
Machine Learning, 14, 7-26 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Randomly Fallible Teachers: Learning Monotone
DNF with an Incomplete Membership Oracle

DANA ANGLUIN ANGLUIN@CS.YALE.EDU
Department of Computer Science, Yale University, P. O. Box 2158, New Haven, CT 06520

DONNA K. SLONIM SLONIM@THEORY.LCS.MIT.EDU
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139

Editors: Ming Li and Leslie Valiant

Abstract. We introduce a new fault-tolerant model of algorithmic learning using an equivalence
oracle and an incomplete membership oracle, in which the answers to a random subset of the
learner's membership queries may be missing. We demonstrate that, with high probability, it
is still possible to learn monotone DNF formulas in polynomial time, provided that the fraction
of missing answers is bounded by some constant less than one. Even when half the membership
queries are expected to yield no information, our algorithm will exactly identify m-term, n-variable
monotone DNF formulas with an expected O(mn2) queries. The same task has been shown to
require exponential time using equivalence queries alone. We extend the algorithm to handle
some one-sided errors, and discuss several other possible error models. It is hoped that this work
may lead to a better understanding of the power of membership queries and the effects of faulty
teachers on query models of concept learning.

Keywords: concept learning, imperfect teachers, monotone DNF formulas, equivalence queries,
membership queries with missing information, persistent errors in queries

1. Introduction

Consider the problem of teaching a computer to recognize verbs in English sen-
tences. One approach for the teacher is to present sample sentences, pointing out
some verbs as positive examples of the target concept and some other words as neg-
ative examples. Prom this, the learner might develop a general idea of the target
concept. But in some sentences, other words may deceptively appear in verb form.
A natural extension allows the learner to ask specific questions of the type, "is this
word a verb?" In most cases, the teacher will know the answer from context. For
example, in the sample sentence "The department stores open at nine," the learner
might consider the possibility that "department" is the subject and "stores" is
used as a verb, but would be corrected by the teacher. However, there may be
instances in which even the teacher is unsure. The sentence "Tom is running back
for his school football team" has at least two legitimate interpretations; the word
"running" is a verb in one case but not in another. Without more information,
the teacher cannot answer the learner's question, "is 'running' a verb?" Can the
learner still learn, even when the teacher is sometimes unsure?

8 D. ANGLUIN AND D. SLONIM

This paper answers that question in the affirmative for the class of monotone DNF
formulas. We introduce a new fault-tolerant model of algorithmic learning using
an equivalence oracle and an incomplete membership oracle, in which the answers
to some of the learner's membership queries may be unavailable. The advantage of
this model is that it imitates the natural fallibility of teachers in most learning sys-
tems. Previous work on query models has generally assumed an omniscient teacher
that answers all queries with perfect accuracy. Such assumptions are impractical;
even well-intentioned teachers are seldom all-knowing. It is important to consider
the degree of teacher fallibility that these models can tolerate. This paper demon-
strates that efficient learning is possible even when the teacher is unable to answer
a constant fraction (less than one) of the questions asked. By defining a measur-
able tradeoff between membership and equivalence queries, our model yields some
insight into the degree of additional information that membership queries provide
a learning algorithm.

/./. Related Work

There has been a good deal of work done on errors in the distribution-free model
of learning introduced by Valiant (1984). Results are encouraging for the case of
random misclassification errors. In this benign error model, the teacher produces
labeled positive or negative examples, where the label for any example is incorrect
independently with probability n. Angluin and Laird (1988) show that information-
theoretically, as long as n is less than ½, a sequence of labeled examples of length
polynomial in (7, 7, ^2) is sufficient for pac-learning. In particular, they show
that k-CNF formulas are pac-learnable in polynomial time with a random noise
rate of less than ½.

Other work has focused on the case of malicious misclassification errors in ex-
amples. Valiant (1985) poses the question of learning k-CNF formulas despite an
adversarial teacher that draws random positive or negative examples, but with error
probability b returns an arbitrary response instead of the correctly labeled exam-
ple. Valiant shows that a small rate of error can be tolerated in this model. Kearns
and Li (1988) show that Valiant's error bound is tight; they use an information-
theoretic argument to prove that a malicious error rate of at most O(e) is tolerable
when pac-learning any distinct concept class C. A number of other papers further
explore various models in which the examples themselves or their classifications are
corrupted (see Laird, 1987; Shackelford and Volper, 1988; Sloan, 1988, 1989; among
others).

Less is known about errors in query models. Sakakibara (1991) proposes a model
of noise in queries, which assumes that every time a query is asked there is some
independent probability of getting the wrong answer. Sakakibara gives a general
technique to repeat a query sufficiently often to increase the confidence in the answer
to a very high level, which allows existing algorithms to be used with appropriate
modifications.

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 9

However, in some practical situations the problems of missing or incorrect infor-
mation may not be so easy to remedy. For example, when we ask a teacher to
classify a given element of the universe as a positive or negative example of the
target concept, it may happen that the teacher simply does not know, and will not
know no matter how many times we ask the same question. To address this prob-
lem, Goldman, Kearns, and Schapire (1990) consider a model of persistent noise in
membership queries, which is related to the model we adopt here (see the discussion
in Section 6).

1.2. Overview of the Model

Our model relies on the definition of a minimally adequate teacher (Angluin, 1987),
in which a learner tries to learn a target concept h* from a known concept class
H. In this (error-free) model, the learner is assisted by a teacher that answers two
types of queries. A membership query on a given string tells whether or not that
string is a positive example of h*; such a query is answered "yes" or "no". An
equivalence query tests a hypothesis h, returning 0 if h is equivalent to h*, and a
counterexample x such that h(x) ^ h * (x) otherwise. In this model, the choice of
the counterexample is arbitrary.

We consider a randomly fallible minimally adequate teacher. In particular, we
define an incomplete membership oracle that, for each string in the sample space,
performs one flip of a biased coin that lands "heads" with probability p. On any
string in the sample space whose coin landed "heads", membership queries are
always answered with "I don't know". On all other strings in the sample space
the membership oracle always answers correctly. In other words, with probability
p, the teacher may be unsure about a given string and will never gain any more
information about it. Note that this situation is "benign" in the sense that the
algorithm has only to deal with missing information - the information it gets is
guaranteed to be correct.

For equivalence queries we assume that the answers remain correct; that is, the
answer "0" is returned if and only if the queried element h is equivalent to the
target concept h* and otherwise the answer is a counterexample x such that h(x) ^
h*(x). This assumption means that exact identification of the target concept is still
possible (since an algorithm could simply perform identification by enumeration
using equivalence queries.)

However, in this new model we must specify the type of adversary selecting the
counterexamples. (This is also an issue in the standard model when randomized
learning algorithms are considered, as Maass (1991) has shown.) We assume that
the adversary is "on-line." That is, the choice of a counterexample may depend
on the target hypothesis and the history of the computation to the point at which
the query is asked, including the hypothesis queried, all previous queries and their
answers, and any previous coin-flips of the learning algorithm. However, the choice
of counterexample may not depend on the answers to membership queries not yet
made. This adversary is strong enough to generate the "worst-case" counterexam-

10 D. ANGLUIN AND D. SLONIM

pies used to provide lower bounds for equivalence queries (Angluin, 1990), but it
cannot predict the blind spots of the incomplete membership oracle.

1.3. Discussion of the Model

It may at first seem odd to assume that membership queries are flawed while equiv-
alence queries remain correct. However, consider the situation in which a learning
algorithm is attempting to predict the classification of a sequence of examples (pro-
duced and classified by Nature) with the assistance of a teacher who can correctly
classify some but not all of the possible examples (modeled by an incomplete mem-
bership oracle.) If we have an efficient learning algorithm using equivalence queries
and an incomplete membership oracle, then by a general transformation (Little-
stone, 1988) we can obtain an efficient algorithm for the prediction task in the
mistake bounded model that uses an incomplete membership oracle.

It may also seem unrealistic to consider a teacher whose failures occur uniformly at
random. Despite the weight of precedent, it is natural to look for a more reasonable
way of modeling a teacher's limitations. One possibility is for the teacher to be less
certain about data points which are "close to the border" of the target concept.
While this reasoning works well for certain graphic concepts, such as handwriting
recognition or intersections of half-planes, defining a general version may be more
challenging. Even if it were clear how to design such a model, working with it
is likely to be difficult. Reasoning about randomly flawed teachers has proven
considerably more tractable.

1.4. The Importance of Membership Queries

Certain classes of concepts, such as deterministic finite state acceptors and mono-
tone DNF formulas, have been shown to be learnable in polynomial time us-
ing equivalence and membership queries, but not using equivalence queries alone
(Valiant, 1984; Angluin, 1987, 1988, 1990). A natural question is to investigate
which of these concept classes remain learnable in polynomial time in the appropri-
ate sense in this new model, with an incomplete membership oracle. We may then
derive some measure of the "importance" of membership queries to the learning
algorithm as we vary the failure probability p from 0 (complete information from
membership queries) to 1 (no information from membership queries.)

In a recent paper, Angluin and Kharitonov (1991) explore a number of crypto-
graphic limitations on the power of membership queries. They show that, assuming
the intractability of either testing quadratic residues modulo a composite, inverting
RSA encryption, or factoring Blum integers, there is no polynomial time prediction
algorithm using membership queries for several important concept classes, including
the classes of Boolean formulas, 3u-formulas, NFA's, and CFG's. They also show
that if one-way functions exist, then membership queries provide no additional
power in learning general CNF or DNF. That is, either these classes are learnable

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 11

without membership queries, or they are not learnable even with membership que-
ries. Their work is especially relevant in light of the results of this paper, showing
that membership queries do provide additional power to some learning algorithms,
even when only a fraction of the queries are answered. It would be interesting to
find a general characterization of the concept classes for which this is the case.

Monotone concept classes are particularly promising for this new model, since
there is the hope of reconstructing missing information from responses to additional
queries. In this paper we examine the learnability of monotone DNF formulas over
n variables. There is a known algorithm for exactly learning these formulas from a
minimally adequate teacher in time polynomial in n and m, where m is the number
of terms in the target formula (Valiant, 1984; Angluin, 1988). We present an
algorithm for the new model that, for any failure probability p < 1, produces with
probability at least 1 — e-s a hypothesis equivalent to the target concept in time
polynomial in n, m and s. The running time of this algorithm is not dominated by
the failure probability for moderate p; when p < ½, the expected total number of
queries is O(mn2).

We observe that when p is nonzero, there is a nonzero probability that the al-
gorithm will obtain no information from any of its membership queries. However,
there is no algorithm that runs in time polynomial in n and m and exactly identifies
any monotone DNF formula using equivalence queries only (Angluin, 1990). Thus,
the quantification of "with high probability" is necessary in the statement of our
main result.

2. Preliminaries

The target concepts are monotone DNF formulas over the variables x 1 , . . . ,xn for
some positive integer n. For example, for n = 20,

is a possible target concept. The number of terms in the target formula will be
denoted by m; in this example m = 4. Note that there is an efficient algorithm to
minimize the number of terms of a monotone DNF formula. We shall assume that
the target formula h* has been minimized.

The sample space of examples is the set of all possible vectors of n 0's and 1's;
that is, the set {0,1}". A monotone DNF formula h is interpreted as denoting the
set of vectors from the sample space that satisfy h. If vector v satisfies formula h
we write h(v) = 1; otherwise h(v) = 0. We view the sample space as a lattice, with
componentwise "or" and "and" as the lattice operations. The top element is the
vector of all 1's, and the bottom element is the vector of all 0's. The elements are
partially ordered by <, where v < w if and only if v[i] < w[i] for all 1 < i < n.

For convenience, we introduce an alternative representation of monotone DNF
formulas in which each term is represented by the minimum vector in the ordering
< that satisfies the term. Thus, the vector 10011 denotes the term x1x4x5. In this

12 D. ANGLUIN AND D. SLONIM

representation, if h is a monotone DNF formula and v is a vector in the sample
space, v satisfies h if and only if for some term w of h, w < v. Figure 1 shows
the four-variable lattice, with the enclosed area containing all vectors satisfying the
formula x1x4 + x1x2 + x3.

Figure 1. The target concept x1x4 + x1x2 + x3.

In this representation, since we have assumed that the target concept h* is min-
imized, the terms of h* are precisely the minimal positive examples of h*, also
called minterms. Similarly, we define a maxterm tm of the formula to be a maximal
negative example of h*. That is, h*(tm) = 0, but if any variable not in tm is added,
the resulting vector will force the target formula to 1.

The descendants of a vector v are all the vectors w in the sample space such
that w < v. For any nonnegative constant d, the d-descendants of v are all the
descendants w of v that can be obtained from v by replacing at most d 1's by 0's. For
example, consider the term x2x3x4 ,represented as 0111. Its set of 1-descendants,
{0111, 0011, 0101, 0110}, contains the term itself and its three children. The set
of 2-descendants is the union of the set of 1-descendants with 0111's grandchildren:
0001, 0010, and 0100. Figure 2 shows the set of 2-descendants of the vector 0111.

3. Using Incomplete Membership Queries

A key subprocedure in the monotone DNF algorithm of Angluin (1988) takes a
positive example v of the target concept h* and uses membership queries to reduce

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 13

Figure S. The 2-descendants of x2x3x4.

v to a minimum positive example of h*. The algorithm starts with the empty
formula and uses equivalence queries to generate new positive counterexamples to
reduce. The result of each reduction is a new term of h*, which is added to the
current hypothesis. After m iterations of this process the current hypothesis is
equivalent to h*.

Our new algorithm is based on the same idea, but must use an incomplete mem-
bership oracle. The difficulty that arises is as follows. The reduction process has
a current positive example v of h* and makes membership queries for each of the
children of v. As long as at least one of these membership queries is answered
"yes," say for the vector y, then v can be replaced by y and the process repeated.
However, eventually the process arrives at a positive example v of h* such that
membership queries for all of the children of v are answered either "no" or "I don't
know." If there is at least one child of v answered "I don't know," then v may or
may not be a minimum positive example of h*.

We therefore propose and analyze a new reduction process to be used with an
incomplete membership oracle. The goal is to take an initial positive example v of
h* and reduce it to a positive example that is "likely" to be "not too far above"
a minimum positive example of h*. By adding all sufficiently close descendants of
this vector as terms to the current hypothesis, we will be "likely" to add a new
term of h*, and therefore, to make progress towards exact identification of h*. In
so doing, we may add terms to the current hypothesis that do not imply h*, but
these will eventually be removed in response to negative counterexamples.

14 D. ANGLUIN AND D. SLONIM

The idea of the new reduction process is to use membership queries to search
not only the children of v but also all the "close enough" descendants of v, look-
ing for a vector y < v that is answered "yes." If such a y is found, then the
search continues with y in place of v. If no such y is found after querying all the
"close enough" descendants of v, then v is returned. Note that the descendants are
searched in breadth-first order - first the children of v, then the grandchildren, etc.
The parameter d > I specifies the depth of search from v.

1. Reduce (v,d):

2. Let D be the proper d-descendants of v
3. For each y €. D in breadth-first order
4. If membership-query (y) = "yes" then
5. Return Reduce (y, d)
6. Endif
7. Endfor
8. Return v

9. End.

Suppose Reduce is called with an incomplete membership oracle for h*, and
inputs v (a positive example of h*) and d > 1. It is clear that Reduce must
eventually return a vector v' such that v' < v, v' is a positive example of h*, and
membership queries for all the proper d-descendants of v' were answered either "no"
or "I don't know." We analyze the probability that there is NO minimum positive
example of h*, among the d-descendants of v'.

We begin with a couple of simple observations. If w is a positive example of h* and
d is a positive integer, let D+(w, d) denote the number of proper d-descendants of w
that are positive examples of h*. Also, let S(w,d) be the "success" indicator; that
is, S(w, d) = 1 if w has a minimum positive example of h* among its d-descendants,
and S(w, d) = 0 otherwise.

Lemma 1 Suppose w is a positive example of h* and d is a positive integer such
that S(w,d) = 0. Then D+(w,d) > 2d+1 - 2.

Proof: Since w is a positive example of h*, there is some minimum positive
example w' of h* such that w' < w. Since by assumption w' is not among the
d-descendants of w, there must be some set of d + 1 bit positions that contain a 1
in w and a 0 in w'. Every vector w" obtained by taking w and setting at least one
and not more than d of these bit positions to 0 is a proper d-descendant of w that
is a positive example of h* (because w' < w"). Since there are exactly 2d+1 — 2
distinct such vectors w", the result follows. •

Lemma 2 Suppose w and w' are positive examples of h* and w > w'. Then for
each positive integer d, D+(w,d) > D+(w',d).

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 15

Proof: Let z be the vector that is the bitwise "exclusive or" of w and w'; that
is, z has 1's in precisely those positions where w has a 1 and w' has a 0. Then for
each vector y that is a proper d-descendant of w' and a positive example of h* the
bitwise "or" of z and y is a proper d-descendant of w that is a positive example of
h* and these are all distinct, so D+(w,d) > D+(w',d).

To see that the inequality is strict, note that z must contain at least one 1, say
at position i, and the vector w" obtained from w by setting the bit at position
i to 0 is a proper d-deseendant of w (since d > 1) that is a positive example of
h* (since w" > w') and is distinct from all the vectors obtained by bitwise "or"
with z (since z has a 1 in position i.) It follows that D+(w,d) > D+(w',d).

m

Now we proceed to the main lemma for Reduce. In order to be able to apply
the lemma to successive calls to Reduce during a single run, we assume that some
membership queries have already been made to the incomplete membership oracle
(thus committing the oracle to the answers already given.) However, because of
the assumptions of our model, when a previously unqueried element of the domain
is queried for the first time, the determination of whether the answer will be "I
don't know" may be assumed to be made by an independent biased coin toss at
that point.

Lemma 3 Let h* be a monotone DNF formula. Assume we have an incomplete
membership oracle for h* with failure probability p, and some queries have already
been made to the oracle. Assume that v is a positive example of h* such that
no descendant of v that is a positive example of h* has yet been the subject of a
membership query to the oracle. Let d be a positive integer, and let g(d) = 2d+1 — 2.
Suppose D+(v,d) = r and r > g(d). Let Reduce be called with arguments v and d
and let y denote the vector returned. Then the probability that there is NO minimum
positive example of h* among the d-descendants of y (that is, the probability that
S(y, d) = 0) is bounded above by

Proof: We proceed by induction on increasing values of D+(v,d), starting with
g(d). Note that Lemma 2 guarantees that each recursive call of Reduce will have a
strictly smaller value of D+(v,d) than the parent call. Moreover, Lemma 1 implies
that if the value of D+(v, d) ever drops below g(d), then Reduce must return a
vector y such that S(y,d) = I.

Suppose then that in the top level call of Reduce, D+(v,d) = g(d). In order to
return a vector y such that S(y, d) = 0, Reduce must not be called recursively. In
other words, the initial call to Reduce makes a membership query for each proper
d-descendant of v, and each one is answered either "no" or "I don't know." In
particular, all the queries to positive examples of h* must be answered "I don't
know."

16 D. ANGLUIN AND D. SLONIM

Since there are g(d) positive examples of h* among the proper d-descendants of
v, and since by hypothesis each of them has not been previously queried, the event
that they are all answered "I don't know" has probability pg(d). Thus, in this case
the probability of returning the vector y equal to v, so that S(y, d) = 0, is bounded
by pg(d), establishing the base case of the lemma.

Now suppose that for any vector v such that g(d) < D+(v, d) <r -I, the lemma
holds. Suppose that Reduce is called with arguments v and d, with D+(v, d) = r.
There are two cases: either a recursive call is made to Reduce, or not.

If not, all the proper d-descendants of v are queried, and all of them are answered
either "no" or "I don't know." There are r positive examples of h* among the
elements queried and they must all be answered "I don't know." Since none of
these has been queried previously, the probability of this outcome is pr.

Otherwise, when the first proper d-descendant of v in breadth-first order is found
whose query is answered "yes" a recursive call is made to Reduce with that vector,
say v', and the same d. Note that because the search is done in breadth-first order,
no proper descendant of v' that is a positive example of h*, has yet been queried.
Moreover, since v' is a proper descendant of u, D+(v',d) < D+(v,d) (by Lemma 2),
so D+(v',d) < r — 1. If D+(v',d) < g(d) then the recursive call, and also the top-
level call, to Reduce cannot return a vector y such that 5(y, d) = 0. Otherwise,
D+(v',d) > g(d) and the inductive hypothesis is satisfied, so the probability that
the recursive call of Reduce with v' and d returns a vector y such that S(y, d) = 0
is bounded by

Thus, summing the bounds on the probabilities of failure at the top level and in the
recursive call, the probability that the call of Reduce on v and d returns a vector
y such that S(y, d) = 0 is bounded above by

This completes the induction. •

Note that for 0 < p < 1, the probability of failure is strictly bounded by
p2d+1-2/(l — p). Lemma 4 characterizes the values of d that guarantee that this
quantity is at most ½. In the rest of this paper, In will be used to denote loge and
log will denote log2.

Lemma 4 Let 0 < p < 1. Then p 2 d + 1 - 2 / (l -p) <½\ if and only if

In particular, if e — (1 — p), it suffices to choose

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 17

Proof: The first assertion is easily verified. For the second, we argue by cases.
Note that p2d+1 -2/(l - P) is increasing in p and decreasing in d. By calculation,
d = I suffices for all p < .5 and d = 2 suffices for all p < .72.

Assume .72 < p < 1, let e = (1 - p) and assume

Note that

so it suffices if

This is equivalent to

Thus, if we can show

the proof will be completed. By exponentiating both sides and rearranging, we see
that it is sufficient to show

which is equivalent to

As e decreases, the lefthand side increases and the righthand side decreases, so it
suffices to check the inequality for e = .28, where the lefthand side is 2.40+ and the
righthand side is 1.26-. •

4. The Monotone DNF Learning Algorithm

Now we are in a position to describe and analyze the learning algorithm. The
algorithm begins with the empty hypothesis (false on all vectors) and makes equiv-
alence queries and processes counterexamples one at a time until the hypothesis is
equivalent to the target function. Because it tries to "guess" some of the terms in
the target concept, the algorithm may introduce terms that do not actually imply
the target concept. Thus a counterexample v may be a negative example of h* in

18 D. ANGLUIN AND D. SLONIM

which case h * (v) — 0 and h(v) = 1. The algorithm processes such a v by removing
all the terms from the current hypothesis that are satisfied by the vector v.

Otherwise, a counterexample v is a positive example of h*. Intuitively, what we'd
like to do is to call Reduce on v to obtain a vector y that with probability at
least 1/2 has a minimum positive example of h* among its d-descendants for some
moderate value of d. Then we would add all the d-descendants of y as terms to the
current hypothesis h and continue. If this worked for each positive example, we'd
expect to add a new term of h* to h for every two positive counterexamples, which
would be sufficient progress.

Figure 3. The +, —, and ? symbols respectively indicate positive, negative, and "I don't know"
answers to membership queries. The first positive counterexample is 110; vectors 010, 100, and
000 are queried. If the second counterexample is O11, vector 010 would be queried again.

The difficulty is that in order to use Lemma 3, we must guarantee that at each call
to Reduce with argument v, all the descendants of v that are positive examples of
h* have not been previously queried. This is certainly true the first time Reduce
is called, but may not be true on subsequent calls. For example, consider the
target concept h* = x1 + x2 over three variables, as shown in Figure 3, and assume
that the initial (positive) counterexample is 110. When called with (110,1) as its
arguments, Reduce performs membership queries for the children 010 and 100.
Suppose the first query is answered with "I don't know" and the second with "yes."
Then the process is iterated with 100, and the child 000 is queried. Suppose the
answer in this case is "no." The hypothesis is then set to x1 and an equivalence
query is made. Assume now the counterexample is 011. Then Reduce is called

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 19

with arguments (011,1) and makes membership queries for the children 001 and
010. However, 010 is a descendant of the argument that is a positive example h*,,
and it has already been queried and answered with "I don't know." Thus we can
no longer claim that the probability a membership query on 010 returns "I don't
know" is just p.

Our solution for this difficulty is to add to the current hypothesis as terms ALL
the vectors queried by Reduce that result in an answer of either "yes" or "I don't
know." This will guarantee that when a positive counterexample v to the current
hypothesis is generated, none of the descendants of v that are positive examples
of h* have been previously queried, since otherwise they would still be present as
terms in the current hypothesis, contradicting the fact that v is a counterexample to
the current hypothesis. In fact, a vector u(u^y) queried by Reduce that receives
the answer "yes" must be a direct ancestor of the returned vector y, which is the
last vector whose query by Reduce answers "yes". A positive counterexample to
a hypothesis containing y would be a counterexample to any such vector u as well.
So it is sufficient to add to the hypothesis just the vector y and all those vectors
queried by Reduce that result in "I don't know" answers.

Thus we assume that Reduce has been modified to return two results: the vector
y previously returned, and the set Q of all the vectors queried by the top-level and
all the recursive calls to Reduce that resulted in answers of "I don't know." Note
that Q must include all the proper d-descendants of y that are positive examples
of h*, since they must all have been queried when Reduce returns, and they must
all have been answered "I don't know." The modified version of Reduce will be
called Reducel, and will have an additional parameter Q, which should initially
be the empty set.

1. Reducel(u,d,Q):
2. Let D be the proper d-descendants of v
3. For each y 6 D in breadth-first order
4. If member ship-query (y) = "I don't know" then
5. Q = Qu{y}
6. Endif
7. If membership-query (y) = "yes" then
8. Return Reducel(y,d,Q)
9. Endif

10. Endfor
11. Return v,Q
12. End.

Lemma 3 remains true with Reducel in place of Reduce. We can now describe
our learning algorithm for monotone DNF formulas using an equivalence oracle and
an incomplete membership oracle. The choice of constant d depends on p and will
be discussed in the analysis of the algorithm. Recall that we denote a term by the

20 D. ANGLUIN AND D. SLONIM

minimum vector satisfying it, so that the current hypothesis h may be thought of
as a set of vectors.

1. Learn-mDNF:
2. Let h be the empty formula
3. While (v = equivalence-query (h)) is not 0 do
4. If (h(v) = 1) then
5. Remove from h all w with w < v
6. Else
7. CallReducel(v,c(,0)
8. Let y and Q be the values returned
9. Add y and all elements of Q to h

10. Endif
11. Endwhile
12. Output h and halt
13. End.

For the analysis of this algorithm, we let

Recall that Lemma 4 guarantees that for 0 < p < 1 and d > f(p),

Theorem 5 Let 0 < p < 1 be fixed. There is a polynomial q(n, m, s) with the
following properties. Let h* be any monotone DNF formula over n variables with
m terms. Suppose Learn-mDNF is run with an equivalence oracle for h* and an
incomplete membership oracle for h* with failure probability p, with d set to [f (p)] •
Then with probability at least 1 — e-s the algorithm Learn-mDNF halts within
q(n,m,s) steps and outputs a hypothesis h equivalent to h* .

Proof: Assuming Learn-mDNF halts, its output h is equivalent to h*, by the
correctness of the equivalence oracle for h*. Hence we need only prove that it halts
within q(n, m, s) steps with probability at least 1 - e-s.

Suppose at some point the current hypothesis h contains all the terms of h*.
Since no term of h* will ever be deleted from h, there will be no further positive
counterexamples. Negative counterexamples will eventually cause the removal of
all the terms of h that do not imply h*, at which point h will be equivalent to h*

and the algorithm will halt.
All the terms deleted from h in response to negative counterexamples must first

be added to h as a consequence of positive counterexamples. The time to process

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 21

either type of counterexample is bounded by a polynomial in n and the number of
terms in the current hypothesis. Therefore it suffices to analyze the total number
of terms added to the current hypothesis until it contains all the terms of h*.

For each positive counterexample processed, Reduce 1 will query O(nd+l) ele-
ments, so the cardinality of the set Q returned is O(nd+1). Hence, each positive
counterexample will cause O(nd+l) terms to be added to the current hypothesis.

Our goal is now to bound the number of positive counterexamples processed until
h contains all the terms of h*. Let h be the current hypothesis when an equivalence
query is made that returns the positive counterexample v. Then, in particular,
h(v) = 0. Let the result of calling Reducel on input v be the vector y and the set
Q. When some d-descendant of y is a minimum positive example of h*, (that is,
S (y , d) = 1) we define this call of Reducel to be "successful."

When the call is successful, one of the d-descendants of y, say y', is a minimum
positive example of h*, and therefore a term of h*. Either y' = y or y' e Q, so
y' will be added to h. Note that y' is not currently a term of h, since y' < v and
h(v) = 0. Thus, when a call to Reducel is successful, it adds a new term of h* to
h. There can be at most m successful calls of Reducel before h contains all the
terms of h*.

Now we claim that every call of Reducel is successful with probability at least
½ for the choice of d = [f (p)] • To see this, we first argue that each time an
equivalence query is made with the current hypothesis h, every positive example
of h* that has previously been the subject of a membership query is a positive
example of h. The only place membership queries are made is in the procedure
Reducel. When a positive example w of h* is the subject of a membership query,
the incomplete membership oracle must answer either "yes" or "I don't know." In
the latter case, w is added to the set Q and returned by Reducel, and then added
as a term to h. Since w is a positive example of h*, the term w implies h*, so w is
not subsequently removed from h. In the former case, either w, or some u < w for
which the membership oracle also answered "yes," is added to h. Again, that term
implies h*, so it will never be removed from h. Therefore, whenever an equivalence
query is made with the current hypothesis h, every w that is a positive example of
h* that has previously been the subject of a membership query also satisfies h.

Now consider a positive counterexample v returned by the equivalence query.
Since v is a counterexample, h(v) = 0, which means that for every w that satisfies
h, w < v. If w' is any positive example of h* that is a descendant of v, then w'
is not a positive example of h and therefore must not have been previously the
subject of a membership query. Thus, the conditions of Lemma 3 are satisfied, and
Lemma 4 implies that for our choice of d, the probability that the call of Reducel
with argument v is not successful is at most ½. Therefore, each call of Reducel
succeeds with probability at least ½, as claimed.

Thus, the expected number of calls to Reducel until h contains all the terms
of h* is at most 2m. Therefore, the total expected number of terms added to h is
0(mnd+l).

22 D. ANGLUIN AND D. SLONIM

Moreover, the probability that more than 2m(s + 1) calls to Reducel will be re-
quired before h contains all the terms of h* is bounded by e-s. To see this, we may
apply Karp's method of probabilistic recurrence relations. In (Karp, 1991), recur-
rence relations of the form T(x) = a(x) + T(r(x)) are used to analyze the running
time of recursive randomized algorithms. In this relation, a(x) is a nonnegative
real function of x corresponding to the amount of effort expended on the original
problem, and r(x) is a random variable in the range [0, x] corresponding to the size
of the next subproblem to solve recursively. Let u , (x) be an upper bound on the
expectation of random variable r (x) , and let u(x) be the least nonnegative solution
to the deterministic equivalence relation T(X) = a(x) + T (u (x)) . Then the following
theorem (Theorem 1 in (Karp, 1991)) is useful in showing the bound stated above:

Theorem 6 (Karp) Suppose there is a constant d such that a(x) = 0, x < d and
a(x) = 1, x > d. Let ct = min{x | u(x) > t}. Then, for every positive real x and
every positive integer w,

To apply this to our problem, let x represent the number of terms of h* that are
not yet in h, and let T(x) represent the number of calls made to Reducel. Then
a(x) = 1 for x > I and a(x) = 0 for x < 1, since a call will be made to Reducel
just in case any terms remain to be found. Since each call succeeds (and reduces
x by at least 1) with probability at least ½, we take u (x) = x — ½ and u(x) = 2x.
Applying Theorem 6,

which implies that the probability that more than 2m(s +1) calls to Reducel will
be needed is at most e-s.

Thus, with probability at least (1 - e-s) a total of at most O(smnd+l) terms
are added to h before it contains all the terms of h*. Translating this bound
on the total number of terms added to h into a running time, we may obtain a
polynomial q(n,m,s) such that with probability at least (1 - e-s) the learning
algorithm Learn-mDNF halts within q(n, m, s) steps.

Recall that for p = ½, f(p) = 1, so d = 1 suffices. In this case, the expected total
number of terms added to h is O(mn2). When p = 1 - e for small e, the expected
total number of terms added to h is O(mnO (l o g (x)).

Note that as we have described it, there is a different algorithm for each failure
probability p, since the search depth d depends on p. It is clear that an upper
bound on p gives an upper bound on a sufficiently large d, so the precise value of p
need not be known. It remains to be seen whether the usual methods of sampling
to approximate p or iteratively approximating p from below can be adapted to this
new setting.

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 23

5. Handling Some Errors

One important question is what happens when membership queries may be an-
swered incorrectly. In the case of missing information, at least the learner can rely
on the correctness of the information that is obtained. With possibly incorrect an-
swers, the learning problem seems to become harder. One natural extension of the
current model is to permit the membership oracle to give one of a variety of "cor-
rupted" answers for those strings whose coin flip results in "heads," while requiring
correct answers on the remaining strings.

For one variant, namely 1 —> 0 one-sided errors, a minor modification to Learn-
mDNF permits it to cope with such errors. In this model, for each string in the
sample space whose coin flip results in "heads," the answer of the membership
oracle is always "no." The modification to Learn-mDNF is to add a term to h for
EVERY vector queried with membership queries, since now an answer of "no" may
be given for a positive example. The analysis of positive examples answered "no"
is then the same as the previous analysis of positive examples answered "I don't
know." The key observation is that queries answered "yes" are answered correctly;
in fact, this modification copes with a model in which corrupted examples may be
answered either "no" or "I don't know" arbitrarily.

The dual problem, that of 0 —> 1 one-sided errors, is more difficult. A trivial mod-
ification of Learn-mDNF is no longer sufficient, because the reduction procedure
will not terminate until queries on all descendants of some vector return "no".

One might assume that if 1 —» 0 errors are easily handled by an algorithm that
finds minterms of the target formula, then a similar bottom-up approach could
be applied to handle 0 —> 1 errors and find all maxterms of the target formula.
However, for a monotone DNF formula with m minterms over n variables, there
may be up to nm maxterms! Thus, this approach is impractical as well.

6. Future Directions

There are a number of additional questions in this area that could be investigated.
Theorem 5 relies on the assumption that all the "I don't know"s are distributed
independently at random. It would be informative to find useful results for a more
natural model, as discussed in section 1.3.

Another important area is to explore methods of coping with persistent errors
in membership queries beyond the 1 —> 0 one-sided errors considered above. Since
pac-learning can tolerate a large degree of random misclassification errors, general
(two-sided) random errors in membership queries might seem approachable. In-
deed, the results of Goldman, Kearns, and Schapire (1990) show that the classes
of logarithmic-depth read-once majority formulas and logarithmic-depth positive
NAND formulas can be learned with high probability using only membership que-
ries, even if the membership queries are subject to persistent two-sided errors.

Kharitonov suggests the problem of combining our model with errors in equiva-
lence queries. Persistent errors in deterministic equivalence queries are too strong

24 D. ANGLUIN AND D. SLONIM

an adversary; clearly, if an equivalence oracle ever claims the hypothesis is correct
when it is not, the algorithm will fail. It is more interesting to ask what hap-
pens when the equivalence oracle is approximated by a sufficiently large number of
labeled random examples, drawn according to some natural probability distribu-
tion. What happens if there is random misclassification noise in the sampling used
by the equivalence oracle, in addition to "I don't know" or erroneous answers to
membership queries?

It would be interesting to determine if anything can be done in the case of a
malicious incomplete membership oracle, where an adversary is given some control
over which membership queries the teacher cannot answer. In one such model,
given failure bound p, the adversary is allowed to specify up to p x 2n vectors for
which the teacher cannot answer membership queries. Certainly, if p is a constant
fraction, any algorithm can be forced to make an exponential number of queries to
learn monotone DNF. For example, let p = 1/4; the adversary refuses to answer all
queries on vectors whose first two bits are set to 1. Then the problem of learning
any target concept where every term contains both x1 and x2 is effectively reduced
to learning with just equivalence queries, which is known to require exponential
time. Exactly how much power does an adversary need to prevent learning in a
malicious model?

Another question is whether we can find polynomial time algorithms in this model
for other learning problems known to have polynomial time algorithms using equiv-
alence and membership oracles. For example, deterministic finite state acceptors
(Angluin, 1987), simple deterministic languages (Ishizaka, 1990), read-once formu-
las (Angluin, Hellerstein, and Karpinski, 1993), /z-formula decision trees (Hancock,
1990), switch configurations (Raghavan and Schach, 1990), and prepositional Horn
sentences (Angluin, Frazier, and Pitt, 1992) all have such algorithms. Of these,
the problem of prepositional Horn sentences is the closest to the case of monotone
DNF, but the basic algorithms are quite different. However, in each case there
might be enough redundancy in the concepts that a constant fraction of missing
answers to membership queries might not pose an insuperable problem.

Acknowledgements

We thank Avrim Blum, Prasad Chalasani, Joe Chang, Rob Schapire and Umesh
Vazirani for enjoyable and helpful discussions of this material. We also gratefully
acknowledge funding for this research from the National Science Foundation, in
the form of a Graduate Fellowship to the second author and grant CCR-9014943
to the first author. The majority of the work was done while the second author
was a student at Yale University and at the University of California at Berkeley. A
preliminary version of this paper appeared in the proceedings of the 1991 Workshop
on Computational Learning Theory (Angluin and Slonim, 1991).

RANDOMLY FALLIBLE TEACHERS: LEARNING MONOTONE DNF 25

References

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and
Computation, 75, 87-106.

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2, 319-342.
Angluin, D. (1990). Negative results for equivalence queries. Machine Learning, 5, 121-150.
Angluin, D., Frazier, M., & Pitt, L. (1992). Learning conjunctions of Horn clauses. Machine

Learning, 9, 147-164.
Angluin, D., Hellerstein, L., & Karpinski, M. (1993). Learning read-once formulas with queries.

JACM, 40, 185-210.
Angluin, D., & Kharitonov, M. (1991). When won't membership queries help? In Proceedings

of the Twenty-Third Annual ACM Symposium on Theory of Computing, (pp. 444-454). New
Orleans, LA: ACM Press.

Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning, 2, 343-370.
Angluin, D., & Slonim, D. (1991). Learning monotone DNF with an incomplete membership

oracle. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory,
(pp. 139-146). Santa Cruz, CA: Morgan Kaufmann.

Goldman, S., Kearns, M., & Schapire, R. (1990). Exact identification of circuits using fixed points
of amplification functions. In Proceedings of the Thirty-First Annual Symposium on Foundations
of Computer Science, (pp. 193-202). St. Louis, MO: IEEE Computer Society Press.

Hancock, T. (1990). Identifying u-formula decision trees with queries. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, (pp. 23-37). Rochester, NY: Morgan
Kaufmann.

Ishizaka, H. (1990). Polynomial time learnability of simple deterministic languages. Machine
Learning, 5, 151-164.

Karp, R.M. (1991). Probabilistic recurrence relations. In Proceedings of the Twenty Third Annual
ACM Symposium on Theory of Computing, (pp. 190-197). New Orleans, LA: ACM Press.

Kearns, M. (1990). The Computational Complexity of Machine Learning. Cambridge, MA: MIT
Press. (Also, Doctoral dissertation, Harvard University, 1989.)

Kearns, M., & Li, M. (1988). Learning in the presence of malicious errors. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, (pp. 267-280). Chicago, IL:
ACM Press.

Kearns, M., Li, M., Pitt, L., & Valiant, L.G. (1987). On the learnability of Boolean formulae. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, (pp. 285-295).
New York, NY: ACM Press.

Kearns, M., & Valiant, L. (1989). Cryptographic limitations on learning boolean formulae and
finite automata. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, (pp. 433-444). Seattle, WA: ACM Press.

Laird, P. (1987). Learning from Good Data and Bad. Doctoral dissertation, Department of
Computer Science, Yale University, New Haven, CT. (Published as Learning from Good and
Bad Data, Kluwer Academic Publishers, 1988.)

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2, 285-318.

Maass, W. (1991). On-line learning with an oblivious environment and the power of randomiza-
tion. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory, (pp.
167-175). Santa Cruz, CA: Morgan Kaufmann.

Raghavan, V., & Schach, S. (1990). Learning switch configurations. In Proceedings of Third
Annual Workshop on Computational Learning Theory, (pp. 38-51). Rochester, NY: Morgan
Kaufmann.

Sakakibara, Y. (1991). On learning from queries and counterexamples in the presence of noise.
Information Processing Letters, 37, 279-284.

Shackelford, G. & Volper, D. (1988). Learning k-DNF with noise in the attributes. In Proceedings
of the 1988 Workshop on Computational Learning Theory, (pp. 97-103). Cambridge, MA:
Morgan Kaufmann.

26 D. ANGLUIN AND D. SLONIM

Sloan, R. (1988). Types of noise in data for concept learning. In Proceedings of the 1988 Workshop
on Computational Learning Theory, (pp. 91-96). Cambridge, MA: Morgan Kaufmann.

Sloan, R. (1989). Computational Learning Theory: New Models and Algorithms, Doctoral dis-
sertation, MIT Laboratory for Computer Science.

Valiant, L. (1984). A theory of the learnable. CACM, 27, 1134-1142.
Valiant, L. (1985). Learning disjunctions of conjunctions. In Proceedings of the 9th IJCAI, (pp.

560-566). Los Angeles, CA: Morgan Kaufmann.

