
Machine Learning, 14, 47-81 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Probabilistic Read-once Formulas on
Product Distributions

ROBERT E. SCHAPIRE SCHAPIRE@RESEARCH.ATT.COM
AT&T Bell Laboratories, 600 Mountain Avenue, Room 2A-424, Murray Hill, NJ 07974

Editors: Ming Li and Leslie Valiant

Abstract. This paper presents a polynomial-time algorithm for inferring a probabilistic gener-
alization of the class of read-once Boolean formulas over the usual basis {AND, OR, NOT}. The
algorithm effectively infers a good approximation of the target formula when provided with ran-
dom examples which are chosen according to any product distribution, i.e., any distribution in
which the setting of each input bit is chosen independently of the settings of the other bits. Since
the class of formulas considered includes ordinary read-once Boolean formulas, our result shows
that such formulas are PAC learnable (in the sense of Valiant) against any product distribution
(for instance, against the uniform distribution). Further, this class of probabilistic formulas in-
cludes read-once formulas whose behavior has been corrupted by large amounts of random noise.
Such noise may affect the formula's output ("misclassification noise"), the input bits ("attribute
noise"), or it may affect the behavior of individual gates of the formula. Thus, in this setting,
we show that read-once formula's can be inferred (approximately), despite large amounts of noise
affecting the formula's behavior.

Keywords: computational learning theory, PAC-learning, learning with noise, read-once formu-
las, product distributions

1. Introduction

This paper describes an algorithm for learning a probabilistic generalization of the
class of read-once formulas over the usual basis {AND, OR, NOT}. (A formula is
read-once if each variable appears at most once in the formula.) This algorithm is
based on a statistical technique for discovering the structure of a read-once formula.
An especially nice feature of this technique is its powerful resistance to noise or
randomness.

Similar to the Valiant (1984) model, we consider the problem of learning from
randomly chosen examples. We apply our method to a probabilistic generaliza-
tion of the class of all read-once Boolean formulas constructed from the usual basis
{AND, OR, NOT}. We show that an arbitrarily good approximation of such formu-
las can be inferred in polynomial time against any product distribution (i.e., any
distribution in which the setting of each variable is chosen independently of the
settings of the other variables). For example, this shows that the class of read-once
Boolean formulas over the usual basis can be learned in polynomial time against
the uniform distribution in the sense of Valiant. This contrasts sharply with the
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results of Kearns and Valiant (1989) which show that Boolean formulas, even if
read-once, cannot be learned against arbitrary distributions.

The problem of learning Boolean formulas against special distributions has been
considered by a number of other authors. In particular, our technique closely
resembles that used by Goldman, Kearns and Schapire (1990) for exactly identi-
fying certain classes of read-once formulas when the observed examples are chosen
randomly according to specific, fixed and simple distributions. This technique also
resembles that of Kearns et al. (1987) for learning the class of read-once formulas in
disjunctive normal form (DNF) against the uniform distribution. A similar result,
though based on a different method, was obtained by Pagallo and Haussler (1989).
Our results extend theirs to a much broader class of read-once formulas. Their
results were also extended in a different direction by Hancock and Mansour (1991).

Linial, Mansour and Nisan (1989) used a technique based on Fourier spectra to
learn the class of constant-depth formulas (constructed from gates of unbounded
fan-in) against the uniform distribution. Furst, Jackson and Smith (1991) gener-
alized this result to learn this same class against any product distribution. Ver-
beurgt (1990) gives a different algorithm for learning DNF-formulas against the uni-
form distribution. However, all three of these algorithms require quasi-polynomial
(npolylog(n)) time, though Verbeurgt's procedure only requires a polynomial-size
sample.

The class of read-once Boolean formulas has been considered previously by a num-
ber of authors. Angluin, Hellerstein and Karpinski (1993) proved that this class of
formulas can be exactly identified using membership and equivalence queries. This
result has since been extended to much broader bases by Hancock (1990), Hellerstein
and Karpinski (1990), and Hancock and Hellerstein (1991). Particularly relevant
is the algorithm given by these latter authors for learning read-once formulas over
fields in which the gate operations are addition and multiplication; their algorithm
bears very strong resemblance to the one presented in the current paper. Their
work was recently extended by Bshouty, Hancock and Hellerstein (1992) to also
handle division gates.

We adopt from Kearns and Schapire (1990) the notion of a probabilistic concept
(p-concept). (This learning model is essentially equivalent to Yamanishi's (1992)
model for learning "stochastic rules.") A p-concept c is a function that maps each
input-variable assignment x to a real number c(x) between 0 and 1. We interpret
c(x) as the probability that instance x will be positively classified. Thus, in the p-
concept model, a randomly labeled example is chosen as follows: first, an instance x
is chosen at random according to the target distribution on the instance space; then,
with probability c(x), the labeled example (x, 1) is observed, and with probability
1 — c(x), the labeled example (x,0) is observed. Thus, in general, the learner has
no direct access to the function c, even on individual points.

We view the learning problem as that of inferring from such randomly chosen
examples a good approximation of the function c itself. Thus, we ask that the
learner infer a real-valued hypothesis h for which \h(x) - c(x)\ is small for most
instances x. This is called learning with a model of probability.
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Specifically, we consider the problem of learning a class of real-valued read-once
formulas, called read-once real formulas. Formulas in this class are constructed
using two kinds of gates, or operators: The first gate, denoted MUL, simply computes
the product of its real-valued inputs. The second gate, LINz;w1,...,wk ,computes the
weighted sum

Here, k may be any positive integer, and z and the Wi's may be any real numbers
which yield a function LINZ;w1, ....,wk whose range is [0,1] on the domain [0, l]k.

Clearly, for a Boolean assignment to the input variables, a formula constructed
from such gates outputs a real number between 0 and 1, and so these are indeed
p-concepts. We show that this class can be learned with a model of probability
against any product distribution (such as the uniform distribution).

Note that, for Boolean-valued inputs, the function MUL simply computes the
logical AND of its inputs, and LIN1;_1 computes the logical negation of its single
input. Thus, the class of read-once real formulas includes the class of read-once
Boolean formulas with basis {AND, OR, NOT}. Therefore, our result demonstrates
for the first time the existence of a polynomial-time algorithm for inferring a good
approximation of any such Boolean formula (against a product distribution).

Also, a unary gate LINZ ;W can alternatively be viewed as describing the behavior
of a noisy or random Boolean gate which, on input 0 randomly outputs 1 with
probability z, and on input 1 outputs 1 with probability z + w. (If the input to
such a randomized gate is 1 with probability p, then the output is easily computed to
be 1 with probability LINz;w (p) = z + wp.) Thus, for the distributions considered,
our result can be regarded as a demonstration of the learnability of read-once
Boolean formulas, even when every gate and every wire of the formula is corrupted
by significant amounts of randomness.

A similar probabilistic interpretation can be given to a non-unary gate
LINZ;w1 , wk. Specifically, we can view such a gate as describing the probabilis-
tic behavior of a kind of random "multiplexor" gate that, on inputs y 1 , . . . , yk, does
the following:

• with probability wi ,the gate outputs yi;

• with probability z, the gate ignores its inputs and simply outputs 1;

• and with probability 1 - z — £)wi, the gate ignores its inputs and outputs 0.

Thus, if input yi is 1 with probability Pi, then the probability that such a random-
ized gate outputs 1 is z + EWipi.

For instance, the binary gate LlN0;5,.5 describes the behavior of a randomized
gate that flips a fair coin and, if "heads" evaluates (and outputs) the left input,
and if "tails" evaluates the right input.

Our result can therefore be viewed as a proof of the learnability of Boolean for-
mulas constructed from the usual Boolean gates, in addition to the stochastic gates
just described.
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2. Preliminaries

In this paper, we will be exclusively interested in the learning of read-once formulas
/ constructed from gates (chosen from some basis), variables (denoted x 1 , . . . ,xn,
and assumed in this paper to be Boolean) and, possibly, constants. We use the term
node to refer to either a gate or a variable of some formula /. Note that because
we consider only read-once formulas, there is a unique path from any node of / to
the output. We define the level or depth of a node A to be the number of gates (not
including A itself) on the path from A to the output. Thus, the output node is at
level 0. The depth of the entire formula is the maximum level of any node.

We say that a node A feeds a gate A' if the path from A to the output goes through
A'. If A is an input to A', then we say that A immediately feeds A'. For any two
variables xi and xj we define Fij to be the deepest gate A fed by both xi, and xj.
We say that a pair of variables xi and xj meet at the gate Fij. We also write gij

to denote the subformula subsumed by gate Fij. (A subformula g is subsumed by
node A if A is the root or output node of g.)

For qj 6 {0,1} and ij E {1,..., n}, 1 < j < r, we write f \ x i 1 < q 1 , . . . ,x i r^qr to
denote the function obtained from / by fixing or hard-wiring each variable xij to
the value qj.

In our framework, the learner is attempting to infer an unknown target concept c
chosen from some known concept class C. In this paper, C = Un>1 Cn is parameter-
ized by the number of variables n, and each c € Cn represents a Boolean function
on the domain {0,1}n .

In the distribution-free or probably approximately correct (PAC) learning model,
introduced by Valiant (1984), the learner is given access to labeled (positive and
negative) examples of the target concept, drawn randomly and independently ac-
cording to some unknown target distribution D. The learner is also given as input
positive real numbers c and 6. The learner's goal is to output with probability at
least 1 - 6 a hypothesis h that has probability at most e. of disagreeing with c on a
randomly drawn example from D (thus, the hypothesis has accuracy at least 1 - e,
and is said to be E-good). If such a learning algorithm exists (that is, a polynomial-
time algorithm meeting the goal for any n > 1, any c 6 Cn, any distribution D,
and any positive values of e and 6), we say that C is PAC-learnable. In this setting,
polynomial time means polynomial in n, 1/e and 1/6. In this paper, we will be
primarily interested in a variant of Valiant's model in which the target distribution
is known a priori to belong to a specific restricted class of distributions.

As described in detail by Kearns and Schapire (1990), a probabilistic concept (p-
concept) is a function c : {0,1}n — [0,1], The interpretation here is that c(x) is the
probability that an instance x E {0,1}n is labeled 1, and l-c(x) is the probability it
is labeled 0. Thus, we assume an oracle EX that first chooses x randomly according
to some target distribution D, and then randomly labels x according to c as just
described.

In this paper, we will be interested in the problem of learning with a model of
probability. Here, the goal is to infer a good approximation of the function c itself.
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Specifically, given positive e and 6, we ask that, with probability at least 1 — 6,
the learning algorithm find an e-good model of probability for /, i.e., a real-valued
hypothesis h such that

Furthermore, the learning algorithm's running time must be polynomial in 1/e, 1/6
and n. (This definition differs slightly, but is equivalent to, the definition of learning
with a model of probability given by Kearns and Schapire (1990).)

We describe an algorithm for learning with a model of probability any p-concept
in a particular class of p-concepts against any product distribution on the domain
{0, l}n, i.e., any distribution in which the setting of each bit xi is chosen indepen-
dently of the settings of the other bits.

The p-concept class of interest is the class of real-valued read-once formulas over
the basis {MUL, LlNZ;w1,...wk} where MUL denotes ordinary multiplication of two or
more real numbers, and L lN Z ; W 1 ,...,wk is the k-ary operator

Here, k may be any positive integer, and z and the wi's may be any real numbers
which yield a function LINz;w1 ,....,wk having range [0,1] on the domain [0,1]k (or,
equivalently, on the domain {0, l}k). We call formulas over this basis real formulas.
For instance,

is a read-once real formula. Such formulas may also contain constants in the range
[0,1].

An easy induction argument shows that real formulas have range [0,1], and so
are p-concepts. Also, note that for Boolean-valued inputs, MUL is equivalent to
AND, and LIN1;_1 is equivalent to NOT. Thus, the class of read-once real formulas
includes the class of read-once Boolean formulas over the basis {AND, NOT}, or,
equivalently, {AND,OR, NOT}.

Further, our criterion (1) for learning of real formulas implies the usual PAC
learnability of Boolean formulas: if c is a deterministic concept (i.e., a p-concept
with range in {0,1}), and h is a real-valued hypothesis satisfying (1), then h' =
round(h) = [h + 1/2] is a 2E-good hypothesis for c since

and, by Markov's inequality,
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Note that the class of read-once real formulas also includes the class of Boolean
formulas which have been corrupted with a kind of random misclassification noise
in which a "true" output of 0 or 1 is misclassified with probability 770 or n1, respec-
tively. This is because such noise can be simulated by a single, output-level gate
LlNno,1-no-n1: on input 0, this gate outputs n0, and on input 1, it outputs 1 — n1.
Thus, n0 and n1 are the respective probabilities that an input of 0 or 1 is "misclas-
sified" or flipped by this gate. (This noise model is considered by Goldman, Kearns
and Schapire (1990), and is a slight generalization of the noise model considered by
Sloan (1988) and Angluin and Laird (1988).)

Thus, our result can be viewed as a demonstration of the learnability of read-
once Boolean formulas with large doses of noise sprinkled throughout the formulas.
Such noise may affect the formula's output ("misclassification noise"), the inputs
("attribute noise") or it might affect the output of every gate of the formula.

In general, we can regard a gate L I N z ; w 1 , . . . , w k as describing the behavior of a
"noisy" or randomized Boolean gate as described in Section 1. If the ith input is 1
with probability pi, then the gate outputs 1 with probability

Thus, the probabilistic behavior of a formula constructed with such randomized
gates is described by the p-concept obtained by replacing each randomized gate by
a LIN gate, for appropriate choices of the LIN-gate parameters. (This can be proved
rigorously, for instance, using a straightforward induction argument on the depth
of the formula.)

3. The learning algorithm

Our learning procedure operates in three stages. In Stage I, we estimate the co-
variance of the formula / with each variable xi. This gives a very rough measure of
xi's correlation with /. Intuitively, we expect a highly correlated variable to give a
lot of information about f, while a poorly correlated variable is likely to be essen-
tially useless. This intuition turns out to be correct, and in Stage I, all variables
with small covariances are identified, discarded and ignored in later stages. (Note,
however, that the correctness of this intuition depends critically on the nature of
both the formulas and the distributions we are considering.)

In Stage II, we use various statistical measures to construct an approximation
of the target formula's topology or skeleton structure. By the skeleton of a real
formula, we refer to the topological structure of the formula, including the type of
each gate. In other words, the skeleton is the formula stripped of all its LIN-gate
parameters. For instance, the formula in (2) has skeleton:
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Finally, in Stage III, we approximate the LIN-gate parameters for the skeleton
inferred in Stage II, again using assorted statistical measures.

3.1. Some preliminary facts

Let / be the target formula, and let D be the target distribution. In what follows,
all expectations are taken with respect to distribution D. For a function g, we also
sometimes write g to denote its expectation:

We will be interested in the partial derivatives of /, which turn out to be central
to our theory. We will be interested not only in partial derivatives with respect
to variables xi , but also with respect to subformulas g of f. The following lemma
demonstrates some useful properties of df/dg.

Lemma 1 Let g be a non-constant subformula of f subsumed by some node X.
Then either df/dg or its negation -df/dg is a read-once real formula. Further-
more, no variable of g is relevant to df/dg.

Proof: Note that the lemma's statement is equivalent to the statements (1) that
df/dg is either a nonnegative or a nonpositive function, and (2) that \df/dg\ is a
read-once real formula, none of whose variables are relevant to g.

We prove these statements by induction on the depth of A in /. If the depth is
zero, then / = g, and df/dg = 1 so the lemma holds trivially.

Otherwise, suppose the output gate of / is a gate LINZ;w1 , .,wk Then

for some subformulas f 1 , . . . . , f k . Since A has positive depth, it must occur in exactly
one of these subformulas, say f1. Then, by the chain rule,

By inductive hypothesis, d f 1 / d g is a nonpositive or a nonnegative function; thus,
df/dg is as well. Since \ d f 1 / d g \ is also assumed to be a read-once real formula,
and since \w1\ < 1 (by the properties of LIN gates), it must be that

is also a read-once real formula. Finally, if xi is relevant to g, then xi is not relevant
to df/dg (since, by inductive hypothesis, it is not relevant to d f 1 / d g ) . This proves
the induction in this case.

Suppose now that the output gate of / is a MUL gate that computes the product
of k > 2 subformulas f1,...,fk. Again, assume without loss of generality that A
occurs in f1. Applying the chain rule as before, we have that
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Since each of the subformulas fi is a read-once real formula, and by our inductive
hypothesis, it follows as before that df/dg is either a nonpositive or a nonnegative
function, and that

is a read-once real formula. If xi is relevant to g, then it does not occur in any of
the subformulas f2, • • •, fk, nor in d f 1 / d g (by inductive hypothesis); therefore, it is
not relevant to df/dg. Thus, the induction holds in this case as well. This proves
the lemma. •

In particular, this lemma shows that \df/dg\ is always bounded by 1.
Note that the formula / could be "multiplied out" to give a polynomial over the

variable set. This polynomial is linear in each variable xi. This follows, for instance,
from Lemma 1 which shows that xi is not relevant to df/dxi, and, therefore, that
d 2 f / d x i = 0. Thus, we can write

for some functions u and v to which xi is not relevant. We call u and v the
decomposition of / in terms of xi. In the same manner, / can be decomposed in
terms of any subformula g, and so can be written f = u + vg for some functions u
and v that do not contain any variable relevant to g.

Clearly, if / = u + vxi, then

Since, as proved above, d f / d x i is either nonpositive or nonnegative on all inputs,

This latter expression is a natural measure of the influence of xi , the degree to
which xi's value affects the value of /.

Henceforth, we let -Bi = d f / d x i .
In addition to the partial derivatives of /, we will also be interested in various

central moments of /. For instance, for each variable xi, we will be interested in
the covariance Ci of / and xi:

Speaking very loosely, Ci measures the degree to which f's behavior is correlated
with xi We will later see that variables that are weakly correlated with / (as
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measured by the covariance) can be safely ignored by the learning algorithm without
introducing significant error.

It is well known, and easily verified that

Thus, if f = u + vxi as above, then

where we have used our assumption of independence among variables, and the fact
that xi = xi since xi is Boolean. Thus, Ci is "small" if xi is "sticky" (i.e., is almost
always 0 or 1), or if xi has low influence.

Note that, by equation (4), Ci can be well approximated by empirically estimating
xi , f and E[fxi] .For instance, xi, is just the probability that xi = 1; similarly,
E [fxi] is the probability that an example is chosen that is labeled 1, and for which
xi = 1.

In Stages II and III, we will also be interested in the trivariance Tij of f and
distinct variables xi and xj. This is defined to be

We will see that this value is quite important to our algorithm. For example, the
type (MUL or LIN) of gate Fij can be determined from Tij.

By multiplying out the product inside the expectations and using the indepen-
dence of xi and xj, it is straightforward to verify that

Thus, as was so for Ci, Tij can be well approximated from empirical estimates of
xi xj, f, E [ fx i ] , E [fxj] and E [ f x i x j ] .

Finally, just as Ci turned out to be related to the first partial derivative of f, so
Tij is related to the second partial derivative. Since / is linear in every variable, /
can be written as

for some functions u0, u1 , u2 and u3 to which xi and xj are irrelevant. Clearly

which we henceforth denote Aij.
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By an argument similar to that given above, it can be verified using equa-
tions (6), (7) and (8) that

This relationship will be very useful in what follows.
In Lemma 1, we proved that either df/dxi or its negation is a read-once real

formula. Thus, in either case, the lemma implies that the second partial derivative
d 2 f / dx i , d x j has the same property — either it, or its negation, is a read-once real
formula.

3.2. Stage I: eliminating uncorrelated variables

As described above, in Stage I, uncorrelated variables are eliminated. Our algorithm
begins by estimating the expected values of f, xi, fxi and fxixj for all variables
xi and xj. Applying Chernoff (1963) bounds, we see that a polynomial-size sample
suffices to obtain estimates that, with probability at least 1 — 6, are each within

of the true expectation, where £0 = min{E, 1/n}. That is, for each of the random
variables R listed above, we require that

where E [R] denotes the empirical mean of R derived from the random sample.
Henceforth, we assume that all of the random variables given above have the desired
accuracy. As just mentioned, this will be the case with probability at least 1 - S.

In turn, we use these estimates in Stage I to obtain estimates Ci of the covariance
Ci of f and xi. In particular, we let

Then we have

Let B — e/5n. If Ci > 0 + 3T, we say that xi is correlated; in this case,

|Ci| > 0. In later stages, uncorrelated variables are ignored; for these variables.
\Ci\ <B + 6T<e/4n.
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We show next that uncorrelated variables can be ignored without introducing
significant error. Let /' be the read-once real formula obtained from / by replacing
some variable xi by the constant pi = xi. Then formula f' is just the p-concept
obtained by regarding xi as a hidden variable — if we ignore xi's value, then /'
describes the probability that an assignment to the other variables is labeled 1.
Let u, v be the decomposition of / in terms of xi so that f = u + vxi. Then
f' = u + vpi, and so

Thus, by independence and equation (5),

Note that if xi is uncorrelated, then this latter expression is at most e/2n.
Suppose x1,...,xs, are the uncorrelated variables of f. Let f0 = f, let fi be

obtained from fi_1 by replacing xi, with the constant Pi for 1 < i < s, and let
fI = fs. Then

since, by the preceding argument, E [/fi, - fi-1|] < e/2n.
Henceforth, we regard fI as the target formula. Sampling according to fI is

achieved by simply ignoring the variables eliminated from /. In later stages,
A f~l •"• IT

it is shown how to find a hypothesis / such that E f - fI < e/2, and thus

E[ | f -f | ]< E .
Note that we can easily handle at this point the special case that all the variables

of / are eliminated. For this case, fI simply computes some constant function p.
Since f = fI = p, we simply let / = E [f], our previously obtained estimate of /.

Then E [|f - fI|] = E [f] - E [f] <r< e/2, and thus E [|f - f|] < e as desired.

3.3. Stage II: inferring the formula's skeleton

Based on the results of Stage I, we can assume henceforth that none of the variables
of / are uncorrelated. Thus, in this and all subsequent sections, / actually refers to
the formula fI of the previous section, and all of the variables discussed are assumed
to be correlated.

We show in this section how a good approximation of the skeletal structure of
/ can be obtained. Our approximation a' will be sufficiently similar to the true
skeleton a that the differences between the two structures will be provably incon-
sequential.

Note that the functional composition of two LIN gates is a LIN gate, and that
LIN0;1 is the identity function. Note also that any constant-valued subformulas
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occurring in / can be eliminated by "absorbing" them into the rest of the formula,
and that a single k-ary MUL gate can be replaced by a tree of binary MUL gates.
These observations allow us to assume without loss of generality that no subformula
of / (including / itself) is equal to a constant, and that the gates of / occur in
alternating layers of LIN and binary MUL gates, the output gate being a LIN gate,
and every variable an input to a LIN gate. Thus, the topology or skeleton of / is
entirely determined first by the type of each gate, and second by the tree structure
of / with respect to its non-unary gates. Therefore, in reconstructing f's skeleton,
we will be interested first in determining the type of each gate, and second in
determining which gates are fed by which other gates, and in particular, which of
two non-unary gates occurs deeper in the formula.

Our algorithm uses two tests for determining which of two gates is deeper. After
describing the two tests, as well as a method for identifying the type of each gate, we
show how the gathered information can be combined to construct an approximate
skeleton.

For any three variables xi , xj and xk, we must have either that Fij = Fik = Fjk, or
that exactly two of the gates Fij, Fik and Fjk are the same, and that the remaining
gate is the deepest of the three. For instance, if Fij is the deepest gate, then it must
feed Fik = Fjk. Our purpose then is to determine which of these gates is deepest.
This will be determined using the statistical measures described above.

Recall that good estimates were made in Stage I of the Ci's using the empirical
means of various random variables. In the same manner, we can use these empirical
estimates and equation (6) to obtain an estimate Tij of each Tij, Specifically, we
let

Then, by an argument similar to that used in proving the accuracy of Ci, we have
that

It will also be convenient to assume that each Ci and each Tij is in the range
[—1,1]; since Ci and Tij are known to be in this range, we make this assumption
without loss of generality. ("Clamping" estimates in this range can only improve
their accuracy.)

3.3.1. Determining gate types

Our first goal in constructing the skeleton of / is to determine the type of each
gate. Specifically, for each pair of variables xi and xj, we would like to determine
if Fij is a LIN gate or a MUL gate. It turns out that this can be determined from
our estimate of Tij, as is shown in the following lemma.

Lemma 2 Let xi and xj be distinct variables. Then the following hold:
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1. If Fij is a LIN gate, then Tij = 0.

2. If Fij is a MUL gate, then |Tij| > \Ci\ • \Cj\.

Proof: Suppose first that Fij is a gate LINz;w1,. . . . .wk. Then we can write gij as the
weighted sum of its inputs g1, •• .,gk:

gij = z + w1g1 + + wkgk .

Without loss of generality, assume that xi and xj are relevant to g1 and g2, respec-
tively. Then,

since xi is relevant to neither df/dgij nor g2. Part 1 then follows from equation (9).
Suppose now that Fij is a MUL gate. We write subformula gij as g1g2, the product

of its inputs. (Recall that Fij, is binary by assumption.) Suppose without loss of
generality that xi and xj are relevant to g\ and g2, respectively. Then we have by
the chain rule that

and similarly

Thus,

Together, these imply that \Aij\ > \Bi\\Bj\ since \df/dgij\, g1 and g2 are real
formulas with range [0,1]. Applying equations (5) and (9), this proves part 2 of the
lemma. •



60 R.E. SCHAPIRE

This lemma is easily applied to the problem of determining the type of Fij: If Fij

is a LIN gate, then Tij = 0 and so Tij cannot exceed 8T. Conversely, if Fij is a
MUL gate, then the lemma implies that

since each variable is assumed to be correlated; thus, in this case, Tij > B2 — 8r >

8T. Thus, the type of Fij can be exactly determined from the magnitude of Tij

(given the assumption made above that all estimates have the desired accuracy).
Our algorithm uses this technique to quickly ascertain the type of every non-unary
gate in the formula.

3.3.2. Determining relative gate depth: the type test

The gate-type information collected in the preceding section is also helpful in de-
termining the topology of the unknown formula. To be more precise, suppose that
we would like to determine which of the gates Fij, Fij or Fij occurs deepest in the
formula. As noted above, at least two of these gates must be the same gate, and
therefore must obviously be of the same type. The third gate may or may not be
of the same type. If it is of a different type, then our algorithm will detect this
difference and so will be able to conclude correctly that the gate of the odd type
must in fact be the deepest of the three gates. For instance, if we find that Fik

and Fjk are MUL gates, but that Fij is a LIN gate, then the only possibility is that
Fik = Fjk, and that Fij is the deepest of the three gates. Of course, if all three
gates have the same type, then the type test yields no information on the relative
depth of the three gates.

Thus, after determining the type of each gate, our algorithm tests, for each ordered
triple xi, xj and xk, whether Fij is of a different type from Fik and Fjk. If it finds
that this is the case, then the algorithm can correctly conclude that Fik = Fjk, and
therefore Fij occurs deeper than this gate.

The results of all these type tests are organized in a directed graph GO- The
vertices of GO are unordered pairs {i,j}, for i ^ j. For each ordered triple of
distinct indices i, j, k, our algorithm tests if Fij has a different type from Fik and
Fjk. If this is the case, an edge is directed in GO from {i,j} to {i, k}. Thus, as
argued above, an edge is added to GO in this fashion only if Fij is deeper in / than
Tik. Moreover, by transitivity, a path in GO from {i,j} to {i',f} implies that Fij

is deeper than Fi'j'.
As noted above, the type test is one sided in the sense that if Fij, Fik and Tjk all

have the same type, then nothing can be concluded about the relative depth of the
three gates. However, the next lemma gives conditions under which the type test
and its graph GO are guaranteed to give useful depth information.

Lemma 3 Let xi, xj and xk be distinct variables of f, and assume Fij is deeper
in f than Fjk = Fjk. Suppose that either of the following conditions holds:
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1. Fij and Fik are of different types; or

2. Fij and Fik are of the same type, but there exists a non-unary gate Fil of a
different type on the path in f from Fij to Fik .

Then there exists a path in GO from {i,j} to {i,k}.

Proof: That condition 1 implies an edge in GO from {i,j} to {i, k} follows im-
mediately from the remarks made above. Applying this fact twice shows that
condition 2 implies that {{i, j}, {i,£}) and ({i,i},{i,k}} are both edges in G0.

•

Thus, if Fij is deeper than Fik = Fjk , then the type test will succeed in making
this determination unless every non-unary gate on the path in / from Fij to Fik is
of the same type. If all of the gates on this path are LIN gates, then they can all
be collapsed into a single LIN gate. In other words, since we assume that the gates
of / occur in alternating levels of LIN/MUL gates, this "path" must actually consist
of the single LIN gate Fij = Fik = Fjk.

If, on the other hand, all the non-unary gates on this path are MUL gates, then
we cannot make such a collapse since there may be unary LIN gates along the path.
Thus, the problem that remains is that of determining which of two MUL gates is
deeper, specifically, in the case that the path from one gate to the other includes
only MUL gates and unary LIN gates. This problem is (almost) solved in the next
section using the estimated values Ci and Tij, which have already proved useful.

3.3.3. Determining relative gate depth: the quotient test

The second test used for determining the relative depth of two MUL gates is called
the quotient test, and it has a flavor similar to that of the type test. In this section,
and later in Stage III, we will be interested in the quantity

We will see that if Fij occurs deeper than Fik = Fjk then Eik = Ejk, but Eij will
differ significantly from Eik in most cases (the exception will be dealt with below).
Thus, the quantities Eij will give a second method for determining which of the
three gates Fij, Fik, Fjk is deepest in /.

The following lemma gives a useful characterization of the quantity Eij.

Lemma 4 Let xi and xj be distinct variables which meet at a MUL gate. Then

Proof: In the proof of Lemma 2, expressions (11), (12) and (13) were derived for
Bi, Bj and Aij. From these, and equations (5) and (9), it follows that
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Here, as in Lemma 2, g1 and g2 are the inputs to Fij. Since, by independence,
gij = g1g2, this proves the lemma. •

Thus, if Tik = Tjk, then Lemma 4 shows that Eik, = Ejk.
To estimate the quantities Eij, we naturally use

To show that this is a good estimate, we will need the following lemma on estimating
quotients.

Lemma 5 For b and b nonzero,

Proof:

Let

Lemma 6 For any two distinct variables xi and

Proof: Applying Lemma 5, we have that

Since \Eij\ < 1 (by Lemmas 1 and 4), and since \Ci\ and Cj are also bounded by

1, this is at most

as claimed. Here, we have used Lemma 2 to lower bound Tij .
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Thus, Eij is a good estimate of Eij, and in particular, if Fik = Tjk then Eik = Ejk

and Eik — Ejk < 2r. Therefore, for every ordered triple of variables xi, xj and
xk, our algorithm tests if all of the following hold:

If all of these hold, then our algorithm can correctly conclude that Eij ^ Eik — Ejk

(since at least two of these values must be equal) and therefore that Fij is deeper
than Tik - Tjk .

Such information is added to the graph GO used for the type test. Specifically,
an edge is added from {i, j} to {i, k} whenever the quotient test implies that Fij is
deeper than Fik.

As was the case for the type test, the quotient test is one sided: it may be that two

or three of the differences Eik — Ejk , Eij — Eik and Eij — Ejk do not exceed

27. In this case, the quotient test fails to give any useful information about the
relative depths of Fij, Fik and Fjk. However, this can only happen if Eij, Eik and
Ejk are so close that the difference between any two of these estimates is bounded
by 47. This fact will help us later in handling the situation that neither the type
nor the quotient test succeeds in discerning the relative depth of two gates.

3.3.4. Constructing the skeleton from GO

Finally, we are ready to show how an "approximate" skeleton of / can be computed
from the graph G0. First, to reiterate what was pointed out above, an edge in
GO from {i,j} to {i, k} indicates that Fij must be deeper than Fik (given our
assumption that all estimates are good); however, if Fij is deeper than Fik, there
need not be a corresponding edge in GO (i.e., both tests above may have failed).

We can construct another graph G1 from GO with a slightly different property:
Graph G1 has the same vertex set as GO, and is obtained from GO by adding all
edges from {i,j} to {i, k}, j ^ k which do not "contradict" GO, i.e., for which there
does not exist a path in GO from {i, k} to {i,j}.

Thus, if Tij is deeper than Fik, or if Fij = Fik then G1 must contain an edge from
{i, j} to {i, k} since in this case, GO certainly will not contain a path in the opposite
direction. Furthermore, if there exists a path in G1 from {i,j} to {k, l}, but no
path in the reverse direction, then we can conclude that Fij is deeper in / than
Tkl. When there exist paths connecting these vertices in both directions — that
is, when {i, j} and { k , l } are in the same strongly connected component of G1 —
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there is no information about which gate is deeper. In this case, we collapse all of
the gates corresponding to vertices of this strongly connected component (including
Tij and T k l ) . In the remainder of this section, we give an algorithm for forming a
skeleton for / by collapsing gates in this manner and we show that the skeleton we
obtain is a good approximation of the true skeleton.

We say two vertices of G1 are equivalent (with respect to G1) if they are in
the same strongly connected component. There are two ways in which vertices
{i, j} and { k , l } may be equivalent. First, they may be equivalent if Fij = Fil,
in which case Fij and Fkl can and certainly should be collapsed into the same
gate. Alternatively, as suggested above, {i,j} and { k , l } may be equivalent due to
insufficient information regarding the relative depth of Fij and Fkl. Note that by
the results of Section 3.3.2, this can only be a problem for MUL gates which are
separated by unary LIN gates.

We say that a LIN gate of / is trapped if it is immediately fed by some MUL gate
Fij , and it immediately feeds another MUL gate Fkl for some indices i, j, k, l for
which {i,j} and {k,l} are equivalent. In other words, the LIN gate is trapped if it
is "surrounded" above and below by gates whose indices are in the same strongly
connected component of G1. Trapped LIN gates represent holes in our algorithm's
knowledge of the formula's structure. Fortunately, it turns out that these gates have
so little effect on the formula's behavior that they can be safely ignored. Ignoring
trapped LIN gates essentially is equivalent to collapsing the surrounding MUL gates
into a single (multi-input) MUL gate.

Thus, as will be shown below, the strongly connected components of G1 generally
correspond to connected regions of / (where we view / as a graph whose vertices
are the gates, and whose edges are the "wires" connecting the gates), and that
these connected regions can be safely approximated by simple LIN or MUL gates.

Let a denote the true skeleton of /. Recall that we have assumed without loss
of generality that the MUL gates of a are all binary, and that the gates of / occur
in alternating layers of LIN/MUL gates, the output gate being a LIN gate, and every
input variable immediately feeding a LIN gate.

Let a' be another skeleton derived from a by first deleting all trapped LIN gates,
and by then collapsing now adjacent MUL gates. That is, the deletion of a trapped
LIN gate necessarily results in one MUL gate immediately feeding another; in con-
structing a', we collapse these two gates into a single, multi-input MUL gate, purely
for the sake of convenience and uniformity.

Clearly, as was so for a, the gates of a' occur in alternating layers of MUL and
LIN gates with LIN gates occurring at the output and input levels. However, unlike
a, MUL gates in a' may have more than two inputs.

We let Fij denote that gate in a' at which variables xi and xj meet. To formalize
the transformation of a into a', we let p(F) denote that node F' of a' into which
node F of a is transformed. Specifically, it can be verified that p has the following
properties:

• For non-unary gates Fij of a, p(Tij) = F'ij.
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• All variables are mapped to themselves: p(xi) = xi.

• If F is a non-trapped unary LIN gate, then p(F) is that gate immediately fed by
p(X), where A immediately feeds F.

• Finally, if F is a trapped LIN gate, then F is actually eliminated in the con-
struction of a'; nevertheless, we define p(T) to be p(\) where A is the MUL gate
that immediately feeds F (or, equivalently, we could have used the MUL gate
immediately fed by F).

Clearly, the function p maps onto the set of all nodes of a'. Furthermore, p is
one-to-one if its domain is restricted to non-trapped LIN gates and variables.

Let

be the set of a-nodes mapped by p to F'. Note that, by construction of a', every
set p - 1 ( T ' ) is connected; that is, if p1 and A2 are both contained in this set, then
all of the nodes along the unique path in / from A1 to A2 are also contained in the
set. Thus, every set p - l ( T ' ) has a unique member of minimal depth. We call this
minimal-depth node a(F'), and we say that a a-node F is an apex node if it is in
the image of a.

We show next how the skeleton a' can be constructed from G1. Later, in Stage III,
we will show that a' can be used to construct a good approximation of /.

Figure 1 shows our algorithm for constructing a' from G1. The algorithm main-
tains a family of skeletons F. On each iteration of the loop, several of these skeletons
are combined into one. Taking strongly connected components with no incoming
edges at line 4 guarantees that the algorithm will start from the inputs and work
bottom-up. We will show that only one skeleton remains in F upon termination.

The operator COND-LIN(S) used at lines 10 and 14 returns s if the output gate of
s is a LIN gate, and LIN(S) otherwise. (In other words, a LIN gate is added to s, but
only if necessary.) Also, the set rel(s) for skeleton s is the set of variables relevant
to s. Finally, G — H at line 12 denotes the graph obtained from G by deleting all
vertices in H, and any edges incident to these deleted vertices.

We say a condition holds at all times if it holds between each iteration of the
main loop.

The algorithm clearly halts since some vertex of G is removed on each iteration.

Lemma 7 At all times, if s1 and s2 are distinct members of F, then rel(s1) n
rel(s2) = 0- Also, UsEFrel(s) = {x1 ,• • • , xn} (assuming all of the variables are
correlated).

Proof: Let s0 and E be as in the algorithm. Then, using the fact that rel(s0) =
UsEE the(s) lemma follows by an easy induction on the number of iterations of
the main loop. •
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Input: the graph G1, and the type of each gate of /
Output: a skeleton a' that approximates the true skeleton a of /
Procedure:
i G - G 1
2 F - {xi : 1 < i < n}
3 repeat while G is not empty
4 find a strongly connected component H of G with no incoming edges
5 E <{seF :{i,j} eH and xi r e l ( s ) }
6 let {i, j} be any node of H, and let E = { s 1 , . . . , S\E\}
7 if Fij is a LIN gate then
8 s0 - L I N ( S 1 , . . . , S | E | )
9 else {Fij is a MUL gate}

10 s0 <- MUL(COND-LIN(s1),......,.. COND-LIN(S1E1)
11 F -(F - E) U { S 0 }
12   G - G-H
13 end
14 output COND-LIN(S), where s is the only member of F

Figure 1. An algorithm for inferring a good skeleton from G1.

Lemma 8 At all times, if {i,j} is not a vertex of G then { x i , x j } C rel(s) for
some s E F.

Proof: Note that {i, j} is removed from G at line 12 only if xi and xj are relevant
to skeletons in E. •

Lemma 9 Upon termination of the main loop, \F\ = 1.

Proof: If, upon termination, F contained two skeletons s1 and s2 ,then each must
have distinct relevant variables xi and xj, respectively, by Lemma 7. By Lemma 8,
this implies {i,j} € G, contradicting the fact that G is empty. •

Lemma 10 At all times, if s 6 F then s is a subskeleton of a'.

Proof: By induction on the number of iterations of the main loop. Initially, the
lemma holds trivially.

Consider the state of the algorithm immediately before G is modified at line 12.
Let s0 and E be as in the algorithm. Let {k,l} e H be such that Fkl is a gate of
minimal depth in the set {Fij : {i,j} G H}. (That is, Fkl does not feed any gate
in this set.)

Claim 1: rel(s0) = rel(gkl).
Proof of Claim 1: Note first that, by definition of E,

rel(s0) = {xi : {i,j} e H}.
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Thus, if xi € rel(s0) then {i, j} 6 H for some j. Let T be the set

We will show that {i,j} € T; this implies that xi is in the subformula subsumed
by Tkl , and thus xi € rel(gkl).

If {i,j} ^ T, then since { k , l } e T and since {i,j} and {k,l} are equivalent, there
must be a path in H from {i,j} to { k , l } , and there must be an edge on this path
from some node {i',j'} & T to some other node {i', k'} € T. This means that Fi'k'

feeds or is equal to Fkl, but Fi'j' is not in gkl, the subformula subsumed by Fkl. In
particular, this means that Fi'k' feeds Fi'j'. Moreover, Fkl, being the root of gkl,
must certainly be on the path from Fi'k' to Fi'j'. Thus, Fi'k' feeds (or is equal to)
Fkl, which in turn feeds Fi'j'. Therefore, there exist paths in G1 from {i',k'} to
{k,l}, and from { k , l } to {i',j'|. Since an edge is directed from {i',j'} to {i', k'},
this implies that {i ' , j '} is equivalent to {k,l}, and so must be in H. However, this
contradicts the definition of { k , l } since { k , l } is deeper than {i',j'}.

Thus, rel(so) C rel(gkl).
Conversely, suppose xi € rel(gkl). Then Fil feeds or is equal to Tkl. Thus, there

is a path in G1 from {i, l} to {k, l}. Since H is assumed to have no incoming edges,
this implies that either { i , l } € H or { i , l } & G. If { i , l } $ G, then by Lemma 8,
xi 6 rel(s0) since xl e rel(s0). If {i,l} € H, then xi e rel(so) by construction.
Thus, rel(s0) = r e l ( 9 k l ) > proving Claim 1.

Let s' be the subskeleton of a' subsumed by gate F^l = 9(Fkl). We will show
that S0 = s', completing the induction and proving the lemma.

Claim 2: rel(s0) = rel(s').
Proof of Claim 2: We prove this claim by showing that rel(s') = re l (gk l ) . In

fact, it suffices to show that Fkl is an apex node, since rel(A') = rel(a(A')) for any
u'-node A'.

First, if Fkl is a LIN gate, then it must be an apex gate since it is the only member
ofp-1(T'l).

Suppose then that Fkl is a MUL gate, but not an apex node. Then Fkl immediately
feeds a trapped LIN gate, which in turn feeds some other MUL gate Fij for which
{i,j} and { k , l } are equivalent. But then {i,j} € H, contradicting the definition
of rkl.

This proves Claim 2.
By inductive hypothesis, each skeleton in E is a subskeleton of a'. Claim 2 implies

that each of these skeletons is in fact a subskeleton of s'.
Suppose xi and xj are relevant variables, respectively, of two distinct skeletons

in E. Then {i,j} e G, by Lemmas 7 and 8. Also, Fij must feed or equal Fkl by
Claim 1. Thus, there must be a path in G from {i, j} to { k , l } , and therefore, {i, j}
must be in H.

We claim that Fij and Fkl must be of the same type. Suppose not. Then there
must be a gate Fij' that immediately feeds a gate Fij' of a different type, and such
that both gates are on the inclusive path from Fij to Fkl. Since there is a path
in H from {k,l} to {i,j}, there must be some edge in H directed from { i ' , k ' } to
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{i ' , j"} where these indices are such that Fij' feeds Ti'k'', and Ii'j'' feeds or equals
Tij'. However, because there is a path in / from Ti'j'' to Fi'k'' that passes through
Yij'' and Fik', and because these four gates cannot all be of the same type, we can
conclude using Lemma 3 that there must be a path in G0 from {i',j"} to {i', k"}.
But this contradicts the existence of the edge in GI from {i', k"} to {i',j"}.

Therefore, Iij and Fkl must be of the same type. This implies that F'ij and T'kl

are also of the same type as Fkl. If Fkl is a LIN gate, we have shown then that
every gate on the path from Fij to Tkl is a LIN gate, and thus Fij = Fkl, which
implies t'ij = r'kl.

If Tkl is a MUL gate, we have shown that every non-unary gate on the path from
Tij to Tkl is a MUL gate, and furthermore, that every LIN gate on this path is
trapped (since {i,j} and { k , l } are equivalent). Therefore, in this case as well,
t'ij — T'kl.T'ij — T kl.

This proves that s' = S0, as desired, and completes the induction. •

Combining Lemmas 7, 9, and 10, it follows immediately that the algorithm of
Figure 1 outputs a'. The algorithm clearly runs in polynomial time.

3.4. Stage III: inferring the LIN-gate parameters

In the final stage, our algorithm "fills in" the missing LIN-gate parameters for the
skeleton inferred in Stage II.

The first problem we face is that a' is only an approximation of the true skeleton
a, to which we have no direct access. Nevertheless, we will be able to show that the
procedure we describe for constructing a complete formula from a skeleton yields
the same result whether applied to the true skeleton a or the approximate skeleton
a1. This fact will allow us to assume in proving the correctness of the procedure
that we are actually dealing with the true skeleton a.

Our algorithm computes the LIN-gate parameters of / from the bottom up: the
algorithm visits each node of the skeleton, starting with variables. No node is visited
until all those that feed it have been visited. When some node A is visited which
subsumes subformula g, we might like to compute a formula that approximates
the function g; unfortunately, this does not seem to be possible because a given
subformula may not be uniquely defined: by rearranging the LiN-gate parameters
which occur in /, we can change the identity of individual subformulas (by constant
factors) without altering the functional behavior of /. For instance, although the
formulas

and
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are equal (viewed as functions), they clearly contain many pairs of corresponding
subformulas which are not equal.

Instead then, our algorithm infers an approximation of a function closely related
to g, namely,

We call h the canonical form of g. Unlike g, the canonical form h is uniquely
determined. Note also that if g is the entire formula f, then h = g = f.

Another nice property of the canonical form is that its expected value E [df/dg] .g
can be statistically approximated (given f's skeleton), as will be seen below. We
write x(W) to denote this expectation. The next lemma yields a technique for
estimating x(W) a key quantity used by our reconstruction procedure.

Recall from Section 3.3.3 that Ei:j is defined to be Ci C j /T i j .

Lemma 11 Let Iij be a MUL gate of f.

Proof: Part 1 is simply a restatement of Lemma 4.
Let g be the subformula subsumed by A. Then we can write glj = g • g' for some

subformula g'. Then by independence and the chain rule,

Finally, by equation (5), x(xi) = E [df/dxi] • xi = Ci/(1 - xi). •

We use Lemma 11 to guide us in assigning an estimate x(A') to every node of a1.
Specifically, if A' is a MUL gate, then we set x(X') = EM where k, l is an arbitrarily
chosen pair for which T'kl = A' in a'. If A' is a LIN gate which immediately feeds
a MUL gate X', then we set x(A') = x ( o ' ) - If ^' is an output node, then we let
X(A') = E [f]. Finally, if A' is a variable xi, then we let x(A') = C i / (1 - E [xi]).
(Recall that E [xi] and E [f] were both estimated in computing Ci and Tij.)

The assignments made above are actually performed by our reconstruction algo-
rithm. For the sake of argument, we also define x(A), for every node A of a, to be
X(P(A)).

We pause in our development to show that these estimates are fairly good. The
following lemma will be helpful for this purpose.
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Lemma 12 Suppose MUL-gate Fij immediately feeds a trapped LIN gate which in
turn immediately feeds MUL-gate Fik. Then /Eij — Eij /< 187.

Proof: Since {i, j} and {i, k} are equivalent (by virtue of the trapped LIN gate),
there must be some edge in G1 directed from {i', k'} to {i',j'}, and such that F i ' j '

feeds or is equal to Fij, and Fik feeds or is equal to Fi'k'. By possibly renaming
variables, we can assume without loss of generality that Fij = Fi'j and Fik = Fi'k.

There cannot be a path in GO from { i ' , j } to {i',k'} since this would deny the
possibility of an edge in G1 in the reverse direction.

In particular, this implies that there is no edge in GO from {i',j'} to {i',k'},
meaning that the quotient test failed for this triple. As pointed out in Section 3.3.3,
such a failure implies that

Likewise, GO cannot include both of the edges ({i' ,j'}, {i',j}) and ({i',j}, {i!, k'}},

implying that either /Ei'j' - E i ' j /or /Ei'j - E i ' k ' / is bounded by 47. Combined
with the above argument, either case implies that

A similar argument shows that

Thus,

which implies by Lemma 6 that

Lemma 13 Let X be a node of a. Then |%(A) - £(A)| < 1877.

Proof: There are four cases to consider:

Case 1 A is a variable xi.

In this case, by Lemmas 5 and 11,
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where we have made use of the assumed accuracy of E [xi] and Cj, as well as the

facts that |x(A)| < 1, and that 1 - E[ xi] > 1 - E [xi] -T> /Ci /- r > 3 - r (by
equation (5)).

Case 2 A is some MUL gate Fij.

In this case, £(A) = x(p(A)) = Eke for some pair k,l for which F'ij = F'kl (i.e.,
k,l was the pair chosen arbitrarily by our algorithm).

Without loss of generality, let Fik be the lowest common ancestor of Fij .and Fkl.
Then T'ik = T'ij = T'kl , and so every LIN gate is trapped on the paths from Pij to
Fik, and from Fkl to Fik. Applying Lemma 12 repeatedly to each of the n1 MUL
gates on the (inclusive) path from Fij to Fik, we see that

Similarly,

where n2 is the number of MUL gates on the path from Fkl to Fik. Thus,

Since n1+n2—1 < n (the maximum number of MUL gates in f), and since x(A) = Eij
and x(A) = Ek l , the lemma follows in this case.

Case 3 A is a LIN gate which, feeds some MUL gate AQ.

In this case, x(A) = x(Ao), by Lemma 11. Also, by definition,

since p(X) immediately feeds p(\o) in a'. Thus,

and the lemma follows in this case by the proof for Case 2.

Case 4 A is the output LIN gate.

In this case, x(A) = E[f], and x(A) = x(p(A)) = E[f], since p(X) is the output
gate of a'. Thus,

As mentioned, our reconstruction procedure works by visiting each node A of the
given skeleton from the bottom up, starting with the input variables, estimating at
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each node the canonical form h for the subformula g subsumed by A. An estimate
h of h is computed based on: (1) the node type of A, (2) the function x, and (3) the
previously computed estimates hi of the canonical forms of the subformulas which
immediately feed A.

Specifically, the algorithm works as follows, depending on the node type of A.

Case 1 A is a variable xi.

In this case, g = xi, and h = E [df/dx] . xi = BiXi. Motivated by equation (5),
we estimate Bi using

and we set h = Bixi.

Case 2 A is a MUL gate.

In this case, A computes the product of k subformulas whose canonical forms have
previously been estimated by h 1 , . . . ,hk. (Although / contains only binary MUL
gates, we will want to apply this procedure to a' which may include non-unary MUL
gates.) In this case, we set

(The motivation for this choice will be seen below.)

Case 3 X is a LIN gate.

In this case, A computes a weighted sum of k subformulas whose canonical forms
were estimated by h i , . . . , h k . Let A1, . . . , Ak be the gates which immediately feed
A. Then we set

(Again, motivation will be provided below.)
The first fact we will want to prove about this procedure is that it yields the same

result whether applied to a or a'. This is proved in the lemmas below.
We say that a node A in a is an apex-child of another node AO if A is an apex

node which feeds AQ, and if there are no other apex nodes in a on the path from A
to AQ.

Also, we write h(\) to denote the function h computed by the above procedure
upon visiting gate A. Here, it is understood that h(X) was computed using the
skeleton (a or a') to which A belongs.
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Lemma 14 Let A be a MUL gate or a trapped LIN gate of a, and let A1, . . . , Ak be
its apex-children. Then

Proof: By induction on the maximum depth of the apex-children (relative to A).
The lemma holds trivially in the degenerate base case that this depth is zero (i.e.,

k = 1).
Suppose first that A is a trapped LIN gate immediately fed by MUL gate AQ. By

definition, p(X) = p(\o), so x(A) = x(Ao). Thus, our procedure computes

The lemma then follows in this case by our inductive hypothesis on AO, and because
AQ has the same apex-children as A.

Suppose now that A is a MUL gate immediately fed by nodes FI and F2. (Since A
is in T, it must be binary.) Then without loss of generality, A1, . . . , Ar are the apex-
children of FI, and A r + 1 , . . . , Ak are the apex-children of F2, for some 1 < r < k.
Then our procedure computes

which, by inductive hypothesis, equals

If r > 1, then FI cannot be an apex gate, which implies that p ( T 1 ) = p(X) and so
X(F1) = x(A). Thus, for r > 1, (x^(T1))r-1 = ( x ( Y ) ) r - 1 .(Equality holds trivially
when r = 1.)

Similarly, for r < k - 1, (x(F 2)) k - r - 1 = ( * ( A ) ) k - r - 1 . Thus, as desired,

Lemma 15 Let A be an apex node of a. Then h(\) = h(p(X}).

Proof: By induction on the depth of the subformula subsumed by A. The result
is trivial in the base case that A is a variable.

Suppose A is a LIN gate. Let A 1 , . . . , A k be the gates which immediately feed
A. Then each Ai is an apex node, so by inductive hypothesis, h(\i) = h(p(\i)).
Since the same computation is performed by the procedure in computing h(X) and
h(p(\}), the result follows trivially.
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Finally, suppose A is a MUL gate. Let A1, . . . , Ak be the apex-children of A. Then
in <r', p ( A i ) , . . . ,p (A k ) are exactly the gates that immediately feed p(A). Thus, by
Lemma 14 and the inductive hypothesis, we have as desired

Thus, in particular, since the output gate of a is an apex gate, Lemma 15 shows
that the final formula computed by our procedure if applied to a would be the
same as that computed for a'. Therefore, although the procedure would in fact be
applied to a1, we will analyze its result as if it were computed using a.

Suppose the procedure is visiting node A, which subsumes subformula g with
canonical form h. The procedure computes an estimate h of h. For analysis pur-
poses, we define an estimator g = h/E [df/dg]. We will prove, by induction, that

where s is the number of nodes subsumed by A (inclusive). Since, when A is the
output node, f = g = h and g = h, and since an easy induction argument shows
that there are at most 4n — 2 nodes in the entire formula f, this will prove that the
final output formula / is such that

As usual, there are several cases to consider.

Case 1 A is a variable xi.

In this case, g = xi, and, as noted above, h = Bixi, and h = Bixi.
Then

and Then

Using Lemma 5, we have that (14) is at most
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since Ci = Biq, and 2r < |/9 < \\Ci\. Thus, the inductive hypothesis is satisfied
in this case since there is only one node subsumed by A.

Case 2 A is a MUL gate.

Since A is a MUL gate of a, it must be binary, and so must be immediately fed by
two nodes A1 and A2; these nodes subsume two subformulas g1 and g2 (respectively),
so g = g1g2.Let h1 and h2 be the canonical forms of g1 and g2. We have that

Similarly,

Thus,

Note that, if h1 and h2 are the previously computed estimates of h1 and h2, then
our procedure computes

For ease of notation, let K = E [df/dg], let e = x(A) and let e = x(A). We would
like to compute the error of g = h/K. We assume inductively that the estimates
g1 and g2 are such that

where Si is the number of nodes in gi. By definition, h1 = Kg2g1 and h2 = Kg1g2.
Thus,
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So we can analyze the error of g as:

We have that \ e -e / < 18^/n < \£P < \ e\ by Lemmas 11 and 13. Thus, the first
term of (15) can be bounded by

Also,

Thus, expression (16) is at most

Note that

where xi is any variable relevant to g. Likewise, \Kg1\ = E[9//9g2]| > (3, and
similarly, \Kg2\ > 3.

Combining facts and rearranging terms, this shows that expression (15) is at most

where s = s1 + s2 + 1 is the number of nodes in g, and where we have used the fact
that 367n < /?2. We have that
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Also, since s1 + s2 < s < 4n, and since eQ < 1/n,

Combined with (17), these facts show that

as desired.

Case 3 A is a LIN gate.

In this case, the gate A is fed by k nodes A 1 , . . . , A k . These nodes subsume
subformulas g1,. ..,gk, each gi having canonical form hi, estimated by hi. Let Si

be the number of nodes in gi. Then by inductive hypothesis,

where, as usual, gi = hi/E [df/dgi\.
Let K = E[df/dg], and suppose that g = z + ^Wigi where z and the w i's

are constants. (If not otherwise specified, it is understood here and below that all
summations are for i = 1,..., k.) Then

Thus,

Since and this equation implies that

and so

This is the motivation for our algorithm estimating h by
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Recall that h = Kg and hi — Kwigi. Thus,

and so, letting s = 1 + ^ si be the number of nodes in g, we have

as desired.
Combined with the previous cases, this completes the induction, and proves that

the final computed hypothesis f has error at most E /f — f / < eo/2 < e/2.

3.5. Putting it all together

Thus, we showed in Stage I how to eliminate uncorrelated variables from the target
formula /, yielding another formula f1 with E [|f - fI|] < e/2.

In Stage II, we regarded fI as the target, and showed how to identify gate types,
and how to find a skeleton a' of fI that closely approximates the true skeleton a.

Finally, in Stage III, we described a procedure for filling in the missing LlN-gate
parameters. In particular, we showed that this procedure yields the same result
whether applied to the true skeleton r, or its approximation a'. Then we showed

.
that when applied to a, the result / is such that E m — / < e/2. It follows

immediately that E / f- f/ < e as desired. In other words, / is an e-good model
of probability for / with probability at least 1—6.

All of the operations described are clearly polynomial time, and the sample size is
also polynomial. The sample was needed to estimate various expectations. For the
accuracy needed, we can use Hoeffding's (1963) Inequality to show that a sample
of size O(log(n/5)/r2) suffices.

After the sample is drawn our algorithm records the obtained estimates of these
values. All of the remaining operations of the algorithm take negligible time com-
pared to the time needed to compute and record these values from the sample.

Thus we have:
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Theorem 1 There exists an algorithm with the following properties: Given e, 6 > 0
and access to random examples chosen according to a product distribution and clas-
sified randomly according to some read-once real formula f, the algorithm outputs
an e-good model of probability for f with probability at least 1 — 8. The sample size
needed by the algorithm is

and its running time is

From the comments made in Section 2, we have as corollary:

Corollary 1 There exists a polynomial-time algorithm that PAC-learns the class
of read-once Boolean formulas against any product distribution.

Finally, we remark briefly that the algorithm given in this paper, though analyzed
only for Boolean variables, can in fact be modified to handle real-valued variables
with range in [0,1]. Note that if xi is not Boolean, then equation (5) may not hold.
However, the given derivation of that equation does show that, in general,

where var(xi) is simply the variance of xi :

Similarly, equation (9) becomes

Using these modified versions of equations (5) and (9) we can adjust the rest of the
proof appropriately to derive a similar learnability result for non-Boolean variables
(with some degradation in the time and sample complexity).

4. Conclusion and open problems

In this paper, we have described a polynomial-time algorithm for learning a class
of probabilistic read-once formulas. The algorithm reconstructs an approximation
of the formula using empirical estimates of various statistical measures.

The main open question is to determine how far this apparently powerful method
can be extended. For example, can such a technique be used to learn read-once
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formulas over other kinds of gates, such as parity or threshold gates? Can our
method be applied to formulas which are not read-once? Can it be extended beyond
product distributions? Can it be extended to the so-called two-oracle model? Are
there other classes entirely different to which it might be extended, such as decision
trees, or finite automata?

Considering the class discussed in this paper, can the algorithm used (or its analy-
sis) be significantly improved? Turning the question around, can we find good, non-
trivial lower bounds for such distribution-specific learning problems? It is unclear
what such a lower-bound proof would look like, especially since, in the PAC model,
much smaller sample sizes are known to suffice in a computationally unbounded
setting. (This follows, for instance, from Occam's Razor of Blumer et al. (1987).)
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