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Abstract. A paradigm of scientific discovery is defined within a first-order logical framework. Within this paradigm,
the concept of “‘successful scientific inquiry” is formalized and investigated. Among other results, it is shown
that a simple method of scientific inquiry is universal in the sense that it leads to success on every problem for
which success is in principle possible.
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1. Introduction

The present paper advances a formal paradigm of scientific investigation, defines a specific
method of inquiry within it, and then demonstrates that the method is universal in the follow-
ing sense. Given any scientific situation that can be represented by the paradigm, if there
is some method that leads to scientific success in that situation, then our method does so
also. In addition, the method is machine simulable.

The method in question is a rough implementation of the following advice to scientists.

(1) Suppose that you know theory T to be true and that you are in possession of data-set

a. Then:

a) Believe T and o.

b) Believe any single claim ¢ of the form vxAx (with A quantifier-free) that does not
contradict T and o.

¢) Believe the logical consequences of your beliefs.

d) Believe nothing else.

e) Announce as a hypothesis the first sentence 8 (in some fixed, well-ordering of sen-
tences) such that:
i. you believe 6,
ii. 6 has a suitably complex or otherwise interesting form;
iii. 8 does not follow logically from T and o.

If you follow the advice then (e)ii will prevent you from announcing insipid hypotheses,
and (e)iii will prevent you from annoucing hypotheses that do not rest on genuinely inductive
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inference. Of course, these latter virtues also accrue to the advice: “Advance no hypotheses
at all!”” So the merit of the advice depends on the fact that it underlies a universal method
of inquiry, as will be demonstrated.

Before such a demonstration can be attempted, several concepts must be clarified, a task
that leads naturally to the definition of a formal paradigm of empirical inquiry. Such a
paradigm serves as an abstract model of genuine scientific investigation, including a represen-
tation of background theories 7, of the states of Nature consistent with T, of the data o
available to scientists, and of scientific success. Within such a context, (1) can be translated
into a specific method of scientific investigation, and the associated universality claim takes
on precise mathematical meaning. Needless to say, the interest of such a claim is bounded
by the fidelity to actual empirical inquiry of the underlying formal paradigm. Although
there can be no definitive judgment about such fidelity, we note that variants of our paradigm
have already been the focus of studies devoted to diverse aspects of scientific investigation
(see Gaifman, Osherson & Weinstein, 1990; Osherson & Weinstein, 1990; Glymour, 1985,
Osherson, Stob & Weinstein, 1988; Glymour & Kelly, 1989; and Shapiro, 1981).

The present discussion is organized as follows. Section 2 introduces and motivates the
paradigm, and Section 3 reformulates (1) as a method of inquiry. In Section 4 we state
a theorem which establishes that using the methed is a guarantee for scientific success
in any situation where success is possible and some corollaries of this theorem. Proofs
of the theorem and corollaries may be found in Osherson, Stob and Weinstein (1990). Sec-
tion 5 contains a brief discussion of another paradigm of scientific inquiry. The final sec-
tion is devoted to concluding remarks.

2. A paradigm of scientific inquiry
2.1. Preliminaries

Our paradigm is embedded in a first-order logical context. We fix for the remainder of
the discussion a countable, first-order language £ with identity. The sentences of £ are
denoted by £, the formulas by 5. ¢ € By, is called basic just in case ¢ is an atomic
formula or the negation of such. The set of all basic formulas is denoted BAS. The set
{0, 1, 2, ...} of natural numbers is denoted by N. We rely on the following convention
regarding implication between sets of open formulas, namely: given X, ¥ € 5;,,,, X = ¥
iff for all structures S and all assignments 4 to the variables of £, if S &= X[h] then
S = Yhl.

¢ € L,y is existential if ¢ has the form 3xAx, where A is quantifier-free. In the sequel
we shall be interested in the set of existential sentences satisfied by a given structure for
£. Thus we define:

(2) DEeFINITION: Let structure < be given. The set

{¢ € L, | S = ¢and ¢ is existential}

is denoted by Thy(<S5).
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2.2. States of Nature

Within our paradigm, a possible state of Nature is interpreted as a countable structure that
interprets £. It is possible to extend our paradigm to structures with uncountable domains
(see Osherson, Stob and Weinstein (1991)) for such extension in an analogous setting). For
simplicity such extension is not developed here. Henceforth, by “‘structure” is meant count-
able structure that interprets £.

Nature is conceived as arbitrarily choosing one structure from a predefined class of
possibilities; the chosen structure is the “actualized” possibility, unknown to the scientist
at first. The task of the scientist is to discover some interesting property of Nature’s choice.
For this purpose, Nature provides hints in the form of basic formulas satisfiable in the
structure she has chosen. The scientist must convert these hints into a stable, true and in-
teresting hypothesis about the unknown structure. To make this clear, we rely on the following
terminology.

By a complete assignment to a structure < is meant any mapping of the (countable) set
of variables of 4 onto |S|. Thus, a complete assignment to S provides every member
of | S| with at least one temporary name. Given a theory T € B, the class of struc-
tures that satisfy T is denoted MOD(T). The class of structures from which Nature makes
her choice is conceived as having the form MOD(T) for some T £ £,,,. Such a class
may be interpreted as all the possible realities consistent with existing scientific knowledge,
namely, the knowledge embodied in the background theory 7. The contents of this class
may be communicated to the scientist via 7.

2.3. The data made available to scientists

Nature provides information about her chosen structure S by placing the scientist in an
environment governed by . This idea is formalized as follows. An environment is any
w-sequence over BAS. The set of formulas appearing in an environment e is denoted by
range(e). We conceive of Ax € range(e) [respectively, =1 Ax € range(e)] as a message from
Nature of the form: “The objects assigned temporary names x fall {do not fall] into the
set that interprets A.” The following definition specifies the sense in which a structure governs
an environment.

(3) DerINITION: Let environment e, structure <§, and complete assignment g to < be
given. e is for S via g just in case range(e) = {8 € BAS | S = Blgl}. eis for S
just in case e is for S via some complete assignment.

To illustrate, suppose that the following environment e is for structure .

Pxy - Ox3%7 X4 = Xs Px,

Then e may be construed as the following, endless message about .
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The object given temporary name x, belongs to P°. The object with temporary name
x5 is such that the pair x3, x, belongs to the complement of Q°. The objects given
temporary names x, and x5 are identical. Object x, (and hence object x5) belongs to
P ...

An environment for a structure < provides a clear picture of 5. This is the content of
the following lemma, proved in Osherson and Weinstein (1986).

(4) LemMa: Let environment e and structures S and @ be given. If e is for both § and
@ then S and @ are isomorphic.

Given i € N and environment e, the finite initial segment of length i in e is denoted by
¢;. The next two lemmas are easy consequences of the Compactness Theorem and will
be used later. Their formulation is aided by the following notation.

(5) DEerFINITION: Let ¢ be a finite sequence over BAS, and suppose that the free variables
appearing in ¢ are x = x; ... x,. The conjunction, in order of appearance, of the
basic formulas of ¢ is denoted by Aa. The existential closure 3xAg of Ac is denoted 3Aa.

(6) LeEmMA: Let T & £, and structure S be given. Suppose that e is an environment
for S. Then for all 8 € 5,,, T U Thy(S) = 0 iff for somei € N, TU {3A¢;} = 6.

(7) LeMMa: Let ¢ be an environment for structure S via complete assignment g. Let £
€ Lym be quantifier-free. Then S = £[g] implies that for some i € N, Aé; &= £.

2.4. Scientists

Scientists are conceived as working in an environment e for a structure S by examining
€1, €3, . ... inturn. After each such examination, the scientist announces some 8 € 5,,,
to express the hypothesis that S = §. Lemma (4) ensures that no ambiguity arises about
the truth of such hypotheses. To proceed formally, let SEQ be the set of all finite sequences
over BAS. (Thus, SEQ = {¢; | e is an environment and i € N}.) By a (formal) scientist
is meant any function from SEQ to £,,,,. Note that scientists can be total or partial, com-
putable or uncomputable.

2.5. Success

To be successful in a given environment, we stipulate that a scientist’s successive conjec-
tures must eventually stabilize to a sentence that is true and interesting. Stabilization is
equated with “‘convergence,” defined as follows.

(8) DEFINITION: Let environment e, 8 € 5, and scientist ¥ be given. ¥ converges on
e to 0 just in case ¥(e;) = 0 for all but finitely many i € N. In this case we write
Y(e) = 0.
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We now consider the conditions under which a hypothesis 8 is interesting. That 6 be
true may be entered as the first such condition. The other conditions are that:

(a) 6 be suitably complex; and
(b) 8 not be a logical consequence of the background theory plus the available data.

Condition (a) might require that § exhibit a certain quantificational form such as being
logically equivalent over the background theory to no II, or I, sentence, Rather than at-
tempting to stipulate once and for all the kind of complexity required, we shall leave such
specification as a free parameter in our definition of “‘interesting hypothesis.”” Condition
(b) is intended to disallow hypotheses that are mere logical consequences of the informa-
tion available to a scientist, resting on no scientific competence of an inductive or empiri-
cal nature. Whether a hypothesis satisfies (b) thus depends on the background theory com-
municated to the scientist and on the structure underlying the environment in which he
is working. These items also figure as parameters in our definition.

(9 DerNITION: Let T, P € 5, structure S, and 8 € 5, be given. 8 is S, T, P-
interesting just in case:

@ Sk
b)bebP
(©) TU Thy(S) & 6

In the definition, P represents the class of potentially interesting hypotheses (having the
right form or complexity), T represents the background theory communicated to the scien-
tist, and S represents Nature’s choice of reality from among MOD(T). By Lemma (6),
clause (c) may be read: ¢ does not follow from T conjoined with any evidence available
in an environment for .

Within our paradigm, scientific success is conceived as extending the background theory
by adding a true and interesting hypothesis. Success is thus called “‘extension,” as specified
in the following definition.

(10) DeFINITION: Let 7, P € 55, and scientist ¥ be given. ¥ P-extends T just in case
for every S € MOD(T) and every environment e for S there is § € 5,,, such that:

(a) 0 is S, T, P-interesting,
(b) ¥(e) = 6.

In this case, T is P-extendable.

If P = £5,,, then the definition comes to this. ¥ extends theory T just in case for every
environment e for a structure ¢ satisfying 7, ¥ converges to a sentence that is true in S
and does not follow from T U 7hy(S). If P is a proper subset of 5, then the additional
requirement is imposed that the sentence have suitable complexity or form.
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We shortly provide examples of extendability and of nonextendability. First we discuss
and set aside some trivial reasons for nonextendability.

2.6. Semi-complete theories

Suppose that T < £, is the background theory communicated to a scientist ¥ about the
structure <5 in which ¥ is working. If T'is complete then ¥ cannot extend knowledge about
S, so scientific success is impossible on trivial grounds. But even if 7 is not complete,
T may be so strong as to prevent ¥ from conjecturing interesting sentences about certain
structures. The following definition formulates this idea.

(11) DeFINITION: Let T, P € 5,,, be given. T is semi-complete with respect to P just
in case there is § € MOD(T) such that for all § € P, either T U Thy(S) &= o or
T YU Thy(Sy = 6.

The reason that semi-complete theories render extension trivially impossible is this:

(12) LemMa: Let T, P € 4, be such that T is semi-complete with respect to P. Then
for some S € MOD(T), {0 € B,,, | 0 is S, T, P-interesting} = 4.

For example, suppose that P = £, and that T is model complete (for the concept of
model-completeness, see Chang and Keisler (1973, Section 3.1). Then T is semi-complete
with respect to P. This is because of the following fact about model completeness.

(13) Let T < £,,, be model complete. Then for every 6 € 5, there is existential ¢ €
Lpsuchthat T = ¢ < 6.

None of the results of the present paper hinge on the existence of semi-complete theories.

2.7 Examples

Here is an example of extendability followed by an example of nonextendability. The ex-
amples follow as corollaries to our main result (for proofs of these corollaries see Osher-
son, Stob and Weinstein (1990, Section 5)).

(14) ExAMPLE: Suppose that £ is limited to the binary relation symbol R, and let finite
T ¢ B, axiomatize the linear orders with either first or last points (or both).
Assume that P includes the properly I, sentences (i.e., the existential-universal
sentences that are not logically equivalent to any sentence of the form 3x¢ or Vxe
for quantifier free ). Then some total computable scientist P-extends 7. Observe that
for all infinite S, % € MOD(T), Thy(S) = Thy( %). So this example shows that ex-
tension is not ruled out in such cases.
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(15) ExaMpLE: Let £5 be as in Exmple (14), and let T € £,,, axiomatize the linear orders
without endpoints. Then even if P is taken to be all of £, T is not P-extendable.

3. A universal method

The advice given in (1) inspires the design for a specific scientist, to be called “M>” M
is a Turing machine with two oracles (for a discussion of such devices, see Rogers (1967,
Chapter 9)). One oracle holds whatever theory 7 is to be extended. The other holds what-
ever subset P of £, constitutes the set of potentially interesting hypotheses. If attention
is limited to cases in which both 7 and P are recursively enumerable then M’s oracles can
be replaced by two additional arguments, namely, the corresponding r.e. indices; see Cor-
ollary (19) in Section 4.
Our description of M requires two definitions.

(16) DerINITION: Given T, P € £4,,,, we denote by T, P-potential the collection of all
pairs (¢, 8) such that:

(@) ¢ € 6)form and 6 € Esen
(b) ¢ is universal
c)beP

@TU {p} =6

(17) DeriNiTION: Given T, P € £, and o € SEQ, we denote by T, P, o-cancelled the
set of all (¢, ) € T, P-porential such that either:

@ TU {3 A0} = 8or
b TU {Ao} = np

M relies on two uniform methods. The first converts any oracles T, P € £, into a 7,
P-recursive enumeration of 7, P-potential. The second converts any oracles T, P € £,
and any ¢ € SEQ into a 7, P-recursive enumeration of 7, P, o-cancelled. The compactness
and completeness theorems for first-order logic guarantee the existence of such methods.
Given T, P € 5,,,. 0 € SEQ, and n € N, the set consisting of the first n members of M’s
enumeration of 7, P, o-cancelled is denoted by [T, P, o-cancelled, n).

Given T, P € £5,,, and 7 € SEQ, M"P finds the first pair (¢, ) (if such exists) in its
enumeration of 7, P-potential such that (¢, 0) € U, [T, P, o-cancelled,length(7)]. If no
such pair exists, then M*P(r) is undefined; otherwise, M™F(r) = 6. This concludes the
description of M.

More direct translation of (1) into a mechanical procedure is obstructed by clauses (1)b,
e (the set of nonconsequences of T and o is not in general effectively enumerable). It is
for this reason that M must generate the set 7, P, o-cancelled, which is progressively sub-
tracted from 7, P-potential. With this caveat in mind it is not hard to see that M’s behavior
is in rough conformity with (1).



268 D.N. OSHERSON, M. STOB AND S. WEINSTEIN

4. Universality of M and corollaries thereof

The following theorem establishes that M is universal in the sense of Section 1. The reader
may consult Osherson, Stob and Weinstein (1990, Section 4), for a proof of this theorem.

(18) THEOREM: For all T, P € A,,,, if T is P-extendable then M"F P-extends T.

According to the theorem, if T is P-extendable by either computable or noncomputable
scientist then such extension can be achieved by the machine M outfitted with 7 and P
as oracles. From the definition of M in Section 3 it is clear that the roles played by the
oracles for 7 and P can be played equally well by r.e. indices for these sets, if such indices
exist. This observation yields the following corollary.

(19) CoroLLARY: There is a total computable function f: N X N X SEQ — /5, such
that for all 7, P € £,,,, if T is P-extendable and if ¢, p € N are r.e. indices for T
and P respectively, then Ao.f(z, p, 0) P-extends T

A scientist who is successful on two environments for the same structure may nonetheless
converge on them to distinct sentences. We are thus led to formulate a stronger criterion
of scientific success, as follows.!

(20) DerFINITION: Let T, P € 45, and scientist ¥ be given. ¥ uniformly P-extends T just
in case for every S € MOD(T) there is S, T, P-interesting 8 € £,,, such that ¥(e)
= @ for every environment e for S. In this case, T is uniformly P-extendable.

It is obvious that if a theory is uniformly P-extendable then it is P-extendable. The con-
verse follows from the fact—easily verified—that given any T, P € £,,,, M"F uniformly
P-extends 7T if M"F P-extends T. Thus:

(21) CoroLLARY: For all T, P € A, if T is P-extendable then T is uniformly
P-extendable.

Our method M has another noteworthy property. For all T, P € £4,,, and all en-
vironments e for any S € MOD(T), if M™F converges on e to § € 5,,, then fis S , T,
P-interesting. This is true whether or not M"P P-extends 7. Thus, even when M is in-
capable of P-extending 7, M does not misleadingly persevere on a false hypothesis in en-
vironments embraced by 7. Adapting terminology from Blum and Blum (1975), scientists
with this quality may be termed ‘“reliable.”

(22) DeriNiTION: Let T, P © £, and scientist ¥ be given. ¥ is T, P-reliable just in case
for every S € MOD(T), every environment e for S, and every 8 € 53, if ¥(e) =
¢ then 6 is S, T, P-interesting.

Combining M’s reliability with its uniformity, we have the following.
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(23) CoroLLARY: There is an oracle machine M such that for all 7, P < 5,,,, M™F is
T, P-reliable, and if T is P-extendable then MTP uniformly P-extends T.

5. Truth detection

The foregoing paradigm is but one example of a formal construal of scientific inquiry. For
comparison, we will consider in this section another paradigm of scientific inquiry.

Scientific investigation is sometimes directed at determining the truth of a given conjec-
ture on the basis of available data instead of discovering some hypothesis to explain that
data. We proceed to modify the paradigm described above to model this notion of inquiry.
Once again, the possible states of nature under investigation are interpreted as countable
structures for a fixed, countable first-order language £ with identity and as before, scien-
tists gain access to data about such structures via environments for those structures, Scien-
tists themselves are now taken to be mappings from 5, X SEQ to {t, f}. Thus, a scien-
tist ¥ may be conceived as a system that converts arbitrary € £,,, into a function Ao. ¥ (8,
o) that conjectures a truth-value for 6 in whatever structure < has given rise to the data
a. To be successful on ¢ in S, ¥ must “detect” the truth-value of  in S, as specified
by the following definition.

(24) DEFINITION: Let @ € £, structure ¢S and scientist ¥ be given. ¥ detects 6 in S
just in case for every complete assignment g to S, and every environment e for
via g, if S = 6 then ¥(6, e,) = ¢ for cofinitely many n € N, and if S = -6 then
¥, e,) = f for cofinitely many n € N.

Thus, we credit ¥ with detecting 8 in S just in case ¥’s succesive conjectures about the
truth-value of @ in S eventually stabilize to the correct one in response to increasingly com-
plete information about <.

(25) DEFINITION: Let class A of structures, 8 € £5,,, and scientist ¥ be given. ¥ detects
6 in X just in case for all S € A, ¥ detects 8 in S. In this case 6 is detectable in K.

In Osherson, Stob and Weinstein (1991) it is shown that detection problems determined
by first-order background knowledge admit of a uniform solution. This is the content of
the following theorem, a proof of which may be found in Osherson, Stob and Weinstein
(1991, Section 3).

(26) Tueorem: There is an oracle machine M such that for all § € 5,,, and T € 5.,
if 6 is detectable in MOD(T) then M detects 8 in MOD(T).

This theorem yields the following syntactic characterization of detectability as a cor-
ollary, a proof of which may be found in Osherson, Stob and Weinstein (1991, Section 3).

(27) CorOLLARY: Let 0 € 5, and T S 5,,, be given.  is detectable in MOD(T) iff
both § and —@ are equivalent over T to existential-universal sentences.
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Theorem (26) suggests the following question: is uniform detection of the truth-value
of first-order sentences possible with respect to background knowledge expressed in
languages stronger than first-order logic, or does first-order logic enjoy a special status
for inductive inference? In Osherson, Stob and Weinstein (1991), we give a precise sense
to this question in the context of abstract model theory. We show that first-order logic can
in fact be characterized uniquely in terms of the uniform solvability of the detection prob-
lems which are expressible in its language.

6. Conclusion

The results above suggest that issues in knowledge representation can be fruitfully pursued
in connection with a model-theoretic approach to learning. Consider a sophisticated database,
DB. Part of the knowledge stored in DB may consist of well-confirmed statements that
axiomatize some class of models. To augment its knowledge, DB may rely exclusively on
external sources, or DB might launch an investigation of its own aided by an automated
system of scientific inquiry. In the latter case, it would be wise for DB to consider its pros-
pects for success. Is there any guarantee that DB could succeed in an arbitrary model of
its current axiom set? If DB restricts its attention to the “minimal models’ of its axioms
by adopting some version of the “‘closed world hypothesis” might success in its empirical
inquiry then be guaranteed? Suppose that DB’s discovery routine requires knowledge about
the truth of some sentence that does not follow from available data, but does receive sup-
port from some nonmonotone rule of inference. To what extent is the reliability of DB’s
routine compromised by supplying it with information of this sort? Such questions, and
others like them, are crucial to the confidence that DB may place in the results of its em-
pirical investigation. It would, therefore, be useful to equip DB in advance with the
mathematical means necessary to assess the feasibility of its contemplated empirical inquiry.

The answers to these feasibility questions depend, in part, on the kind of axioms which
DB takes as its scientific starting point, for example, whether the axioms are couched in
a first-order language, whether they are of special syntactic form, whether attention is
restricted to finite models, etc. The answers also depend on the data available to DB and
the criterion of success to which it aspires. Progress in answering these questions would
in all likelihood be facilitated by deploying the considerable understanding of logical theory
that has developed over the last century. This knowledge figures prominently in contem-
porary theoretical studies of knowledge representation. Perhaps it can be deployed, as well,
in computational learning theory, and form a bridge between the two disciplines.
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Notes

1. In Blum and Blum (1975) an analogous concept (called ‘‘order independence’’) is defined in a different induc-
tive setting.
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