an easy-to-evaluate sufficient condition for TC. This chunk can be used during future
problem solving to determine quickly that E and examples similar to E are instances of
TC [Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986]. According to this
perspective, EBG is related to other methods of knowledge compilation such as partial
evaluation [Prieditis, 1988; Van Harmelen & Bundy, 1988] and test incorporation [Bennett
& Dietterich, 1986], because it is simply converting the target concept into operational
(i.e., efficient) form.
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However, there is a way in which the same mechanism—computing weakest precondi-
tions—can be applied to acquire new knowledge. The method works as follows. Suppose
that the training example E, in addition to being an instance of TC, is also an instance of
another, more specific concept C. As before, the domain theory is applied to demonstrate
that E is an instance of TC, and the weakest preconditions (call them WP) are extracted
from the proof. But instead of just viewing WP as a sufficient condition for TC, we can
also view WP as necessary and sufficient conditions for C. In short,

By making this assertion, the learning program is making an inductive leap and thus per-
forming knowledge-level learning.

When viewed in this way, the purpose of explanation-based learning is not to translate
TC into more efficient form, but instead to identify the correct definition of C. The target
concept and the domain theory are acting in the role of a semantic bias by providing a
good vocabulary in which to define C (i.e., the language in which the domain theory is
expressed) and by dictating how the training example should be generalized (i.e., by com-
puting the weakest preconditions of the proof).

A review of the literature reveals that many applications of EBG are best viewed from
this second perspective. For example, consider Pazzani's OCCAM system [1988], in which
the domain theory defines several target concepts including the concept of coercion (i.e.,
achieving a goal by making a threat). In one of Pazzani's examples, the system is given
a scenario in which one country threatens to stop selling an essential product to another
country. This scenario is simultaneously an example of coercion and of the more specific
concept economic sanction. OCCAM applies its domain theory for coercion to obtain the
weakest preconditions for the scenario to succeed and then assumes that these weakest
preconditions define the economic sanction plan. This assumption is clearly an inductive
leap, since the system does not know that the weakest preconditions are a correct defini-
tion of economic sanction.

Other examples of this inductive application of weakest preconditions can be found in
systems that learn control knowledge, such as LEX2 [Mitchell, 1983] and Prodigy [Min-
ton, 1988]. The problem solver in these systems consults a set of preference rules to decide
which operator to apply to solve each problem or subproblem. The domain theory defines
the target concept "operator succeeds" by stating that a successful operator is one that solves
the problem or is the first step in a sequence of operators that solves the problem.1 Train-
ing examples are constructed by applying a heuristic search to find a successful sequence
of operators, and the first operator in this sequence, Op1, is an instance of the concept
"operator succeeds." However, the first operator in the sequence is also assumed to be
an instance of the concept "best operator to apply."

Using the domain theory for "operator succeeds," EBG constructs the weakest precon-
ditions WP under which Op1 will solve the given problem. Based on this, a new preference
rule is created that states

If the current problem satisfies WP
Then the best operator to apply is Op1.
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The creation and application of this preference rule constitutes an inductive leap. To see
this, consider how LEX2 handles the following operator:

When LEX2 solves the problem / 5x2dx, it derives the weakest preconditions WP : f cxrdx
(r 7* -1) for OP3 to be a successful operator. It then constructs the preference rule

If the current problem matches / afdx (r ^ -1)
Then prefer OP3.

This preference rule recommends the wrong action when LEX2 attempts to solve the prob-
lem / Qx4dx, because the zero should instead be multiplied out to obtain / Odx. This error
reveals that LEX2 has taken an inductive leap when it constructed the preference rule.2

Table 1 formalizes this learning problem, which we call the problem of theory-based
concept specialization (TBCS), because it involves the inductive specialization of a con-
cept defined by a domain theory. We believe this learning problem is important because
it provides a strategy for incorporating domain knowledge into the inductive learning pro-
cess. Hence, it addresses the important open problem in machine learning of how to ex-
ploit domain knowledge to guide inductive learning.

Table 1. The problem of theory-based concept specialization (TBCS).

Given

• A domain theory that defines a target concept,
TC.

• A set of positive training examples of a concept
C, where C is a specialization of TC.

Find

• A correct definition of C.

The reader may have noticed that Table 1 does not mention the operationality criterion,
which plays a major role in the non-inductive applications of explanation-based generaliza-
tion. This omission reflects the fact that, in the TBCS problem, the focus is not on improv-
ing problem-solving efficiency, but is on identifying the correct definition for concept C.
In most cases, once the correct definition is identified, a knowledge compilation step will
be needed to convert it into a form that can be efficiently evaluated.

The purpose of this paper is to analyze and compare three related methods for solving
this learning problem: explanation-based generalization (EBG), multiple-example
explanation-based generalization (mEBG) [Kedar-Cabelli, 1985; Hirsh, 1988; Cohen, 1988;
Pazzani, 1988], and induction over explanations (IOE), which is introduced later. The paper
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demonstrates that IOE eliminates two shortcomings of EBG and mEBG. The first limita-
tion is that the semantic bias implemented by EBG and mEBG is too strong and often causes
them to produce incorrect concept definitions. The second shortcoming is that EBG and
mEBG are quite brittle—their success depends greatly on the choice of encoding of the
domain theory rules. This makes it difficult to design a domain theory that produces cor-
rect specializations.

In this paper, we present empirical evidence to document these shortcomings, but they
have been noted by several other researchers. For example, Laird [1986] has found that
the encoding of the eight-puzzle problem space in SOAR critically influences the quality
and generality of the chunks that are learned. Pazzani (personal communication) found
it necessary to augment OCCAM'S event schemas with additional features so that the learned
definition of "economic sanction" included the constraint that the threatened country would
pay more for the sanctioned product if purchased elsewhere. Gupta [1988] also discusses
these shortcomings.

To overcome these problems, IOE employs a weaker semantic bias, which requires IOE
to use more training examples than either EBG (which only uses a single example) or mEBG
(which generally uses very few). However, we present experimental evidence and theoretical
analysis to demonstrate that the number of training examples is still acceptably small.

We also present experimental evidence supporting the claim that IOE requires less do-
main theory engineering than either EBG or mEBG. This results from the fact that lOE's
weaker semantic bias makes it less sensitive to the form of the domain theory and more
sensitive to the training examples that are presented.

This paper is organized as follows. Section 2 describes the EBG, mEBG, and IOE methods
and illustrates them learning definitions of cups. The following section introduces three
criteria by which to judge the effectiveness of a method and describes an empirical study
in the domain of chess that evaluates these methods according to our criteria. Section 4
analyzes the results, and Section 5 concludes with a summary of the major results and
open problems for future research.

2. Explanation-Based Learning Methods

In this section we describe three methods for solving the problem of theory-based concept
specialization: explanation-based generalization (EBG), multiple-example explanation-based
generalization (mEBG), and induction over explanations (IOE). Each of these methods
requires a domain theory, a target concept, and one or more training examples. To illustrate
the methods, we will use the simple domain theory shown in Table 2 and the three training
examples shown in Figure 1.3

The domain theory defines the target concept c u p ( O b j e c t ) as any object that holds
liquid, is stable, is liftable, and can be used for drinking. To hold liquid, the sides and
bottom of the object must be made of non-porous materials. To be stable, the bottom must
be flat. To be liftable, the object must be made of lightweight materials and be graspable.
There are two different ways to be graspable: (a) the object may have a small, cylindrical
shape and be made from an insulating material, or (b) the object may have a handle.
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Table 2. The cup domain theory illustrating the Prolog code that defines the concept cup. Notice that each rule
is given a unique name, which is used to denote the rule in explanation trees.

Rule C
cup(Object) :-

hold-liquid(Object) ,
stable(Object),
liftable(Object),
drinkfrom(Object) .

Rule H1
hold_liquid(0bject) :-

sides (Ob ject.S) ,
made_from(S,Hs) ,
non_porous (Ms) ,
bottom(Object,B) ,
made_from(B,Mb) ,
non_porous (Mb) .

non_porous (plastic) .
non_porous (china) .
non.porous (metal) .
non_porous (styrofoam) .

Rule Df
drinkfrom(Object) :-

has(Object,0bl).
concavity (Ob1) ,
upward.pointing(Obl) .

Rule St
stable (Object) :-

bottom (Ob ject.B),
flat(B).

Rule Li
liftable(Object):-

light-weight (Object) ,
graspable(Object) .

Rule Lw
light-weight(Object) :-

small (Object) ,
sides (Object, S) ,
made_from(S,Ms) ,
light _material (Ms) ,
bottom(Object,B),
made_from(B,Mb) ,
light_material (Mb) .

light_material (plastic) .
light_material (china) .
light_material (metal) .
light_material (styrofoam) .

Rule Grl
graspable(Object) :-

small (Object) ,
sides(Object.S) ,
cylindrical (S) ,
made_from(S,M),
insulating_material (M) .

insulating_material (styrofoam) .
insulating_material(plastic) .

Rule Gr2
graspable (Object) :-

small(Object),
has (Object, 01),
handle(0l) .
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Figure 1. Graphical descriptions (a) of three positive examples of the cup concept, along with symbolic descrip-
tions (b) and explanation trees (c) for each example.

The three examples shown in Figure l(a) are each positive examples of the cup concept.
Cupl is a plastic cup without any handles that is graspable because plastic is an insulating
material. The other examples—cup2 and cup3—both have handles. Their main difference
is that cup2 has plastic sides and a metal bottom, whereas cup3 is made entirely of china.

Below each cup, Figure l(b) shows the symbolic description that is actually processed
by the learning methods. At the bottom, Figure l(c) presents the explanation tree that is
constructed for each cup. To make these trees understandable, we have given each rule
in the domain theory a two-letter name, which is used both in the explanation trees and
in the domain theory.

2.1. Explanation-Based Generalization

Explanation-based generalization [Mitchell, et al., 1986; DeJong & Mooney, 1986] forms
its concept definition from only one example.4 It proceeds as follows:

Step 1. Construct an explanation tree (proof tree) that explains why the example is an
instance of the target concept.
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Step 2. Compute the weakest preconditions WP for which the same explanation holds.

For simple explanation trees of the type shown in Figure 1, WP is a conjunction of the
literals that appear as the leaves of the explanation tree. However, the terms that appear
as the arguments in those literals must be carefully selected so that they are as general
as possible and yet still guarantee that the consequent of each rule appearing in the tree
will unify with the antecedent of the appropriate rules above it in the tree. This can be
accomplished by reconstructing the explanation tree from the rules in the domain theory,
this time performing only those unifications needed to rebuild the tree itself and omitting
any unifications with the training example. There are many refinements of this procedure.
For example, in systems where unifications can be undone, it suffices to undo all unifica-
tions between the domain theory and the training example. See Mooney and Bennett [1986]
and Kedar-Cabelli and McCarty [1987] for more details.

To see how this method works, consider applying EBG to Cupl from Figure 1. Like
all cups, this one holds liquids, is stable, is lightweight, and can be used for drinking.
The interesting aspect of this particular cup is that it lacks a handle. However, it is still
graspable, because it is small, cylindrical, and the sides are made of an insulating material.
It is these general properties that are identified by EBG as a result of analyzing the ex-
planation tree. In this case, it discovers the weakest preconditions

sides(Object,S),cyIi ndr i caI(S),made_from(S.Ms),
non_porous(Ms), Ii ght_mater ial(Ms),insulating_mater i a I(Ms),
bottom(0bject,B),fI at(B),made_from(B.Mb),non_porous(Mb),
light_mater ial(Mb),smaI l(Object),has(Object,0b),
concavity(Ob),upwardpo i nt i ng(Ob).

In the TBCS problem, these weakest preconditions form the definition for a new concept,
C. This concept C is clearly a specialization of the target concept (cup), because it describes
only cups with cylindrical sides made of light, insulating material.

If different training examples are given to EBG, different weakest preconditions may
be computed. To see this, consider applying EBG to cup2. This cup has plastic sides, a
metal bottom, and a handle. Consequently, a different rule for graspab I e is applied from
the domain theory, and EBG forms a concept definition that covers only cups that have
handles and removes the restriction that the material must be insulating.

In these two cases, EBG forms different concept descriptions because each example re-
quires different domain theory rules in its explanation. To prove that the object is graspable,
we use rule Grl when learning from cupl and rule Gr2 when learning from cup2. Because
the domain theory rules appearing in the explanation determine the weakest preconditions
computed by EBG, these two different explanations yield two different concept definitions.

This observation makes it possible to characterize the space of all concept definitions
that EBG can discover. Let us say that an explanation tree is complete if it provides a proof
connecting the target concept to the predicates that are provided in the training examples.
For every distinct complete explanation tree that one can construct from the domain theory,
EBG will construct a different concept definition. In our illustrative cup domain theory,
there are only two distinct complete explanation trees, so EBG can only construct two distinct
concept definitions.
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Utgoff [1986] and Haussler [1988] define the strength of an inductive bias in terms of
the size of the space of hypotheses permitted by the bias. In the TBCS problem, the space
of hypotheses permitted by the semantic bias is precisely the space of definitions that EBG
can construct. Therefore, when we apply EBG to solve the TBCS problem, we are employing
a very strong bias indeed!

2.2. Multiple Explanation-Based Generalization

The second method that we shall consider is what we call multiple-example explanation-
based generalization (mEBG). The method differs from EBG in that the final concept defini-
tion is identified from multiple examples, rather than from one example. Variations of this
method have been developed independently by Kedar-Cabelli [1985], Hirsh [1988], Paz-
zani [1988], and Cohen [1988]. The method, given two or more examples of the target
concept, proceeds as follows:

Step 1. For each example, construct an explanation tree that proves that the example is
an instance of the target concept.

Step 2. Compare these trees to find the largest subtree that is shared by all of the examples.5

Step 3. Finally, apply the EBG generalization technique to this maximal common sub-
tree to generalize the terms appearing in the tree and extract the weakest preconditions
such that the tree remains a valid proof.

To illustrate the method, consider giving mEBG the first two training examples of cup:
cupl and cup2. Figure 2 shows the (schematic) explanation trees for each example and
the maximal common explanation tree computed in Step 2. Notice that because cupl lacks
a handle, its explanation must involve rule Grl (insulated, small cylinder), whereas cup2
has a handle, so its explanation must involve rule Gr2 (small with handle). Because the
rules differ, neither is included in the common explanation tree. As a consequence, Step
3 of the mEBG procedure produces the following weakest precondition:

graspab le(Objec t ) ,s ides(Object,S),made_f rom(S,Ms) ,
non_porous(Ms) , I i ght_mater i a I ( M s ) ,

b o t t o m ( O b j e c t , B ) , f I a t (B) ,made_f rom(B,Mb) ,non_porous(Mb) ,
I ight_mater i a I ( M b ) , s m a I I ( O b j e c t ) , h a s ( O b j e c t , O b ) ,

concav i t y (Ob) ,upwardpo i nt i ng(Ob).

The only difference between this definition and the one produced by EBG from cupl is
that the conditions cy l i nd r i ca l (S) and i nsu l at i ng_mater i a I (Ms) have been deleted
and replaced by the condition g r a s p a b l e ( O b j e c t ) . This change reflects the fact that the
new definition is uncommitted about the way the graspable goal is satisfied. Whenever
this definition is applied to new examples, it will be necessary to consult rules Grl and
Gr2 to determine whether the g r a s p a b l e ( O b j e c t ) condition is satisfied.
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Figure 2. Explanation tree (c) that results from applying mEBG to the explanation tree for cup1 (a) and the ex-
planation tree for cup2 (b),

The space of concept definitions that mEBG can produce strictly includes the space of
definitions computed by EBG. Recall that EBG will produce a different concept definition
for each distinct complete explanation tree that can be constructed in the domain theory.
The mEBG method expands this set also by permitting incomplete explanation trees. It
will construct a different concept definition for each distinct incomplete explanation tree.

Incomplete explanation trees need not relate the target concept to the predicates given
in the training examples. Instead, the leaves of an incomplete tree can terminate at any
point where there is a disjunction in the domain theory. The reason is that, by presenting
one training example for each branch of the disjunction, one can force the mEBG method
to prune all rules at or below the disjunction when it constructs the maximal common sub-
tree. In the cup domain theory, there is only one disjunction (graspab l e), so the space
of definitions that can be constructed by mEBG from this domain theory includes only
three definitions: the two constructed by EBG and the third definition shown above.

2.3. Induction Over Explanations

Like mEBG, induction over explanations (IOE) is also a method for learning from multi-
ple examples. The key difference is that IOE employs a different strategy for generalizing
the maximal common explanation tree to obtain the concept definition. To simplify the
notation, we describe IOE applied to only two training examples, TI1 and TI2:

Step 1. Apply the mEBG method to the two training examples TI1 and TI2, producing
a concept definition CmEBC. Retain the original explanation trees for use in step 2.

Step 2. Match CmEBG to the saved proof tree for each training example TIi to produce
a substitution, 0,-, where 0i consists of a set of pairs Vj = cj, each vj is a variable in CmEBG,
and each Cj is a constant or a term from TIi or from the domain theory.

Step 3. Form 8, a new substitution for CmEBG as follows:

1. 6 <- 0.
2. For each variable, Vj, in CmEBG put vj = cj in 0, where Cj is computed as follows:

(a) Lookup Vj = c1j € 0,, and vy = c2j € 02.
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(b) Cj *- gen(clj, c2j), where gen(cl, c2) is defined: If cl = c2 then gen(c\, c2) = c\.
Otherwise, if cl = /(t1,1 t1,2, • • •, t1 , k) and c2 = f(?2>1, f2 ,2> • • •. ?2,*) (i- e-> terms

with the same initial function symbol/), then gen(c\, c2) =f(gen(t\t\, t2,\), gen(t\^
f2 > 2) , . • -, gen(tltk, r2,t)).
Otherwise, gen(c1, c2) = v, where v is selected as follows. If there has never been
a previous call to gen with these same arguments cl and c2, then v is a new variable
that does not appear anywhere in 01, 02 or 0. The information that gen(c1, c2) = v
is stored in a table for future use. If there has been a previous call to gen with the
same arguments, then Table 3 is consulted, and the previously generated variable
is returned as v.

Step 4. Compute and return the CmEBG0, the substitution applied to the mEBG definition.

In this procedure, IOE begins by computing the mEBG concept definition. However,
it then specializes this definition by introducing additional constraints on the variables ap-
pearing in the definition, using the substitution 0.

Two kinds of constraints are introduced in this fashion. The first type, a constant con-
straint, is introduced whenever a given variable v appearing in the mEBG definition is
bound to the same constant c in every training example. When this occurs, IOE binds v
to c in the concept description.

To illustrate this, suppose one applies IOE to the two training examples cupl and cup2
in Figure 1. In the mEBG definition computed by Step 1, the literal madef rom(S .Ms)
appears, where Ms is the material making up the sides of the cup. Because both cupl and
cup2 have plastic sides, IOE will introduce the constraint Ms = p l ast i c, so the final con-
cept description will require that the cup sides be plastic.

The second kind of constraint introduced by IOE is an equality constraint that forces
two or more variables appearing in the mEBG definition to be equal to identical terms.
An equality constraint is introduced whenever IOE finds two (or more) different variables
V1 and v2 in the mEBG definition that are bound to the same term ci in each training ex-
ample TIi. Notice that the term ci can differ from one training example to the next, but
within each example TIi, v1 and v2 are bound to the same value ci.

To illustrate this, suppose one applies IOE to training examples cupl and cup3. Recall
that both the bottom and the sides of cupl are made of plastic. Similarly, the bottom and
the sides of cup3 are made of china. The mEBG definition computed in Step 1 includes
the two literals madef rom(S, Ms) and madef rom(B , M b ) , where Ms is the side material
and Mb is the bottom material. In the first training example, Ms and Mb are both bound
to p l ast i c, whereas in the second training example, Ms and Mb are both bound to ch i na.
Therefore, IOE introduces a new variable M and changes the final definition so that it in-
cludes the two literals madef rom(S, M) and madef r o m ( B , M ) . This definition describes
homogeneous cups, that is, cups made entirely of a single material.

Both kinds of constraints are computed by the gen procedure during step 3.2 of the IOE
algorithm, as Table 3 shows in more detail. The first column of the table lists the six variables
that appear in CmEBG. The second, third, and fourth columns show the substitutions 0,- for
each of the three training examples, cupl, cup2, and cup3. The final two columns show
the results of applying IOE to cupl and cup2 and to cupl and cup3.
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Table 3. The results of applying IOE to the examples from Figure 1.

Variable

V
Object

S
Ms
B

Mb
Ob1

Training Examples
cupl
cupl
sidel
plastic
bottom1
plastic
conl

cup 2
cup2
side2
plastic
bottom2
metal
con2

cup3
cup3
side3
china
bottom3
china
con3

Learning output
IOE(cupl ,cup2)
Obj
Side
plastic
Bottom
M
Con

IOE(cupl ,cup3)
Obj
Side
M
Bottom
M
Con

Consider the last column of the table, which shows the output of IOE(cupl, cup3). Dur-
ing Step 3, the gen procedure will be applied one row at a time. First, IOE computes
gen(cupl, cup3), and, because the two constants differ, it creates a new variable, O b j ,
and adds the pair Ob j ect = Ob j to the final substitution 9. The second call to gen is with
arguments s i del and s i de3, leading to the new variable S i de and the addition of S =
S i de to 6. The third call to gen introduces an equality constraint based on the arguments
p l a s t i c and c h i n a . As before, a new variable, M, is created, and the pair Ms = M is add-
ed to 6. As always, the information gen(p las t i c , ch i na) = M is stored away for future
reference. When IOE reaches the fifth line of Table 3 (the line for Mb), it consults the stored
information and adds the pair Mb = M to 6, thus imposing the equality constraint.

The layout of Table 3 reveals an important way of thinking about the IOE procedure.
One can think of each variable appearing in CmEBG (the left-most column) as a simple
feature, and one can view each substitution 0, as a feature vector. According to this
perspective, the generalization procedure of Step 3 is the well-known algorithm for com-
puting the maximally specific conjunctive generalization of a collection of feature vectors
by turning constants to variables. The only subtlety is the technique for introducing equal-
ity constraints. We call this technique the "no-coincidences" bias, because it assumes that
if the pair ( p l a s t i c , c h i n a ) appears in more than one row in the table, this must in-
dicate an equality constraint rather than just a coincidence.6

Given that IOE is applying such a simple inductive generalization procedure, what is
the source the method's power? The answer is that, unlike traditional inductive learning
techniques, IOE does not attempt to find patterns in the training examples as they are origin-
ally presented to the learning system. Instead, it applies the domain theory and the target
concept to identify a useful set of features for inductive generalization. In IOE, the substitu-
tions 0, re-express the training examples in terms of these useful features. This technique
of using domain knowledge to transform the set of features has proved effective in OCCAM
[Pazzani, 1988], where causal relationships were learned more reliably from fewer examples,
and in the constructive induction system MIRO [Drastal, Raatz & Czako, 1989], where
the application of weak domain knowledge was shown to reduce errors and reduce noise
sensitivity. In later sections of the paper, we show that it is this ability to reformulate the
training examples in terms of relevant features, rather than the particular generalization
strategies employed, that underlies the power of all explanation-based learning methods.

What is the space of concept definitions that can be constructed by IOE? For every possible
definition that mEBG can construct, IOE can generate any legal substitution, where the
substitution constrains the definition through a combination of constant constraints and
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equality constraints. In the cup domain, this use of constraints lets IOE generate 58 dif-
ferent definitions of cups, including the two in Table 3: cups that have plastic sides and
cups that are homogeneous. Among these 58 definitions are the three definitions that mEBG
discovers. These are produced when the training examples have different combinations of
values in every row of the table so that gen produces a distinct variable for each row.

To summarize, we illustrate the three spaces in Figure 3. Note that all three methods
are able to learn only concepts C that are specializations of the initial target concept TC.
The EBG approach builds the smallest space of specializations, each corresponding to a
distinct complete explanation tree. The mEBG method offers a larger space of specializa-
tions that includes the space of EBG, because it considers incomplete explanation trees
as well. IOE offers a much larger space, because it is able to specialize each mEBG defini-
tion in many different ways, depending on the configuration of constants appearing in the
training examples.

Figure 3. Concept spaces of EBG, mEBG, and IOE.

3. A Comparative Study of the Learning Methods

In this section we describe an empirical evaluation of the three methods—EBG, mEBG,
and IOE—applied to the problem of theory-based concept specialization (TBCS). The sec-
tion begins by defining three evaluation criteria, then follows by outlining the experiments
and describing the test domain. It concludes by discussing the results of the experiments.

3.1. Evaluation Criteria

Because the TBCS problem involves learning from examples, it is appropriate to consider
the customary criteria for such learning methods: correctness and learning efficiency.

There are two distinct aspects of correctness. First, we say that an individual concept
C is learned correctly (from training examples) if the definition produced by the learning
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program classifies all unseen examples the same way that the teacher classifies them (accord-
ing to C). Second, because we are interested in general learning algorithms, we say that
an algorithm scores well according to the correctness criterion only if it can learn a range
of concepts, C1,..., CK, correctly. Notice that we are not interested in algorithms that
produce approximately correct definitions.

There are also two distinct aspects to learning efficiency. We say that an algorithm has
good learning efficiency if it requires a small number of training examples and if it uses
few computational resources.

In addition to these two criteria, we will also consider how easy it is to apply the learn-
ing method. To do this, we borrow from software engineering the idea of the life cycle
of a program. In particular, we will distinguish between the design phase of a learning
system and the learning phase of the system. During the design phase of a TBCS system,
one chooses and implements a learning method, selects a vocabulary and target concept
TC, and writes a domain theory for TC in terms of this vocabulary. During the learning
phase, one presents the system with a collection of training examples for some specialized
concept Ci, and the system constructs a definition for Ci.

This simple model of the life cycle suggests an additional criterion for evaluating learn-
ing methods: ease of engineering (during the design phase). A method is easy to engineer
if (a) the design phase can be performed easily for each new domain and (b) the learning
phase can be performed for each concept Ci without having to return to the design phase.
In short, we would like to be able to design the vocabulary, target concept, and domain
theory just once, and then apply the learning system to learn several different concepts.

Another way of defining ease of engineering is to say that a method is easy to engineer
if it is not very sensitive to the vocabulary or to the exact form of the domain theory. If
a method has this property, then the design phase will be simplified, because any reasonable
vocabulary and domain theory will succeed. Furthermore, the method will be able to learn
several concepts without the need to be redesigned. We summarize our criteria in Table 4.

Table 4. The three criteria for evaluating methods for learning from examples.

Ease of Engineering (design phase): The learning system
should be easy to construct. It should not require the care-
ful design of the domain theory or the careful choice of the
target concept in order to be effective during the learning
phase.

Learning Efficiency (learning phase): The learning system
should require a small number examples and few computa-
tional resources during learning.

Correctness (learning phase): The learning system should
construct correct definitions for several unknown concepts
C 1 , . . . ,C K .
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3.2. Experimental Design

To evaluate the three learning methods on each of these criteria, we designed a series of
experiments. To test correctness, we chose a domain in which there were several closely
related concepts. Using a fixed domain theory, we attempted to get each learning method
to learn every one of these concepts. Methods that learned each concept correctly scored
well on the correctness criterion. To test learning efficiency, we measured the number of
training examples required by each method to attain a given level of correctness. This com-
parison was only possible with concepts that were correctly learned by all three methods.
Finally, to test ease of engineering, we performed all of the above experiments using two
different domain theories: one developed by the first author [Flann] and one developed
independently by Russell [1985]. If the results obtained from a method vary significantly
depending on which domain theory is used, then the method is judged to be difficult to
engineer. The remainder of this section describes the test domain, the two domain theories,
and our implementation of the three methods.

3.2.7. The Test Domain: Chess. The domain of chess was selected because it provides
an excellent test bed for comparing different solutions to the TBCS problem. Chess in-
volves many interesting concept definitions that are taught in introductory chess books,
and it has a small, complete domain theory. Figure 4 illustrates four concepts of interest
in chess: k n i g h t - f o r k , sl i d i n g - f o r k , skewer , and c h e c k - w i t h - b a d - e x c h a n g e .

Figure 4. Examples of four related chess concepts, all involving the capture of material following a check threat.
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Figure 4(a) presents an example of a knight-fork. The black knight on square e3 is
simultaneously threatening the white bishop on g4 and the white king on dl. No white
piece can take the black knight, so the king will be forced to move out of check (to d2
or cl). This will permit the knight to take the bishop. Figure 4(b) shows a different kind
of fork. The black bishop on c3 is simultaneously threatening the white rook on al and
checking the king on el. We call this a sliding-fork, since the threatening piece can move
through multiple squares. Figure 4(c) gives an example of a skewer. The black rook is
checking the king on e4, who is forced to move out of check and expose the queen on
b4 to capture. Notice that the captured piece is behind the king. Figure 4(d) shows a fur-
ther variation, in which different pieces are used in the check and capture. The black rook
on c6 checks the white king on c2, while the black bishop on c8 threatens the knight on g4.

In each case, the king is in check and the side to move suffers a bad exchange of material
in two ply. Hence, all of these concepts are specializations of the concept c h e c k - w i t h -
bad-exchange , where a piece P1 checks the king and forces it to move out of check,
which allows a piece P2 to capture an opponent's piece Po. Figure 5 illustrates the relation-
ships among the different concepts. In a fork, the same piece (Pi = P2) is used both to
threaten the king and make the capture. A skewer is a further specialization of a fork,
because the captured piece Po is hidden behind the king.

For the purpose of our experiments, we chose to learn the concept c h e c k - w i t h - b a d -
exchange and its special cases: skewer , si i d i n g - f o r k , k n i g h t - f o r k , and genera I -
k i n g - f o r k . Since these concepts are specializations of c h e c k - w i t h - b a d - e x c h a n g e , we
chose c h e c k - w i t h - b a d - e x c h a n g e as the target concept in each case.

Chess is a problem-solving domain, and most learning research in this domain seeks
to improve problem-solving efficiency [Tadepalli, 1989; Quinlan, 1983]. However, the reader
is cautioned that in this paper the learning task is focused entirely on learning correct defini-
tions for these five concepts (i.e., definitions that classify chess positions in the same way
that the teacher classifies them). We make no claim that knowing these five concepts per-
mits a problem solver to play chess more efficiently or more effectively. Nevertheless, these
concepts are not arbitrary—they are all taught in introductory chess books [e.g., Morrison,
1968].

One can speculate about why these concepts might be useful to a chess-playing program.
We suspect that each of these concepts describes important special cases (of c h e c k - w i th-
bad-exchange) in which distinct plans of action are appropriate. For example, because

Figure 5. Relations among the chess concepts illustrated in Figure 4.
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Po in a skewer hides behind the king, the threatening piece P1 is not itself threatened by
Po. This allows a weak, unprotected piece PI, such as a bishop or rook, to capture a powerful
piece Po, such as the queen. The concept kn i g h t - f o r k is interesting because the check
threat cannot be blocked by the opponent—to avoid the loss of Po, it is necessary to capture
the knight. In contrast, in a sl i d i ng- f o r k , the check threat may be blocked, letting the
opponent mitigate the loss ofPo through an exchange. Hence, although the results described
below do not demonstrate improved chess-playing performance, it would be surprising if
knowledge of these five concepts did not improve performance somehow.

3.3.2. Two Domain Theories for Chess. The two domain theories employed in the experi-
ment were both designed to be general, easily understood encodings of the legal moves
of chess. In particular, the domain theory written by Flann, referred to as DTflann, employs
a very general representation of the chess board as a collection of 64 independent squares.
Rather than introducing the notions of rows, columns, and diagonals, DTflann simply states
how the squares are connected to one another along the eight directions of the compass.
The complete domain theory is given in Appendix B.

The domain theory written by Russell [1985], denoted DTrussell, was originally developed
as an exercise in logic programming.7 In DTrussell, squares are represented by column (x)
and row (y) coordinates, and moves are computed using vectors. The domain theory in-
cludes definitions of discovered check, pinned piece, and moving the king out of danger.
In many ways, DTrussel is more engineered than DTflann, because it employs more special
case analysis in its rules (such as how to move a half-pinned piece). The complete domain
theory is given in Appendix C.

3.2.3. The Wyl2 Implementation. The three methods EBG, mEBG, and IOE have been
implemented in a learning system called Wyl2. Like PrologEBG [Kedar-Cabelli & McCarty,
1987], the system is an extended meta-interpreter for Prolog. In addition to the usual Pro-
log meta-logical operations (such as cut), the logical language supported by Wyl2 also in-
cludes special forms of universal and existential quantification, which are required to ex-
press the adversarial search tree in chess. Elsewhere, [Flann, 1989], we describe the logical
language it employs and the modifications to the generalization step required to deal with
universal quantification.8

Wyl2 actually contains two different implementations of EBG. The first, which we call
EBG-, is the simple 13-line Prolog-EBG algorithm given in Kedar-Cabelli and McCarty
[1987]. It creates the complete explanation tree and then computes its weakest precondi-
tions as described above. The other implementation, which we call EBG* incorporates
two techniques designed to improve its performance in the chess domain. First, it applies
generalization-to-n techniques [Shavlik & DeJong, 1987] to generalize over the distance
that pieces may move. This allows EBG* to generalize over the distance between the king
and a piece that is checking it, or more generally, between any two pieces where one piece
is threatening the other. The second addition is that EBG* automatically prunes selected
branches from the explanation tree, allowing it to generalize over the type of piece being
moved.9
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3.3. Experimental Results

In this section we present the results of our experiments. First we give the results for cor-
rectness, then we examine the method's learning efficiencies. We conclude the section with
a discussion of ease of engineering.

3.3.1. Correctness of the Methods. We consider a method correct if the definition pro-
duced is exactly equivalent to the unknown concept (i.e., it places all unseen instances
in the right class). To test EBG- and EBG* we ran 20 learning trials for each of the five
test concepts. In each trial, we selected one training example at random from the space
of positive examples of the desired test concept and gave it to the algorithm. EBG* learns
the same concept in every trial, regardless of the desired concept or the domain theory.
In contrast, EBG- learns different concepts depending on the specific configuration of pieces
in the training example. In particular, the distances between the starting and ending squares
of each move and check threat are fixed constants in the concepts learned by EBG-, because
it is unable to generalize to n. Table 5 summarizes the different concepts learned by EBG-
and EBG* indicating fixed-distance versions by asterisks. Even allowing for the fixed-
distance problem, EBG- learns only one of these definitions correctly.

For mEBG and IOE, we provided the methods with 50 positive examples randomly chosen
from the space of positive examples of the desired concept. From the results in Table 5,
we see that, of the four methods, only IOE correctly learns each of the five test concepts.
All of the other methods essentially overgeneralize to the concept c h e c k - w i t h - b a d -
ex change. None of the definitions learned by EBG-, EBG* or mEBG includes the equality
constraint that the same piece that checks the king must also make the capture, which is
needed to express everything except cwbe.

Because none of the methods except IOE learn the desired test concepts, none of them
fere well according to the correctness criterion. In addition, the results obtained from EBG-
and mEBG vary with the domain theory, suggesting that these methods are sensitive to
the form of the domain knowledge.

Table 5. Concepts acquired by different learning methods. The symbol cwbe stands for c h e c k - w i t h - b a d -
exchange, cwbe-s for cwbe with sliding pieces only, cwbe-kn for cwbe with knight only, cwbc- 1 for cwbc with
single length check and capture, and gkf for genera I -k i ng- f o rk. Concepts with an asterisk restrict the direc-
tion of the moves or the exact length of the moves in the definitions.

Correct

Concept
knight-fork
skewer
sliding- fork
general-king-fork
cwbe

EBG-

DTflann

cwbe-kn*
cwbe*
cwbe*
cwbe*
cwbe*

DTrussell
cwbe-kn*
cwbe-s*
cwbe-s*
cwbe*
cwbe*

EBG*

DTflann

cwbe
cwbe
cwbe
cwbe
cwbe

DTrussell
cwbe
cwbe
cwbe
cwbe
cwbe

mEBG

DT f lann

cwbe-1
cwbe
cwbe
cwbe
cwbe

DTrussell
cwbe-kn
cwbe-s
cwbe-s
cwbe
cwbe

IOE

DTflann

knight-fork
skewer
sliding- fork
gkf
cwbe

DTrussell
knight-fork
skewer
sliding-fork
gkf
cwbe
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3.3.2. Efficiency of Learning. Learning efficiency has two aspects: the number of training
examples required and the computational cost. Since all of the methods have approximately
equal computational costs, our evaluation focused on the number of training examples needed
to learn the concept.

To compare the learning efficiency of the three methods, we selected the one concept
that they were all able to learn, c h e c k - w i t h - b a d - e x c h a n g e , and performed 1000 lear-
ning trials with each method. In a learning trial, the learning method (EBG* mEBG, or
IOE) was repeatedly given a randomly selected positive example of the desired concept
and then tested to see whether it had learned the correct concept. When the concept was
learned, the trial terminated, and the number of training examples used was recorded.

Table 6 shows that, in general, IOE requires more examples than mEBG, and both these
methods require many more examples than EBG* (which requires only one example). In-
terestingly, the efficiency of mEBG varies depending on the domain theory being used.
For DTflann, mEBG is much more efficient than it is for DTrussell, suggesting that mEBG
is more sensitive to the form of the domain theory than IOE. To visualize this sensitivity,
examine Figure 6, which shows learning curves for mEBG and IOE on both domain theories.
For DTrussell, the methods are virtually identical, whereas for DTf l a n n , the two methods dif-
fer significantly.

Table & A summary of the learning efficiency for the concept c h e c k - w i t h - b a d - e x c h a n g e . Each entry gives
the number of training instances required to learn the concept at a given level of correctness by a given method
and domain theory.

Learning

Criterion
To 90% correct
To 99% correct

BEG*

DTflann

1
1

DTrussell
1
1

mEBG

DTflann

S
25

DTrussell
21
37

IOE

DTflann          DTrussell

22
38

22
38

Figure 6. A comparison of the learning efficiency of IOE and mEBG in acquiring c h e c k - w i t h - b a d - e x c h a n g e
from randomly chosen examples, given (a) the domain theory DTrussell and given (b) the domain theory DTflann.
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To produce these curves, we first construct a histogram showing the number of learning
trials (out of the 1000 trials) in which exactly m training examples were required to cor-
rectly learn the concept. Then, we integrate the histogram to compute the number of trials
n that required less-than-or-equal-to m training examples to obtain correct performance.
The quantity n/1000 gives the probability that the concept has been correctly learned after
processing m training examples. Note that these learning curves do not indicate the percent-
age of training examples that the partially learned concept definitions would classify cor-
rectly. From statistical tests, the learning curves are accurate to ±3 % with 95 % confidence.10

All of the efficiency results presented so far were measured only for the most general
concept, c h e c k - w i t h - b a d - e x c h a n g e . For IOE, we can also evaluate learning efficien-
cy on the other test concepts. Table 7 summarizes the learning efficiency of IOE, and Figure
7 shows histograms and learning curves for k n i g h t - f o r k and sl i d i n g - f o r k . A dif-
ference in efficiency between DTrussell and DTflann occurs in all cases, although its
magnitude varies. IOE consistently learns faster when using DTflann than when using
DTrussell, although the difference amounts to less than one training example. This difference
is much smaller than the difference observed when mEBG was applied to the two domain
theories.

Figure 7. An evaluation of IOE learning efficiency. The curves (a) and (c) are histograms showing the number of
trials (out of 1000) in which exactly m randomly selected training examples were needed to correctly learn the
concept k n i g h t - f o r k (a) and s i i d i n g - f o r k <c). The other graphs show the resulting learning curves for k n i g h t -
f o r k (b) and sl i d i n g - f o r k (d), giving the probability of correctness as a function of the number of training
examples.
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Table 7. Summary of learning efficiency, in terms of the number of training instances, exhibited by IOE in Wyl2 .

Concept Learned

knight-fork
skewer
sliding-fork
general- king- fork
check-with-bad-exchange

To 90% Correct

DTflann

5
6
7

21
22

DTrussell
5
6
7

22
22

To 99% Correct

DTflann

8
9
14
35
38

DTrussell
8
9
14
35
38

3.3.3. Ease of Engineering. The results on correctness show that all of the methods except
IOE would require reengineering of the domain theory in order to obtain the correct results.
Because additional training examples will not change the outcomes produced by these
methods, the only way to obtain correct performance would be to modify the domain
theories. To a lesser extent, the correctness and efficiency data also demonstrate the sen-
sitivity of EBG-, EBG* and mEBG to the form of the domain theory, because different
results are obtained depending on which domain theory is employed. On the other hand,
IOE is able to learn the correct concepts in all cases and its efficiency does not vary
significantly from one domain theory to the other. This result is especially significant because
one of the domain theories (DTrussell)was written independently of this learning problem
or the IOE method. Therefore, IOE appears to require significantly less engineering of
the domain theory to obtain correct results.

4. Analysis of Results

In this section we attempt to explain the experimental results by reconsidering the opera-
tion of each of the three learning methods. First we address the two issues of correctness
and ease of engineering. Then we examine the question of learning efficiency and pay par-
ticular attention to IOE, since it has the lowest learning efficiency of all the methods.

4.1. Correctness and Ease of Engineering in EBG and mEBG

Let us begin by considering why EBG and mEBG behave so poorly on the correctness
criterion. The answer is simple: only one of the five test concept definitions ( c h e c k - w i t h -
bad-exchange) is included in the hypothesis spaces generated by EBG and mEBG. Hence,
it is not surprising that the remaining four concepts are not learned correctly.

Recall that EBG or mEBG can produce a concept definition only if it can be defined
as the weakest preconditions of a (possibly incomplete) proof tree for the target concept.
The space of possible proof trees can be generated by constructing all AND-trees involv-
ing the rules from the domain theory. In DTflann, there is only one rule for computing the
legal moves of a piece. Consequently, the weakest preconditions of any proof tree contain-
ing this rule will generalize over any type of piece. This prevents EBG and mEBG from
discovering that the checking piece must be a knight in a knight fork or a sliding piece
in a sliding fork.
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Furthermore, EBG and mEBG will not introduce an equality constraint unless there is
a rule somewhere in the proof tree that forces two variables to be equal. Neither domain
theory includes such a rule, since there is nothing in the rules of chess that would require
such a constraint. This prevents EBG and mEBG from discovering that in any fork or skewer,
the piece that checks the king must be the same piece that takes the queen (or other valuable
piece).

This analysis also explains why mEBG learns different concepts with DTrussell than it
does with DTflann. In DTrussell ,there are two different rules for determining the legal moves
of a piece: one rule for knights and another for sliding pieces. Hence, when presented
with examples o f k n i g h t - f o r k , mEBG includes the constraint that the checking piece
must be a knight, and when presented examples of s l i d i ng- f o r k , it includes the con-
straint that the checking piece must be a sliding piece. However, the learned concepts cwbe-
kn and cwbe-s are still incorrect because the equality constraint is missing.

This analysis also shows how correctness can be obtained from EBG and mEBG. One
need only redesign the domain theory so that its rules introduce the necessary constraints.
For example, one could introduce a separate rule to generate legal moves for pieces that
have been checking the king during the preceding move, thus introducing the equality con-
straint needed for learning forks and skewers. However, such an approach is unacceptable,
because it virtually requires us to know what concepts we are trying to learn before we
design the domain theory.

Hence, we see that for EBG and mEBG, one can obtain correctness only by sacrificing
ease of engineering. On the other hand, if one does not carefully design the domain theory,
it is unlikely to contain the constraints needed to learn the correct concept definitions. For
EBG and mEBG there is a direct trade-off between correctness and ease of engineering.

4.2. Correctness and Ease of Engineering in IOE

Why does the IOE method score so well on the correctness criterion? Again the answer
is simple: the space of concept definitions produced by this method is much larger than
the space produced by EBG and mEBG, and it includes all five test concepts.

The more important issue is why IOE learns the correct concept when using two quite
different domain theories. To see the reason, recall that this method operates by taking
the concept definition produced by mEBG (CmEBG) and using it to define a vector of
features. Each feature corresponds to a distinct variable in CmEBG. Every training exam-
ple TIi can be translated into this feature-vector representation by computing the substitu-
tion 0i needed to match CmEBG to TIi,. IOE then computes a generalized substitution 6 by
computing the maximally specific common generalization of the 0,-'s.

The insensitivity of IOE to the exact form of the domain theory results from two factors.
First, regardless of the domain theory, CmEBG provides a useful vector of features for
representing the desired constant and equality constraints. Second, the specific constant
and equality constraints introduced by the technique are determined by the training exam-
ples rather than by the domain theory. In other words, IOE is more sensitive to the training
examples and less sensitive to the domain theory.

To illustrate these factors, consider how the skewe r concept is learned using DTflann and
DTrussell. Let us focus on two of the key constraints in skewer: the threatening piece must
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be a sliding piece, and the direction of the check threat must be the same as the direction
of the capture move. Both of these properties are correctly represented in IOE, even though
each domain theory represents piece types and direction differently (see Table 8).

First, let us consider how the piece-type constraint is represented. In DTrussell, sliding
pieces and knight pieces have separate move rules, making it easy to enforce the sliding
piece constraint. In DTflann, it is not so clear how this constraint can be represented, since
a single rule is used for all pieces. However, one property of a piece type is the maximum
number of squares through which the piece can move (Max Length in Table 8). Sliding
pieces can move through a maximum of seven squares, whereas a knight can only move
through one square. Since this property is a variable in the skewer explanations, it is easy
to restrict the moves to only sliding pieces. IOE employs two constant constraints that restrict
the variables Lcheck and Lcaplure to have the value seven.

Table 8. Selected features of the skewer definition for both domain theories.

Features describe:
Checking Piece

Check Threat

Capturing Piece

Taking Move

Features of DTflann

Pcheck

Sqcheck
Tycheek

Dircheck

Lcheck

Pcapture

Sqcapture

TYcapture

Dircapture

Lcapture

Playing piece
Square
Type
Direction
Max Length
Playing piece
Square
Type
Direction
Max Length

Features of DTrussell

Tcheck
Xcheck

Ycheck

A X c h e c k

AYcheck

Tc a p t u r e

Xcapture

ycapture

&xcap ture

AYcapture

Type
X coordinate
Y coordinate
X vector
Y vector
Type
X coordinate
Y coordinate
X vector
Y vector

Let us now consider the representation of the direction constraint. In DTflann, the direc-
tion of a move or check is defined as a single variable, Dir, that can take eight different
values11 corresponding to the points of a compass. In DTrussell, the direction of a move or
a check is represented as a vector employing two variables: one defining the x component,
Ax, and the other defining the y component, Ay. It is easy to represent the desired equality
constraint under either encoding. In DTflann, IOE simply includes a single identity con-
straint that binds Dircheck (the direction of the check) to the same variable as Dircapture (the
direction of the capture). In DTrussell, IOE includes two identity constraints, one constrain-
ing Axcheck to equal Axcaplure, the other constraining Aycheck to equal Aycapture.

Another key constraint for skewers and forks (that the capturing and checking piece be
the same) is similarly represented in either encoding. In DTflann, a location is encoded as
a single atom, Sq, so a single identity constraint is needed; in DTrussell, a location of a
piece is encoded as an X, Y coordinate pair, so two identity constraints are needed.

These examples demonstrate that either of the domain theories, DTflann or DTrussell, pro-
vides a useful set of features for learning. In general, any domain theory that is capable
of representing squares, piece types, and directions will provide a good set of features for
use by IOE.

The second factor that allows IOE to be insensitive to the domain theory is that it derives
specific constants and equality constraints from the training examples rather than from the
domain theory. If all of the training examples exhibit the same constant value for a particular
feature, then the method will retain that feature in its final substitution 6. If two features
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are always equal to each other in the training examples, then IOE will force the two features
to be equal to each other in 6. Because these regularities are independent of the domain
theory, the method succeeds regardless of the way one encodes the domain theory.

In summary, unlike EBG and mEBG, the IOE method does not exhibit a tradeoff be-
tween correctness and ease of engineering. To achieve correctness, one does not have to
carefully engineer the domain theory to include the appropriate equality and constant con-
straints. Rather, one need only provide a set of training examples that exhibit the needed
constraints and IOE will detect and incorporate them into CmEBG.

4.3. Learning Efficiency of the IOE Method

The experiments of Section 3 demonstrated that of the three methods, IOE requires the
most training examples, and therefore scores the worst on the criterion of learning effi-
ciency. This raises the critical issue of the number of training examples this method re-
quires in general. To address this issue, we will develop a simple mathematical model of
the IOE generalization process and derive an expression that gives the learning efficiency
of the algorithm.

To model IOE we must make some simplifying assumptions. First, we ignore the com-
putation of CmEBG and focus only on the process of computing 6 from the training instance
substitutions 0i. Second, we ignore the derivation of equality constraints and consider only
the decision to replace a constant by a variable in 0. Third, we assume that all of the features
in CmEBG are independent and take the same number of possible values.

Under these assumptions, a training instance is a simple vector of feature values. Let
k be the number of features and d be the number of possible values of each feature. This
gives an instance space of size dk. A concept is a conjunction of k features, each set to
either * (don't care) or a constant, giving a concept space of size (d + 1)k.

IOE will retain a constant value for a feature if all of the training examples share the
same constant value for that feature. Let us call this a coincidence. Consider learning a
concept definition that contains r *-valued features from a set S of examples uniformly
drawn from the example space (the set of all possible positive examples). One way to look
at this learning problem is to think of the set 5 of examples as exhibiting k - r intended
coincidences and many unintended coincidences among the remaining r features. The goal
of learning is to detect the intended coincidences and eliminate any unintended coincidences
by setting each of the r features to *. How many examples will this require?

In the case of r = 1, the probability that this feature is set to * after m (m > 2) training
examples is

since (l/d)m-1 is the probability that the feature value observed in the first training example
will remain unchanged in the subsequent m — 1 training examples. In the worst case we
have r = k features. The probability that all k features have changed after m training ex-
amples is

where p = lid. If we let 6 be the probability that after m examples we do not have a correct
concept definition, then
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Solving this expression for m gives

This expression quantifies the learning efficiency of the IOE method.
To help visualize this result, Figure 8 graphs values for m with 6 = 0.1 and <5 = 0.01

against different values for k and p. The theory shows that IOE scales well to larger concept
definition sizes, since the number of training examples required grows in the logarithm
of the concept definition size. The main limiting factor is the parameter p. If p = \/d,
then the worst case is with binary-valued features.

This theory explains two characteristics of the empirical results for learning efficiency:
(a) lOE's consistently worse behavior on DTrussell than on DTflann, and (b) the need for so
many training examples to learn genera I - k i n g - f o r k and c h e c k - w i t h - b a d - ex change.

The method does worse using Russell's domain theory than it does using Flann's because
the variables in a DTrussell definition have domains that are smaller than those in a DTflann

definition. For example, as we saw above, the locations of playing pieces in DTrussell are
encoded as X,Y vectors using two features each with d = 8 values. On the other hand,
DTflann encodes the location as a single feature having d = 64 values. This gives DTrussell

a larger value for p and, therefore, a slower learning rate.
As we have noted, the concepts genera I -k i ng- f o r k and c h e c k - w i th -bad-exchange

are much harder to learn than the other concepts. For example, c h e c k - w i t h - b a d -
exchange requires 38 training examples to attain correctness (with probability 99%) com-
pared to only 8 for k n i g h t - f o r k . To successfully learn these two concepts, IOE must
generalize the type of checking and capturing piece to be any type. This requires that it
see training examples in which the checking and capturing piece is a knight and training
examples in which it is a non-knight. A single example is not sufficient, because both do-
main theories draw a distinction between knights and sliding pieces.

Figure 8. Theoretical learning efficiency of IOE. Graph (a) shows the predicted number of training examples
needed to achieve 99% correctness as a function of the size of the concept description k and the probability of
a feature remaining unchanged, p. Graph (b) shows analogous predictions for a correctness of 90%.
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It takes IOE a long time to see the required examples, because in the space of all
g e n e r a l - k i n g - f o r k s , only one in ten have a knight as the checking and capturing piece.
This gives a p value of 0.82, which indicates that many training examples will be needed
to eliminate this unintended coincidence.12

Note that this would not be a problem if our model described probably approximately
correct (PAC) learning [Valiant, 1984] rather than probably correct learning. The distribu-
tion of examples is not a problem for PAC learning, because the correctness of a concept
is evaluated on the same distribution that is used for learning. In our model, a definition
is considered correct only when it has completely converged. Thus genera I - k i ng- f ork
is hard to learn, because the concept is 0% correct until both a sliding piece and a knight
have been observed. In the PAC framework genera I -k i ng- f o r k is not hard to learn,
since the definition initially identified, sl i d i n g - f o r k , is already 90% correct. Hence,
our model is more demanding than the PAC model.

In summary, the number of training examples required for IOE is not excessive and scales
well with the size of the hypothesis space. The form of the domain theory (in particular,
the number of values of each feature) can influence learning speed. The method works
best when each feature has many different values and the distribution of the different values
is uniform. Highly skewed distributions for features with very few values can lead to much
longer learning times. However, if a probably approximately correct concept definition
is acceptable, then many fewer training examples are required.

5. Concluding Remarks

In this section we consider the implications of our results for research on the problem of
learning from examples. We conclude with a discussion of the problems and opportunities
suggested by the IOE method.

5.1. Implications for Learning from Examples

The IOE, EBG, and mEBG methods illustrate a new approach to the task of learning from
examples. To appreciate the advantages of this new approach, let us briefly review the more
traditional methods for learning from examples.

Traditional approaches [e.g., Michalski, 1983; Mitchell, 1982; Quinlan, 1983) suffer
from two major problems. First, they require a large number of training examples to iden-
tify the correct concept definition. Second, they do not provide an easy way to incorporate
domain knowledge into the learning process. In the remainder of this subsection, we will
argue that the three methods discussed in this paper, particularly IOE, overcome these
two problems in many situations. Let us consider each problem in turn.

The number of examples that traditional methods require seems quite large when com-
pared to the number of examples humans require to learn the same concepts. Consider
the task of learning the k n i g h t - f o r k concept. Most people can be taught this concept
with a handful of well-chosen examples. In contrast, ID3 requires 3327 examples to learn
this concept with 90% accuracy.13 What is the cause of this disparity?
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Recent theoretical work [e.g., Ehrenfeucht, Haussler, Kearns, & Valiant, 1988] shows
that there is a fundamental trade-off between the number of examples required for learning
and the size of the space of possible concepts (the hypothesis space). More precisely,
Ehrenfeucht, et al., prove that any learning algorithm that considers an hypothesis space
whose Vapnik-Chervonenkis dimension has size d must examine at least fi(^- In ̂  + |)
training examples in order to guarantee that the hypothesis selected by the algorithm has
error less than € with probability greater than 1-5. Hence, the fact that people require
many fewer examples than ID3 suggests that they are considering a much smaller hypothesis
space than ID3.14

What determines the size of the hypothesis spaces considered by traditional inductive
learning algorithms? Virtually all traditional algorithms represent their hypotheses as com-
binations of the features in which the training examples are represented. Dietterich, Lon-
don, Clarkson, and Dromey [1982] have called this the single-representation trick. Dif-
ferent algorithms can be characterized by the different ways they combine the given features.
For example, Quinlan's [1983] ID3 combines the features into a decision tree, whereas
Mitchell's [1982] version space and Michalski's [1983] AQ approaches use the logical con-
nectives of AND and OR. Perceptrons employ linear combinations of weights and Baye-
sian algorithms like STAGGER [Schlimmer, 1987] and AutoClass [Cheeseman, Kelly, Self,
Strutz, et al., 1988] employ products of probability distributions over the values of each
feature. Each of these various combination methods permit the learning algorithms to con-
struct a combinatorial number of different hypotheses, and therefore they result in very
large hypothesis spaces.

This suggests that a solution to the problem can be found by considering hypothesis spaces
that are not defined by combinatorial generators over the given features, and this is exactly
what EBG, mEBG, and IOE provide. Rather than considering all possible combinations
of the given features, these methods apply the domain theory to derive a set of new features
and to constrain the ways one can generalize those features. In particular, mEBG identifies
a conjunction of important features, and IOE only permits the introduction of constant and
equality constraints. No new logical connectives or other combining operators are per-
mitted . The result is that IOE can learn the k n i g h t - f o r k concept from two well-chosen
examples (when the examples exhibit only the correct coincidences) or from eight ran-
domly chosen examples.

Let us now consider the second shortcoming of traditional inductive learning methods:
their inability to incorporate domain knowledge easily into the learning process. For these
methods, domain knowledge enters in only two ways: through the features used to repre-
sent the training examples and through the choice of feature combination methods. Neither
of these ways is easy to use.

For example, when Quinlan [1983] attempted to teach IDS the concept l o s t - i n - t w o -
p I y for the chess endgame king-and-knight vs king-and-rook, he found that simple features
describing only the type and location of each piece were inadequate. He, therefore, spent
several months developing a set of high-level features that included terms such as rook-
and-king-in-same-row and knight-can-move-out-of-danger. With these features, ID3 suc-
ceeded in learning the concept. However, the lesson from this experience is that there is
a trade-off between the correctness of traditional methods such as ID3 and the amount
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of vocabulary engineering required to develop a set of good features. This tradeoff signifi-
cantly reduces the usefulness of ID3 as a general-purpose learning method.

The other alternative for encoding domain knowledge—changing the set of feature com-
bination techniques employed by the learning algorithm—is relatively unexplored, although
Seshu, Rendell, and Tcheng [1988] present some preliminary work in this area. However,
we suspect that it will be equally difficult to anticipate the relationship between feature
combination methods and domain characteristics, and, consequently, we doubt that this
will provide a convenient method for incorporating domain knowledge.

The explanation-based algorithms discussed in this paper provide a more convenient and
explicit method for incorporating domain knowledge. The user can construct a domain
theory for a concept more general than the concepts that will be learned, and then the
explanation-based methods can consult this domain theory to obtain their semantic bias.

As with any technique for introducing domain knowledge, it is important to determine
how sensitive the learning methods are to the exact form of the knowledge. Our experi-
ment with IOE shows that it is less sensitive than EBG or mEBG. However, we have not
been able to identify a set of properties that a domain theory must satisfy in order to be
usable by IOE. This is an important direction for future research.

5.2. Open Problems and Future Research

The formulation of the problem of theory-based concept specialization, given in Section
1, explicitly separates the problem of learning the correct definition of a concept from the
problem of applying that definition in some performance task. In particular, the defini-
tions produced by EBG, mEBG, and IOE are not guaranteed to evaluate efficiently, and
some kind of knowledge-compilation process may be needed to convert these definitions
into efficient form.

Many systems apply some form of knowledge compilation to the results of EBG [e.g.,
Laird, Rosenbloom & Newell, 1986; Minton, 1988]. Among the techniques employed are
simplification, partial evaluation, enumeration of cases, and compaction. In the chess do-
main, these techniques are not sufficient, because the learned concept still includes an
embedded universal quantifier and therefore still requires a search to evaluate. Flann [1988]
proposes a reformulation technique that removes universal quantification by inventing new
terms. He shows how, through reformulation, the cost of evaluating the k n i g h t - f o r k
definition can be reduced by two orders of magnitude, to approximately 2 X 103 logical
inferences. In general, the successful application of explanation-based techniques to the
TBCS problem will require further development of such knowledge compilation methods.

It is interesting to note that the problem of applying learned concepts efficiently con-
tributed to Quinlan's difficulty in engineering a good set of terms for l o s t - i n - t w o - p l y .
Because ID3 uses the single representation trick, not only must it find the correct defini-
tion by combining the given features, but this definition must also be efficient to evaluate.
The dual constraints of correctness and efficiency are difficult to satisfy, and they explain
why Quinlan required so much time to design a successful vocabulary. By separating the
problem of learning a correct concept from the problem of applying that concept,
explanation-based methods address this aspect of the vocabulary engineering problem as
well.
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One other important direction for future research is to investigate alternative generaliza-
tion strategies for IOE. The main insight underlying the method is that the features iden-
tified by EBG and mEBG provide a good vocabulary in which to perform inductive
generalization. There are many generalization methods besides those investigated in this
paper. In particular, other constraints could be introduced besides equality and constant
constraints, such as inequality constraints, climbing-generalization tree, and numerical inter-
vals. These other generalization strategies might violate the property that the learned con-
cept is always a strict specialization of the target concept, but this does not seem essential.

In conclusion, Figure 9 summarizes the main results of this paper. For EBG and mEBG,
there is a strong trade-off between correctness and ease of engineering, while for IOE this
tradeoff is absent (or at least much weaker). Because IOE is considering a larger space
of hypothesis than either EBG or mEBG, more training examples are required to obtain
correct concept definitions. However, the number of additional examples is not large, and
it scales well with problem size. The analysis presented in this paper also suggests that
there are many promising variations of IOE that remain to be identified and studied.

Figure 9. Trade-off among the three explanation based methods.
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Notes

1. Prodigy contains several other target concepts. This same argument applies, with minor modifications, to
each of them.
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2. Of course, since this control error will not affect the answer that LEX2 eventually computes, the entire LEX2
system has not made an inductive leap or performed knowledge level learning. However, the subsystem that
selects the best operator to apply has made such a leap, although it is not visible to an external observer.
In other words, LEX2 has made a control error, but this does not cause it to produce the wrong solution
to the integration problem.

3. This example is inspired by Kedar-Cabelli [1985].
4. EBG can produce a concept from multiple examples by simply forming a disjunction of the definitions generated

from each example. We exclude this case because we consider learning only conjunctive concepts.
5. An alternative view of this step [Cohen, 1988] is that mEBG forms a combined AND/OR proof tree in which

OR nodes are introduced at each point in the tree where different domain theory rules were applied. This
technique is equivalent to the pruning technique described here only when enough training examples are presented
to cause every applicable domain theory rule to be included in the OR-node.

6. Subsequent to implementing IOE, we discovered that Plotkin [1970] had already developed and formalized
this no-coincidences bias.

7. Russell's domain theory was changed slightly for this test. First, the code was translated from MRS to Pro-
log. Second, the legal move generator was changed to use the Op notation (see Appendix A), and frame ax-
ioms were written for the primitive board predicates. Finally, a definition of in-check was written, since it
was missing from the original theory.

8. Wyl2 is written in Quintus Prolog. Interested readers should contact the authors for distribution information.
9. See the two domain theories in the Appendix B and Appendix C for details of the predicates chosen for pruning.

10. Confidence limits are calculated from formulae given by Spiegel [1975, p. 196].
11. Knight moves actually add another eight directions, giving a total of sixteen.
12. The value p = 0.82 is the probability that two successive training examples will give the same value for

the type of the piece. The approximate probabilities of observing a knight and a sliding piece are 0.1 and
0.9, respectively. The probability of seeing two successive identical piece types is 0.1 x 0.1 +0.9 x 0.9 = 0.82.

13. The training examples were represented as 18 boolean features encoding the location of the knight, the king,
and the queen. Each location specified a square number between zero and 63 encoded in binary (six bits).
There are only 1672 positive examples of this concept. An additional 1659 negative examples were randomly
generated and provided to the program. This representation is so poor that, training on 1670 positive and
1657 negative examples, ID3 can correctly predict the remaining two positive and two negative examples
only with probability 0.91.

14. The Vapnik-Chervonenkis dimension generally increases as the size of the hypothesis space increases, although
there are exceptions for hypothesis spaces with ordered (e.g., numerical) features. See Haussler [1988] for
more details.

Appendix A. Definition of the Target Concept

In this appendix we give the definition of target concept, c h e c k - w i t h - b a d - e x c h a n g e ,
used in the empirical study. Both domain theories use the same definition for this concept.
Successive appendices give the domain theory written by Flann and Russell.

A state State is an example of check-wi t h -bad -exchange if the side to move (S i de)
is in check (i n_check) and, for all legM moves available, there exists a legal move for
the opponent (Others i de) that results in a bad exchange. A bad exchange is defined as
a sequence of two moves in which a valuable piece is exchanged for a piece of lower value
(possibly nothing).

check_wi th_bad_exchange(State,Side,Others ide):-
i n_check(State,Side),
forall([NewStatel],

legal_move(State,Newstatel,Side),
ex i sts(legal_move(Newstatel,Newstate2.Otherside),

bad_exchange(Newstate2))).
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Note the target concept definition uses two special literals of the form f o ra l l (V, P1, P2)
and ex i sts(P3, P4), where P, is a literal, P2, P3, and P4 are conjunctions of literals, and
Kis a list of universally quantified variables in P1. The expression f o r a l \(V, P1, P2) is
true when, for all possible solutions of PI (and legal bindings for V), P2 is also true. The
expression ex i sts(P3, P4) is true when there exists a solution to P3 such that P4 is true.

We use a situation calculus approach to representing states and operators where the in-
itial state is named and subsequent states are represented as operators applied to the initial
state. This is achieved by using the operator function op described in Genesereth and
Nilsson [1987]. If the input state to l ega l_move is S, then the newstate is bound to
do (Move , S), where Move is the op function that takes four arguments: the source square,
the destination square, the piece moved, and the piece taken (which may be empty if no
piece is taken). This can be seen in the definition of bad_exchange. A state State is
an example of bad exchange if the two previous moves were Movel followed by Move2,
Movel captured a piece P i e c e t a k e n l , Move2 captured a piece P i ece t aken2 , and
P i e c e t a k e n l is a more valuable piece than Pi ecetaken2.

bad_exchange(State) : -
State=do(Move2,do(Movel,S)),
Movel=op(From!,Tol,Piecemovedl.Piecetakenl),
Move2=op(From2,To2,Pi ecemoved2,Piecetaken2),
type(Piecetakenl,Typel),
type(Piecetaken2,Type2),
morevaluable(Type1,Type2).

Appendix B. Flann's Domain Theory for Chess

In the first domain theory, DTflann, each initial board state is denoted by a constant such
as state1. The squares on the board are also denoted by constants such as a8 and b2.
Finally, the pieces are each given names such as wrl for the white rook and bkl for the
black king. Empty squares are represented by an imaginary piece called empty (essen-
tially a null value). With this representation, a board configuration is represented by 64
assertions. For example, the board configuration in Figure 4(a) includes the following facts:

square(statel,hl,wrl).
square(statel,a4,empty).
square(statel,d8,bkl).

In addition, the structure of the chess board is represented as the topology of the squares
as follows:

connected(a7,a8,n).
connected(a7,b7,e).
connected(a7,b8,ne).
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The constants n, e, ne, and so on represent the eight directions of the compass points.
In all, 372 connected assertions are needed.

Additional information about each of the pieces is needed in order to define the legal
moves. In particular, we identify certain pieces (e.g., wn l , w r l ) as all being white pieces.
Similarly, we define groups of pieces (e.g., wnl , bn2) as being of the same type, kn i gh t :

s ide(wnl,wh i te).
type(wnl,kn ight) .
s ide(bql,black).
type(bql,queen).

We also include the fact that b l a c k and wh i te are opposite sides:

oppos i te_s ide(black.white).
oppos i te_s ide(wh i te,black).

Using these definitions, one can define legal moves for each piece. We begin by stating,
for each piece, the direction and maximum number of moves it can make. For most pieces
this is easy. For example, the rules for rooks are

legaldi rect ion(Side,rook,n,7).
legaldirection(Side,rook,e,7).
legaldirection(Side,rook,s,7) .
IegaId i rect ion(Side,rook,w,7).

For knights, this simple technique does not work. To define knight moves, we first define
a special kind of connectivity between squares. For example, squares al and b3 are con-
nected by the direction nne defined by the rule

connected(SI,S2,nne) : -
connected(SI,Sa,n),
connected(Sa,Sb,n),
connected(Sb,S2,e) .

The legal move directions for knights are then defined trivially by rules such as:

legaldi rection(Side,knight,nne,l).
legaldi rection(Side,knight,nnw,l).

In addition, several rules are required in order to define legal moves. First, we state that
a legal move is a move such that, after making the move, one is not in check:

legal_move(State,Newstate,Side) : -
move(State,Newstate,Side),
not(i n_check(Newstate,Side)) .
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In this context, move is defined as follows:

move(Sta te ,do(op(From,To,P i ecem,Pi e c e t ) . S t a t e ) , S i d e l ) : -
oppos i te_s ide (S ide l ,S ide2) ,
s i de(P i ecem,Si del) ,
t ype(P iecem.Type) ,
square(Sta te ,From,P iecem) ,
IegaId i rect i on (S ide1 ,Type ,D i rec t .Count ) ,
connected(From,Next ,D i r e c t ) ,
movedi rect ion(State,Count,Di rect .Next ,To,Piecet ,Type2,Side2).

This rule checks to see that the piece to move, P i ecem, is located on the source square
From, that P i ecet is located on the destination square To, and that the indicated direc-
tion and number of squares is legal for the kind of piece being moved. In particular, the
moved i rect i on predicate (given below) recursively decrements the Count as it traverses
connected squares in the indicated direction. It checks that all intervening squares are empty.
Notice that because knight moves are defined to have length one, there are no intervening
squares. This is how we encode the fact that knights can jump over intervening pieces.

The moved i rect i on predicate terminates when the count is zero, on an empty square
or on a square occupied by an opponent's piece:

movedi rect ion(State,Count,Di rec t .Nex t ,To ,P i ece t ,Type2 ,S ide2) : -
Count=0,
f a i l .

moved i rect i on(State.Count,Di rect,Next,To,Pi ecet,Type2,Side2):-
Count\==0
To=Next,
Pi ecet=empty,
Type2=empty,
square(State,To,empty).

movedi rection(State,Count.Direct,Next,To,Pi ecet,Type2,Side2):-
Count\==0
To=Next,
square(State,To,Pi ecet),
type(Piecet,Type2),
side(Piecet,Side2),
!

The recursive case decrements the count and checks the next square in the same direction.

moved i rect ion(Sta te .Count ,D i r e c t , N e x t , T o , P i e c e t , T y p e 2 , S i d e 2 ) : -
Count\==0
square (S ta te ,Nex t ,empty ) ,
Ncount is Count - 1,
connec ted(Nex t .Nex tNex t ,D i r ec t ) ,
movedi rect i on (S ta te ,Ncoun t ,D i r e c t . N e x t N e x t . T o . P i e c e t , T y p e 2 ,

S ide2) .
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The i n_check rule is very like the move rule above. A check is defined as a possible
take move of the king by the opponent.

i n_check(State,Si de1) : -

opposi te_side(Si del,Side2),
type(Pi ecek,k i ng) ,
s ide(Piecek,Side1),
square(State,Kingsq,Piecek),
side(Piecetaking,Side2),
type(Pi ecetak i ng,Typet),
square(State,From,Piecetaking),
legaldirection(Side2,Typet,Direct,Count),
connected(From,Next,Di rect),
moved i rect i on(State.Count.Direct,Next,Kingsq,Piecek,king.Side1).

In addition to these basic rules, frame axioms are included to indicate that pieces not ex-
plicitly moved are not affected. These are easy to write using the op notation:

s q u a r e ( d o ( o p ( F , T , P m , P t ) , S ) , T , P m ) : -
!

square(S,T,Pt) .
s q u a r e ( d o ( o p ( F , T , P m , P t ) , S ) , F , e m p t y ) : -

i

square (S ,F ,Pm) .
s q u a r e ( d o ( o p ( F , T , P m , P t ) , S ) , S q , P ) : -

Sq\==F,

Sq\==T,

square (S ,Sq ,P) .

This completes the description of Flann's domain theory for chess. In addition, we should
note that the EBG* method prunes two predicates—connected and moved i rect i on—
from the EBG- definition to form the EBG* method. Pruning the connected predicate
avoids the need to incorporate the exact knight direction within the definitions. Pruning
the moved i rect i on predicate avoids the need to retain the exact length of check and move
threats.

Appendix C. Russell's Domain Theory for Chess

In the second domain theory, DTrussell, each board state is also denoted by a constant such
as s ta te l . However, it differes from DTflann in that the squares on the board are
represented as two coordinates, the first giving the column of the square, the second giv-
ing the row of the square. It also differs in how the playing pieces on a square are represented.
Rather than employing a single object as in DTflann, a playing piece is represented by its
properties: type and side. Empty squares are represented by assigning the type and side
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to empty (essentially a null value). With this representation, a board configuration is
represented by 64 assertions. For example, the board configuration in Figure 4(a) includes
the following facts:

on(statel,white,rook,8,1).
on(statel,empty,empty,1,4).
on(state1,black,king,4,8).

Included in the domain theory is the fact that wh i te and b l a c k are opposites:

opponent(white,black) .
opponent(black.white).

In order to define the legal moves for each piece, we include the directions (represented
as a column vector and a row vector) in which the piece types can move:

movevector(rook,S,l,0).
movevector(rook.S.O,1).
movevector(rook.S,-1,0) .
movevector(rook,S, 0,-1).
movevector(knight,S,l,2).
movevector(kn i ght,S,2,1).

Also included are definitions of those piece types that can move through multiple squares:

multipiece(bishop).
mu lti p i ece(rook).
multi p i ece(queen).

Several rules are needed to define legal moves. First we include a rule that defines the
op notation for legal moves.

l ega l_move(Sta te ,Newsta te ,BW) : -

Newstate = d o ( o p ( s ( C f , R f ) , s ( C t , R t ) , p ( P m , B W ) , p ( P t , S t ) ) . S t a t e ) ,
l ega lmove (S ta te ,BW,C f ,R f ,C t ,R t ,Pm,P t ,S t ) .

A legal move is defined in terms of the side to move (BW), the from square ( C f , R f ) , the
to square (Ct, Rt), the type of piece moved (Pm), and the type (Pt) of piece taken and
side (St) of the piece taken. Three rules define different cases of legal moves: the first
covers the case when one is not in check and the king is not moved; the second covers
the case where the king is moved; the final covers the case where the king is in check
and generates moves that remove the check threat.

legalmove(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St):-
not(in_check(State,BW)),
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m o v e ( S t a t e , B W , C f , R f , C t , R t , P m , P t , S t ) ,
Pm\==k i ng,

not(discoveredcheck(State,BW,Cf,Rf,Ct,Rt)).
legaI move(St at e,BW,Cf,Rf,Ct,Rt,Pm,Pt,St):-

on(State,BW,king,Cf,Rf),
move(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St),
opponent(BW,WB),
not(attack ing(State,WB,Ct,Rt)),
Cv is Ct - Cf,
Rv is Rt - Rf,
not(muItiattacksalong(State,WB,Cf,Rf,Cv,Rv)),

legalmove(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St):-
in_check(State,BW),
opponent(BW,WB),
on(State,BW,king,Kcol,Krow),
attacks(State,WB,P,Pcol,Prow,Kcol,Krow),
escapescheck(State,Pcol,Prow,BW,Cf,Rf,Ct,Rt,Pm,Pt,St).

The concept "in check" is defined as an attack on the king by the opponent:

in_check(State,BW):-
opponent(BW,WB),
on(State,WB,Piece,Cl,Rl),
attacks(State,WB,Piece,Cl,R1,C2,R2),
on(State,BW,king,C2,R2).

A move escapes check if it is not a king move, does not result in a discovered check, and
stops the check threat to the king:

escapescheck (S ta te ,Pco l ,P row,BW.Co l ,Row,NewCo l ,NewRow,Pm,P t ,S t ) : -
move(S ta te ,BW,Co l ,Row,NewCo l ,NewRow,Pm.Pt ,S t ) ,
no t (on (S ta te ,BW,k i ng, C o l , R o w ) ) ,
not(di scoveredcheck(Sta te ,BW,Co I ,Row,NewCol ,NewRow)) ,
o n ( S t a t e , B W , k i n g , K c o l , K r o w ) ,
s topcheck (Pco I ,P row,NewCo l ,NewRow,Kco l ,K row) .

A move stops a check if its destination square is between the check threat and the king
(i.e., it blocks the check) or if its destination square is the same as the checking piece's
square (i.e., it takes the checking piece):

s t o p c h e c k ( P c o l , P r o w , N e w C o I , N e w R o w , K c o I , K r o w ) : -
be tween (NewCo l ,NewRow,Kco I ,K row ,Pco l ,P row) .

s t o p c h e c k ( P c o l , P r o w , N e w C o l , N e w R o w , K c o I , K r o w ) : -
NewCol=Pcol,
NewRow=Prow.
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A move originates from a square occupied by a piece of the side to move and terminates
in a square that can be attacked by that piece:

move(State,BW,Cl,Rl,C2,R2,Pm,Pt,St):-

on(State,BW,Pm,Cl,Rl),

attacks(State,BW,Pm,Cl,Rl,C2,R2),

opponent(BW,WB),
dest inat ionsquare(State,WB,C2,R2,Pt,St).

A destination square of a move must either be occupied by a piece of the opposite side
or be empty:

dest inat ionsquare(State,WB,C2,R2,Pt,St):-

on(State,WB,Pt,C2,R2),

St=WB,
!

dest i nat ionsquare(State,WB,C2,R2,Pt,St) : -

Pt=empty,

St=empty,

on(State,empty,empty,C2,R2).

A move results in a discovered check if the moving piece is pinned and the move is in
a direction that is not parallel to the direction of the pin threat:

discoveredcheck(State,BW,Col,Row,NewCol,NewRow):-
pi nned(State,BW,CoI,Row,Pcol ,Prow),
Cvl is NewCol - Col,
Rv1 is NewRow - Row,

Cv2 i s Pcol - Col,

Rv2 is Prow - Row,
not(para I lei(Cv1,Rv1,Cv2,Rv2)).

A piece is pinned if it lies along a line of attack on the king by a multipiece of the opposite
side:

p i nned(State,BW,Co I ,Row,Pcol ,Prow):-
on(State,BW,king,Kcol,Krow),
unitvector(Col,Row,Kcol,Krow,Cv,Rv),
NcoI i s Col + Cv,

Nrow i s Row + Rv,

route(State,Ncol,Nrow,Kcol,Krow,Cv,Rv),
opponent(BW,WB),

attacksalong(State,WB,Piece,Pcol,Prow,Col,Row,Cv,Rv),

mu11 i p iece(Pi ece).
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One piece can attack another in a variety of different ways:

mult iattacksalong(State,WB,Col,Row,Cv,Rv) : -
attacksalong(State,WB,Piece,Pcol,Prow,Col,Row,Cv,Rv),
multi p i ece(Pi ece) .

attacks(State,BW,P,Cl,Rl,C2,R2) :-
attacksalong(State,BW,P,Cl,Rl,C2,R2,Cv,Rv).

attacking(State,BW,C2,R2):-
attacks(State,BW,P,Cl,R1,C2,R2).

attacksdi rectly(State,BW,Piece,Co I,Row,NewCol,NewRow,Cv,Rv):-
on(State,BW,Piece,Col,Row),
movevector(Piece,BW,Cv,Rv),
nextto(Col,Row,Cv,Rv,NewCol.NewRow).

attacksalong(State,BW,Piece,Col,Row,NewCol,NewRow,Cv,Rv):-
attacksdi rectly(State,BW,Piece,Col,Row,NewCol,NewRow,Cv,Rv),
not(multipiece(Piece)).

attacksalong(State,BW,Piece,Co I,Row,NewCol,NewRow,Cv,Rv):-
on(State,BW,Piece,Col,Row),
mu11 i p i ece(Pi ece),
attacksdi rectly(State,BW,Piece,Co I ,Row,Co l 2,Row2,Cv,Rv),
route(State,Co I 2,Row2,NewCol,NewRow,Cv,Rv).

Route defines a line of empty squares in a direction defined by the vector C v . R v :

route(State,Col,Row,NewCol,NewRow,Cv,Rv):-
Co I=NewCol,
Row=NewRow.

route(State,Co I,Row,NewCol,NewRow,Cv,Rv):-
on(State,empty.empty,Col,Row),
next to(Co l,Row,Cv,Rv,Col2,Row2),
route(State,Co I 2,Row2,NewCoI,NewRow,Cv,Rv).

A set of rules are also needed to compute the vector arithmetic used in the previous rules:

next to(Co l,Row,Cv,Rv,NewCol,NewRow):-
NewCol i s Co I + Cv,
NewCol > 0,
NewCol < 9,
NewRow i s Row + Rv,
NewRow > 0,
NewRow < 9.

para l lei(Cvl,Rvl,Cv2,Rv2):-
0 is Cvl * Rv2 - Cv2 * Rv1.

un i tvector(Co I 1,Row1,Col2,Row2,Cv,Rv):-
Mcv is Co l 2 - Col 1,
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Mrv is Row2 - Rowl,
s i gn(Mcv,Cv),
s ign(Mrv,Rv) .

s i gn(Mv, V) : -
Mv > 0,
V = 1.

sign(Mv,V):-
Mv < 0,
V = -1.

sign(Mv.V) :-
Mv = 0,
V = 0.

between(Xc,Xr,Yc,Yr, Zc,Zr): -
Cv1 is Zc - Xc,
Rv1 is Zr - Xr,
Cv2 is Yc - Xc,

Rv2 is Yr - Xr,
para l lei(Cv1,Rv1,Cv2,Rv2),
Dot is Cvl * Cv2 + Rv1 * Rv2,

Dot < 0.

In addition to these basic rules, frame axioms are included to indicate that squares not
involved in moves remain unchanged:

on(State,Sm,Tm,Ct,Rt):-
State=do(op(s(Cf,Rf),s(Ct,Rt),p(Tm,Sm),p(Tt,St)),NS),

on(NS,St,Tt,Ct,Rt).

on(State,S,T,Cf,Rf):-

State=do(op(s(Cf,Rf),s(Ct,Rt),p(Tm,Sm),Pt),NS),
S=empty,
T=empty,

on(NS,Sm,Tm,Cf,Rf).

on(State,S,T,C,R):-
State=do(op(s(Cf,Rf),s(Ct,Rt),Pm,Pt),NS),

s(C,R)=s(Cf,Rf),
s(C,R)=s(Ct,Rt),

on(NS,S,T,C,R).

This completes the description of Russell's domain theory for chess. In addition, we should
note that the EBG* method prunes a predicate—attacks—from the EBG- definition to
form the EBG* definition. Pruning the a t t a c k s predicate avoids the two problems with
the EBG- definition: retaining the piece type (either sliding or not sliding) and retaining
the exact length of check and move threats.
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