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Abstract. This paper is aimed at showing the benefits obtained by explicitly introducing a priori control knowledge
into the inductive process. The starting point is Michalski’s Induce system, which has been modified and augmented.
Although the basic philosophy has been changed as little as possible, Induce has been radically modified from
the algorithmic point of view, resulting in the new learning system Rigel. The main ideas taken from Induce
are the sequential learning of descriptions of each concept against all the others, the Covering algorithm, the Star
definition, and the VL, representation language. The modifications consist of a new way of computing the Star,
the use of a separate body of heuristic knowledge to strongly direct the search, the implementation of a larger
subset of the VL, language, a reasoned way of selecting the seed, and the use of rules to evaluate the worthiness
of the inductive assertions. The effectiveness of Rigel has been tested both on artificial and on real-world case studies.
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1. Introduction

The capability of inducing plausible rules from examples is a pervasive characteristic of
human thought, as well as being a fundamental tool for understanding the world. Thus,
it is no surprise that considerable effort has been devoted both to analyzing the philosophical
foundations of induction and to constructing systems based on it.

Early AI work on learning focused on inducing general descriptions of concepts from
instances (Hayes-Roth & McDermott, 1978; Michalski, 1980; Mitchell, 1982; Vere, 1975;
Winston, 1975) and much work has been done on this problem since then, as documented
by Carbonell, Michalski and Mitchell (1983). Recently, some researchers (e.g., De Jong
& Mooney, 1986; Mitchell, Keller & Kedar-Cabelli, 1986) have proposed deductive methods
for acquiring conceptual knowledge; these are complementary rather than alternative ap-
proaches to induction, as shown by recent attempts at integration (Bergadano & Giordana,
1988; Danyluk, 1987; Lebowitz, 1986; Pazzani, 1988). Renewed attention has also been
given to the computational aspects of induction and to criteria for assessing the credibility
of induced concept descriptions (e.g., Haussler, 1987, 1988; Kearns, Li, Pitt & Valiant,
1987; Valiant, 1985), extending ideas from pattern recognition problems (Pearl, 1979; Vapnik
& Chervonenkis, 1971).

Future knowledge-based systems will, on one hand, rely on inductive learning from exam-
ples (especially in those applications in which the domain knowledge is incomplete, incon-
sistent, and difficult to formalize) and, on the other, benefit from the use of general and
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domain-specific knowledge, to improve the quality of inductive hypotheses and to focus
search. For instance, Bergadano and Giordana (1988) have used a body of domain knowledge
for these purposes. The main goal of our research is to explore the effects of introducing
explicit control knowledge into the inductive process. This should increase the efficiency
of the algorithms and the perspicuity of the acquired knowledge; moreover, domain-
dependent knowledge, when available, could be exploited to reach better results while retain-
ing a domain-independent learning methodology. This last aspect would greatly enhance
the attractiveness of automated learning systems in real-world domains.

Most existing inductive systems only handle concepts that can be described in the prop-
ositional calculus, with each instance represented as a vector of attribute-value pairs.
Researchers have proposed a number of approaches to this problem, such as constructing
decision trees (Quinlan, 1986; Utgoff, 1988) and production rules (Michalski, Mozetic,
Hong, & Lavrac, 1986). On the other hand, several domains of application require a more
powerful description language, based on first order predicate logic. Unfortunately, handling
structured concepts is a much more difficult task (Michalski & Stepp, 1983) and only a
few systems have addressed it (Winston, 1975; Vere, 1975; Hayes-Roth & McDermott, 1978;
Anderson & Kline, 1979; Michalski & Stepp, 1986; Kodratoff & Ganascia, 1986; Bergadano,
Giordana, & Saitta, 1988; Iba, Wogulis, & Langley, 1988).

This paper describes the inductive system Rigel' (Reasoned Inductive GEneraLization),
which is able to learn structured concepts using a first order language while containing
the computational complexity. Its starting point is the Induce system (Michalski, 1980, 1983;
Michalski & Stepp, 1986). Although radically modifying the algorithmic part of Induce,
its basic philosophy has been kept as close as possible to the original, in order to easily
test the effects of the introduced innovations.

Section 2 contains an overview of Rigel and an outline of similarities to and differences
from Induce. Section 3 illustrates the behavior of Rigel, whereas Section 4 describes the
system’s approach to generalization and specialization. Section 5 introduces the heuristic
knowledge and Section 6 reports the experimental results. Finally, Section 7 presents a
brief comparison with related work and Section 8 discusses the benefits and the limitations
of the approach and considers directions for future research.

We assume the reader is acquainted with Induce and its terminology. However, for the
sake of self-consistency, we give a brief description of AQ and Induce in the Appendix.

2. An overview of Induce

This section briefly reviews the ideas from Induce that are relevant for a comparison with
Rigel. The main points taken from Induce are the sequential learning of each concept against
all the others, the Covering algorithm, the Star definition, and the VL, representation lan-
guage. All of these aspects are summarized in the following subsections.

2.1. Representation language and performance system

Induce implements a subset of the VL, language, allowing conjunction, disjunction, internal
disjunction, and quantification over single selector formulas. Each event is represented as
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a conjunction of selectors, i.c., relational statements that typically contain a predicate descrip-
tor, variables or constants as arguments, and a list of values (see the appendix for more details).

The acquired knowledge base consists of a set of unordered rules, one for each class,
whose left-hand side is a disjunctive VL, formula and whose right-hand side is the name
of a class. A new event E is considered a member of a class C if E’s description matches
the left-hand side of the rule associated with C. Thus, four possibilities can occur when
Rigel applies its acquired knowledge to a new event E. If the event matches only the rule
corresponding to its correct class, it is considered correctly classified. If E matches only
rules corresponding to other classes than the correct one, it is considered misclassified.
If E matches the rule corresponding to its correct class but also matches other rules, it
is considered ambiguously classified. Finally, if E does not match any rule, it is considered
unclassified.

2.2. The top-level Induce algorithm

Induce is a general-purpose inductive program that transforms symbolic descriptions of
events (examples) into general descriptions of the concepts of which the events are instances.
For each concept, the algorithm starts by randomly choosing a seed from among the in-
stances of the concept. Using this it builds a star, which is a set of consistent and non-
redundant conjunctive formulas that cover the seed. A formula covers an event if and only
if the description of the event satisfies the formula.

The procedure for generating the Star starts by considering a partial star that contains
a set of formulas, each consisting of just one selector that occurs in the seed. This partial
star is trimmed according to some user-defined preference criteria. The remaining formulas
are specialized by “and-ing” them with every selector derived from the seed that is directly
connected to the formula being considered (i.e., sharing one or more variables with it).
A new partial star is thus obtained. If no new formula can be formed in this way, then
disconnected selectors are taken into account, allowing formulas which predicate on differ-
ent variables to be built up. Consistent formulas are put in the solution set. This procedure
is repeated until a set of solutions of the desired size is obtained.

The conjunctive formulas in the solution set are consistent, but generalizing them may
increase their degree of completeness (coverage of positive examples). This is done by using
the AQ algorithm, which tries to extend the reference of each formula’s selectors without
losing consistency.

The previous steps (star computation and generalization with AQ) are iterated, by choosing
another seed, until all the positive examples are covered. At each cycle the best conjunc-
tive formula of the star is retained and the positive examples that have already been covered
are deleted. The final description of the concept is a disjunction of the conjunctive formulas
found in each cycle.

2.3. Star computation
The central idea of AQ and Induce is star computation, which is aimed at finding a consis-

tent formula, covering a set of positive examples, starting from the seed. Induce operates
in three steps:
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a) generalization from the seed to a single selector, by applying the dropping condition
rule on the seed description;

b) specialization, by adding new conjuncts to the current inductive hypotheses;

c) generalization using the AQ algorithm.

In the first step, the selected seed is used to obtain from its description the set of all the
single selector assertions occurring in it. After that, selective specialization is applied in
order to iteratively reaggregate the selectors obtained, with the aim of reaching consistent
and possibly complete formulas.

However, the formulas obtained in this way might be too specialized; in fact, no selectors
with generalized values (disjunctive values, generalized values of structured domains, inter-
vals of linear domains) are introduced in this phase. Hence, a further generalization step
is carried out by the AQ algorithm (Michalski et al., 1986). But AQ can only deal with the
VL, language (an attribute-value formalism without variables), so the given formulas must
be properly converted. A conjunctive VL, formula, in the original structured-description
space, is transformed into a VL, formula, in an attribute-description space, by means of
a graph isomorphism process (Michalski, 1980; Michalski & Stepp, 1986). AQ is then
applied to the transformed formulas, generating VL, generalized formulas, and these gener-
alizations are then reconverted to VL, formulas.

This fixed sequencing of generalization and specialization may lead to problems. For
instance, some conjunctive descriptions that cover most of the examples may never be found.
Such descriptions are important because they supply compact and robust descriptions, avoid-
ing many small disjuncts. Examples of this problem are mentioned in Section 6.

During search, the generated inductive assertions are evaluated by means of the lexico-
graphic evaluation function (LEF), which lets the system’s behavior be tested with respect
to alternative criteria.

2.4. Seed selection

Induce selects the seed at random, and this choice is justified by the fact that it should
be possible to obtain the “correct” description from whatever example is covered. However,
this fact can be guaranteed only for the complete Star and not for the reduced Star. In
this way, not only can different seeds lead to different amounts of computation, but they
can also lead to the early pruning of good hypotheses, which would emerge as such only
in later stages of the search.

3. An overview of Rigel

This section presents the general architecture of Rigel, a knowledge-based learning system
that consists of an algorithmic component and a knowledge base. The algorithmic part in-
cludes the covering algorithm, the seed selection, the inductive search management, and
the generalization and specialization policy, whereas the knowledge base includes domain-
independent control knowledge, domain-specific background knowledge, and generaliza-
tion rules.
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The control knowledge is a declarative, easily modifiable knowledge base that is aimed
at focusing the inductive search of the system; it is domain independent but task depen-
dent: the present control knowledge is oriented to the concept discrimination task. The
background knowledge consists of a description of the application domain, including a set
of predicates (selectors) used to describe the examples. For each selector, the domain (the
set of values it can assume) and the type (nominal, linear, structured) are defined. The
generalization rules are represented as a set of operators, whose syntax and semantics will
be described in Section 4. The algorithmic part uses this background knowledge and has
two goals: to limit the amount of search and to focus attention toward better concept
descriptions.

Before explaining Rigel’s new ideas in detail, we briefly summarize them here:

¢ A new way of computing the star searches the space of inductive assertions, starting from
the seed, by using interleaved specialization and generalization steps.

* A body of task-dependent heuristic knowledge strongly directs the search.

¢ A larger subset of the VL, language is implemented, including full universal and numerical
quantification on complex formulas.

¢ The seed is selected in a reasoned way, aimed at reducing the probability of starting the
search from a scarcely relevant example.

¢ Modifiable rules are used to evaluate the worthiness of the inductive assertions, thus
enabling the user to test alternative criteria easily.

Below we cover each of the issues in greater depth.

3.1. Knowledge representation and performance system

Rigel uses a larger subset of the VL, language than Induce. More precisely, a well formed
formula (wff) can be defined, in Rigel, as follows:

* A single selector is a wff.
e If V, V), Vare wifs, then U = V; A V,, W = V, Vv V, and (V) are wffs,
o If V is a wif and § is a set of integers, then:

U=3. X, X3, +-, X (V), W =13, 9 Xy, Xa, ..., Xp) (V) and
Z =V, Xy, X3, .., Xpp (V)

are wffs, where “3”” and “V.” denote “‘there exist and are different” and *“for all differ-
ent”, respectively.

For example, the formula W = 3. (3. .5) (x) [Shape(x) = Triangle], which states that there
exist between 3 and 5 triangles, is a well formed formula of the VL, language.

Rigel uses the same performance algorithm as Induce, as described in Section 2.1. That
is, it uses its unordered decision rules to match new instances and thus predict their class.
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3.2. The top-level Rigel algorithm

As in Induce, given a finite set of concepts, Rigel learns each concept sequentially by com-
puting the cover of that concept’s positive examples against the examples of all the other
concepts, which are considered to be counterexamples. The covering of a single concept
(class) is performed using Michalski’s (1980, 1983, 1986) covering algorithm. The innovative
points are the seed selection and the star computation.

More precisely, let X = {K;| 1 = j < J} be a given set of concepts. The Rigel algo-
rithm considers them one at a time and gives as output J sets COVER; (I < j < J), each
containing a disjunctive description of the associated concept K;. For each K; € X, the
sets POS(K;) and NEG(K;) contain the positive and negative examples of K;, respectively.
The basic procedure, iterated during the covering cycle, consists of the following steps:

¢ Initialize COVER; to 6.

¢ Select a seed from the examples of K; that are not yet covered.
® Generate the Star of the seed against the counterexamples of K;.
® Add the best formula found in the Star to COVER,;.

¢ Delete the newly covered examples of K; from POS(K;).

The cycle continues until all the examples of K; have been covered, giving a disjunctive
description for this class.

3.3. Seed selection

Rather than selecting an example to compute the star (seed) at random, as in Induce, Rigel
selects the best representative of its class. Given a concept K; € X, let us consider the
set POS(K;) and the set HPS(K;), which contain all the formulas constituted by a single
selector that were derived considering all the positive examples.

The idea behind the seed selection procedure is to select the seed from among those
examples that generate the greatest number of best hypotheses in HPS(K;). Each hypothesis
h € HPS(K)) is weighted with a user-defined heuristic function vyp(h), which prefers com-
plete and consistent formulas. The set HPS(K)) is ordered according to decreasing values
of vgp(h) and trimmed with a threshold 7,, obtaining a set:

BEST(K)) = {h € HPS(K)) | vup(h) = 7,}.

The number m(e) of hypotheses h € BEST(K)) is associated with each example e € POS(K).
Let M be the maximum m(e) value. If there is only one example e* corresponding to M,
then e* is selected as the seed. Otherwise, let CS = {e’ € POS(K)) | m(e’) = M} be the
set of candidate seeds from among the events in POS(K;). In this case one would like to
select the seed e* in such a way that it could generate the best hypotheses in BEST(K)).
With this aim in mind, the set HPS(K;) is partitioned into n subsets, which are ordered
according to decreasing values of vyp(h):
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HPS(K;) = HPS,(Kj) U ... U HPS(K))
where

HPS,(K)) = {h € HPS(K)) | vup(h) = ap}
and where

a, > ap4 = T, Withl =p=n-1

Considering a subset HPS,(K;), one can reduce the seed candidates set CS by keeping
only those examples that generate the greatest number of hypotheses in HPS,(K;). The
selection algorithm reduces CS, starting from HPS,(K;) and considering the other sets in
turn until CS contains only one example, which is selected as seed. If the set of seed can-
didates still contains more than one example at the end of the reduction process, a random
choice is made from among those that have the shortest description.

34. Star computation

The most notable differences between Rigel and Induce concern the star computation algo-
rithm. As suggested by Mitchell (1982), one can view inductive learning as a search in
the space of inductive assertions. Rigel computes a bounded star by searching the space
of the inductive assertions that can be derived from the chosen seed through generalization
and specialization. Michalski (1980) defines the star(e| E) of an event ¢ against a set of
events E as the “Set of all the alternative non-redundant descriptions covering the event
¢ and not covering any event in E.”

The main difference between Rigel, on one side, and Induce and AQ, on the other, relate
to the search control strategy and in the learning operators. In particular, Induce uses the
dropping and reverse dropping condition rule and AQ uses the extension against rule,
whereas Rigel currently uses a larger set of operators, which are discussed in the next sec-
tion. Moreover, Rigel integrates specialization and generalization at the VL, level, perform-
ing both activities during a unique inductive search. The specialization and generalization
operators are allowed to mix completely freely, in principle, but the heuristic control on
the operator activation focuses the operator sequences towards the most promising sequences,
dynamically adapting the alternation of specialization/generalization steps. Rigel’s use of
explicit search, instead of embedding some operators into an algorithm, gives it greater
flexibility than Induce. The available operators may be activated and deactivated, and new
operators that implement more complex generalization rules can easily be added.

More formally, Rigel’s inductive search can be defined as the S-tuple SEARCH = (S, I, F,
Q, C), where S is a state description, I is the initial state, F is a set of final states, { is
the operator set, and C is the control strategy. More precisely, the state description is a
VL, formula, with additional information about the positive and negative examples that
the formula covers, and about its syntactic form (e.g., number of selectors and presence
of quantifiers). Control information lets the system avoid state duplication during expansion.
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The initial state contains only one element, i.e., the description of the chosen seed. The
set of final states contains consistent formulas, which are as complete as possible. The
user can control the maximum cardinality of this set, as well as the degree of consistency
required. The set of the operators currently contains six operators, which are described
in Section 4.

The control strategy lets the system generate new hypotheses by applying operators to
the current ones; the coverage of these new hypotheses is tested on all the examples. Start-
ing from a root state (initially the seed), it generates a search tree by creating new states
through the application of the operators to the frontier nodes of the tree. Operator applica-
tion is guided by heuristic conditions. Given a state to expand, the strategy considers all
the potentially applicable operators and evaluates their applicability conditions. All operators
whose evaluation is considered promising are applied to the state. A beam search limits
the explosion of the tree, using an evaluation function »y(p) to select the most promising
new states.

4. Generalization and specialization operators

In this section we describe the operators that Rigel uses during its inductive search. An
operator w consists of a pair (C, A), where C is a condition of applicability and A is the
action. The condition of applicability of an operator w is a function from the set of states
to the unit interval [0, 1}; it supplies an evaluation of the suitability of applying w to a given
state. If this evaluation exceeds a threshold, the operator can be applied. The heuristic con-
ditions are defined in a declarative way, using the heuristic description language introduced
in Section 5.

The action implements a generalization or specialization method in a procedural way;
given a state and other information specific to the operator, it generates a set of new states.
The generation of new states requires the evaluation of the extension of the formulas asso-
ciated with the states, which can be costly when working with many examples. To over-
come this, Rigel uses a look-ahead mechanism, aimed at supplying a low-cost “‘guess”
of the evaluation of the extension. If the extension guessed by the look-ahead is bad, the
real extension is not even tested and the operator does not create the state. Bergadano et
al. (1988) have employed a similar technique in their system.

4.1. Specialization operators

The current version of Rigel incorporates three specialization operators. The operator w,
corresponds to the reverse dropping condition rule, which Michalski (1983) defines as

@ :>K;Su>K) |>0eAS:>K
where S is a selector referring to a variable already present in ¢ (i.e., S is connected to

¢). This operator addes a detail to the description of an object. Since an object that occurs
in an example corresponds to a variable in a concept description (VL, formula), adding
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a detail to an object description involves adding a selector referring to that variable. Rigel
chooses the selector S from among the set of selectors originally obtained from the seed.

The second operator, wy, corresponds to the reverse dropping condition rule, but in a
different way:

e:>Ky¢yu>K |>eAy>K

where ¢ and ¢ are formulas with no common variables. This operator generates the con-
junction of two formulas whose sets of variables are disjointed. Whereas w, focuses on
the description of an object and tries to refine it, w; enlarges the set of considered objects
described by a formula, conjoining it with another good formula which refers to possibly
different objects. The good formulas, which are candidates to be conjoined, are kept in
a set that contains the best formulas generated so far.

The third operator, wg, generates quantified formulas. Given an unquantified formula
@, wq tries to generate from ¢ some new universally or numerically quantified formulas.
Four quantifications are possible:

I

@ 3. (=nE) (v > K
() 3. (z n)(x) (p) :> K
(¢) 3. (= n)x) (¢) ::> K
(d) 3. N (n. . m)Xx) (¢) ::> K

In other words, if there exist (a) exactly n, (b} more or equal than n, (c) less or equal
than n, (d) between n and m different objects in a sample satisfying formula ¢, then the
sample belongs to class K. In addition, a final quantification is:

v(x) (¢) :> K

which can be paraphrased: if all objects in a sample satisfy formula ¢, then the sample
belongs to class K.

Given a generic formula ¢, there are usually several quantified formulas that belong
to the Star and cover the seed. The operator w, takes into account only the most character-
izing ones. In order to do this, it carries out a data-driven activity that strongly focuses
the search for possible quantifications. In particular, the positive examples of K are allowed
to propose the best quantifications.

Given a formula ¢ that covers an example e, there are usually several alternative bindings
between the variables in ¢ and the objects in e. A histogram is built up that shows the
distribution of the number of bindings in the examples of K with respect to ¢; Figure 1 pre-
sents an example of such a histogram. The x axis represents the number & of alternative bind-
ings and the y axis indicates the number of examples that are covered by ¢ in k ways. First
the operator analyzes the histogram, detecting a continuous interval [L, R] of nonzero values
of k, comprising the seed; then the best form of existential quantification (=n, =n or <n)
is chosen, depending on the value of L and R. Moreover, if the number of ways in which
¢ covers the seed equals the total number of possible ways the m variables in ¢ can be
bound to the # objects in the seed, then the operator proposes the universal quantification.
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Figure 1. Histogram of the number (Ny) of examples of K; covered by ¢ in k different ways.

We should note that every quantified formula is disconnected from all the others. In other
words, a quantified formula is closed in that its variables only have meaning inside the
formula. Therefore, they can be seen as formulas with no variables, making them available
to the wy operator during the inductive search.

4.2. Generalization operators

Rigel also incorporates three generalization operators. The first operator, wcy, is applied
only once, at the beginning of the inductive search, to transform the seed description. This
operator corresponds to Michalski’s (1983) turning constants to variables rule, which is
defined as follows:

oaya, ... a) 2> K< 3 XXy ... X)) @(X; X5 ... X) 11> K,

where ¢(a, a, ... a,) is a VL, description containing the constants a,, a,, ..., a,, which
are turned into the corresponding (different) variables x;, X,, ..., X,.

The second generalization operator, wp, is also applied only once at the beginning of
the search in order to transform the seed into a set of single selector formulas, which are
the starting point for the inductive search. This operator corresponds to a dropping condi-
tion rule, defined as follows:

eAS>K|<Su>K,

where S is a single selector and ¢ is the remainder of the formula, which corresponds
to Michalski’s “context.”

The operator wg is Rigel’s main generalization process. It corresponds to the consistent
extending reference rule, defined as follows:

e ANLE) =R} ::i> K

e AL =R} > K < ¢ A [LE) = R,
o {e A [L®) = R3] 1> ~(K)}

where (R; # R, and R, R, € Rj).
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This operator is a modification of Michalski’s (1983) extending reference rule. Given an
inductive assertion, the operator wg generalizes it by extending a selectors’ set of values.
The generalization takes place under the consistency constraint: each new value is added
only if it enhances the number of covered positive examples without covering negative ones.
This constraint prevents the system from overgeneralizing the inductive assertion, and so
avoids oscillation in the partially ordered set of inductive assertions and focuses the search
on discriminant formulas.

The problem of generalizing a formula can be recursively reduced to that of generalizing
a single selector. But, given a formula, there are usually very many ways to extend the
reference of one of its selectors and it is impossible to hypothesize all of them and subse-
quently select those which do not violate the consistency condition.

To overcome this difficulty, the operator wg performs an analysis of the examples of a
concept K to guide its action. Given the formula y = ¢ A [L(x) = R;], the positive and
negative coverage of the expression ¢ A [L(x) = *] is computed: the symbol * stands for
the domain of attribute L. In this way, all the candidate values for extending the reference
of L are represented by means of two histograms, N* and N~, as shown in Figure 2.

Each histogram represents the distribution of positive (N*) and negative (N~) examples
covered by ¢ A [L(x) = p], p €¢ DOM(L). From these histograms, one can extract the can-
didate values that satisfy the consistency condition; a generic value p € DOM(L) is selected
if and only if the N~ histogram has zero value in correspondence at the value (N~ (p) = 0).
The operator determines the set of values to be added by looking at the histograms for
all the values that cover new positive examples and no negative ones. Actually, the con-
sistency constraint can be weakened to accept generalized formulas that also cover some
negative examples. This is particularly useful when the system deals with real-world data.

Number of
covered
examples

4

DOMI(L)

Figure 2. Histogram used to guide the application of the consistent extending reference rule. The x-axis shows
the values belonging to the domain DOM(L) of the attribute L and the y-axis reports the numbers N* and N~
of positive and negative examples covered by ¢ A [L(x) = p] for each value p € DOM(L).
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4.3. Macro operators

The generalization and specialization operators described above are Rigel’s basic tools for
exploring the space of inductive assertions. Nevertheless, initial experiments with the system
suggest that, under certain conditions, a sequence of basic operators is more effective than
a single step. A typical case occurs when the target concept consists of a quantified for-
mula with generalized internal selectors. Obtaining such a formula would require making
a generalization step (relaxing the consistency constraints) and then quantifying the general-
ized formula. However, the intermediate generalized formula may be poor in terms of cov-
erage (e.g., it may cover many negative examples), causing Rigel to discard it before the
second step can be applied, even if this step would generate a very good formula.

One solution to this problem involves the use of macro-operators, which implement a
sequence of standard operators in a single step. Currently, Rigel contains only one imple-
mented macro-operator, {gq. This is defined as a sequence of the wg and wq operators,
allowing the generation of complex quantified formulas (i.e., that contain several selectors
with generalized values). When Qgq is applied, wg generates maximally complete formulas
without worrying about negative examples; then wq quantifies them, possibly reducing the
number of negative examples. Only at this point are the formulas evaluated, by taking into
account such factors as completeness and consistency.

44. An example of inductive search

To clarify Rigel’s use of operators, Figure 3 presents the search tree that the system generates
for a simple induction task. The first operator to be applied is wcy, which transforms the
seed description (a) into a more general one (b) by substituting existentially quantified
variables for the constants. The operator wp next splits the seed description into a set of
one-selector formulas. In this example the solution path starts from the selector [color (X)
= red] (node c). At this point the applicable operators are: wy, which joins the formula
in ¢ with a formula that predicates on different variables and in this example creates a node
that is discarded by the beam (inactive node = white circle); wq, which creates a quan-
tified formula kept in the beam (active node = black circle); and w,, which specializes
the formula in ¢ by adding a new selector, thus creating two nodes, one of which (d) is
already consistent (final node = consistent formula = crossed circle).

Let us suppose that the formula in d is consistent but not yet complete: in this case it
would be put in the solution set of the Star (as it is consistent), but also kept in the search,
because it could be further developed (specialized and generalized) to achieve completeness
while preserving consistency. In the next step, d is generalized with wg, increasing its posi-
tive extension without increasing the negative extension (e). In e the “weight” descriptor
is generalized to the value 2. .4 (interval from 2 to 4) without covering negative examples.
Next, e is specialized with the operators wy and w, (node f), which create a more special-
ized context in which the “‘weight” descriptor is generalized from the value 2. .4 to the
value 2. .5 without any loss of consistency. The resulting formula g, which is complete
and consistent, is selected as the best element of the Star.
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® = ACTIVE NODES

O = INACTIVE NODES

® = FINAL NODES

a = [color(p) = red] [shape(p) = square] [weight(p) = 4] ...

b = 3(x) [color(x) = red] [shape(x) = square] [weight(x) = 4] ...

¢ = 3(x) [weight(x) = 4]

d = 3(x) [weight(x) = 4] [shape(x) = square]

e = J(x) [weight(x) = 2..4] [shape(x) = polygon]

f=3(x) [weight(x) = 2..4] [shape(x) = polygon] [color(x) = red]
g = 3(x) [weight(x) = 2..5] [shape(x) = polygon] [color(x) = red]

Figure 3. Scheme of the inductive beam search process. The figure shows in detail the search space developed
starting from one single selector (c). The search space developed from the other selectors is depicted by a triangular
shape.

5. Heuristic knowledge

Rigel’s inductive search is controlled and focused by a body of heuristic knowledge, repre-
sented in terms of a heuristic description language. Below we present this language and
then describe the heuristics that use it.
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5.1. Heuristics description language

The heuristic description language is part of an approximate reasoning framework used
in defining Rigel’s evaluation criteria and functions. The syntax of an expression is given
by the following grammar:

(expr) ::= (AND (arg)”) | (OR (arg)*) | (NOT (arg))
(arg) ::= (linguistic-value) | r | (expr)
(linguistic-value) ::= N

The symbol X\ denotes a term belonging to a given set A and r € [0, 1] is a real number.
Terms correspond to elementary conditions, which can be combined by means of the logical
connectives AND, OR, and NOT to build up more complex conditions. These conditions
assume a truth value in the interval [0, 1]. For this reason, each A is the label of a fuzzy
set, defined over a given base variable x € D,, whose membership function

i D~ [0, 1]

is given as background knowledge. If an expression coincides with some A € A, then the
evaluation of the expression is given by the corresponding u; value. If an expression con-
tains connectives, one must define a semantics for their evaluation. The semantics is the
same as that reported by Bergadano et al. (1988), which uses for the connectives AND
and OR a pair of corresponding t-norm and to-conorm consistent with De Morgan’s laws
with respect to the semantics of the negation: u(NOT &) = 1 — u(¢).

As an example of a term, let us consider A = highpos. Given a concept K, a set of ex-
amples POS(K), and a formula ¢, let EXT(¢, POS) be the set of examples of K covered
by ¢. We will say that highpos is true for ¢ if the ratio |EXT(¢, POS)|/|POS(K)| is large.
More precisely, the evaluation of the truth of highpos is given by the u, value obtained
from a function like that in Figure 4.

Table 1 shows the set of terms currently defined in order to control the syntactic and
coverage aspects of a formula ¢ in Rigel.

o highpos

1

0 >
0 01 1.0

Figure 4. Example of semantic definition of the linguistic term highpos. The variable £ is the ratio between the
number of examples (of a concept K) covered by a formula ¢ and the total number of examples of K.
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Table 1. Terms and their meaning.

Term Meaning
highpos @ covers many positive examples
lowpos ¢ covers few positive examples
lowneg @ covers few negative examples
lowlength ¢ contains few selectors
toogen @ contains some selectors with many values in disjunction
quant ¢ is a numerically or universally quantified formula
noquant ¢ does not contain any quantified subformulas
final @ is consistent
complete ¢ is complete

5.2. Heuristic functions

Let us now describe some of the heuristic functions that Rigel uses to control its search.
The seed selection algorithm calls the function vyp(h) to evaluate the worthiness of an in-
ductive assertion h as the starting point for the inductive search. It works on single selector
formulas and examines their statistical relevance. The value of pyp(h) is the truth value
of the condition

(highpos AND (lowneg OR 0.9)).

Rigel prefers inductive assertions that are quite complete (highpos) and consistent (lowneg).
The constant 0.9 in the OR clause has the effect of lowering the weight of the clause itself.
In this way the system can emulate the behavior of various lexicographic evaluation func-
tions (Michalski, 1980).

The second function, »y(¢), is used in the beam search. It evaluates the promise of a
formula ¢ for generating a good final description. The value of w(¢) is the truth value
of the condition

(highpos AND lowlength AND (lowneg OR (lowlength AND (NOT quant)))).

This heuristic prefers assertions that cover many positive examples, cover few negative ex-
amples, and contain few selectors. At the beginning of the search, i.e., when lowlength
in the second term is high (~1), the consistency factor has a very low influence.

A third function, viser(), evaluates the suitability of a formula ¢ to be joined to another.
Rigel uses this to select the formulas to be added to a set (JSET) containing the best for-
mulas generated so far. As w; is a specialization operator, good candidate formulas for
the join are those which are simple and maximally complete. The value of vjger(p) is the
truth value of the condition

(highpos AND lowlength).
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The function rouant(e) is used to evaluate the applicability of wq to a formula . This
heuristic prefers formulas that are simple (a complex quantified formula is not easily read-
able), complete, and unquantified. The value of vgyanT(0) is the truth value of the condition

(noquant AND lowlength AND highpos).

A final function, »gpn(¢), evaluates the opportunity of applying the operator wg. The
purpose of this operator is to increase the number of positive examples covered. As the values
are extended by taking consistency into account, the generalization is likely to fail if the
candidate formula covers many negative examples. The lowneg term discourages the appli-
cation of wg in such a case. If the ranges of values of the selectors in ¢ are already very
wide (toogen), the application of wg is also discouraged. The value of ygen(p) is the truth
value of the condition

(lowpos AND lowneg AND (NOT toogen)).

The flexibility of the declarative representation of the evaluation criteria facilitates the
testing of different policies, simply by modifying the evaluation functions. Rigel has been
tried with several alternatives functions, with the aim of better directing the inductive search,
as discussed in Gemello and Mana (1988).

6. Experimental results and discussion

In this section, we describe the results obtained using Rigel on three application domains.
The first involves geometric figures, whereas the other two concern real-world applications
in the field of image recognition. All the results given here were obtained using a Common
Lisp version of Rigel, running on an Explorer Lisp Machine.

6.1. The domain of geometric figures

The first test case is a geometric domain designed to test Rigel’s ability to discover com-
plex descriptions. This task requires the interleaved application of the add, join, generaliza-
tion, and quantification operators. The geometric figures reported in Figure 5 belong to
the three classes—C;, C,, and C;—each of which has five examples. Table 2 lists the selectors
used in the description language for this problem.

Given these data, Rigel finds a complete and consistent description for each class. The
output rules are the best ones according to the currently chosen criteria; the system also
finds several others, which the user can examine upon request? Using e, as seed, Rigel
proposes the following description for class C;:

(3. (x YY[SHAPE(x) = square][SIZE(x) = small][SHAPE(y) = circle]
[TEXTURE(y) = shaded])

In other words, all members of the class C, contains both a small square and a shaded
circle. This description reveals the system’s use of the operator wy. The program first
creates the descriptions of the square and the circle separately and then joins them later.
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evbh

Figure 5. Examples from the domain of geometric figures.
Using the instance e, as its seed, Rigel finds the following description for class C,:
3.(y)AN(L. .2)[SIZE(y) = small V medium][TEXTURE(y) = clear][SHAPE(y) = rectangle])

To summarize, members of this class contain one or two clear small-or-medium sized rec-
tangles. Discovering this description requires the use of a quantification operator that works
on formulas of arbitrary complexity. Induce cannot acquire this rule, because its imple-
mented language is unable to express quantification over complex formulas. In contrast,
Rigel is able to find both descriptions because it employs the numerical quantification oper-
ator used during the inductive search.

Moreover, the presence of generalized selectors points out the utility of the macro-operator
{go- In this case the generalization cannot take place under the consistency condition,
because example e; of class C, includes some clear small-or-medium sized rectangles. The
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Table 2. Descriptors used for the geometric figures in Figure S.

Descriptor Type Meaning Domain

SIZE(x) Linear Size of the object x {Small, Medium, Large}

TEXTURE(x) Nominal Texture of the object x {Clear, Shaded}

SHAPE(x) Structured Shape of the object x {Triangle, Square, Rectangle, Circle, Ellipse,

Polygon (| > Triangle, Square, Rectangle),
Curved (}> Circle, Ellipse)}
ONTOP(x y) Nominal Object x is on y {True, False}

macro-operator {lgg is able to generate the final description by relaxing the consistency
condition in the generalization step, thus generating an intermediate generalization and spe-
cializing it with the following quantification operator.

Finally, starting from instance e,4, Rigel discovers a discriminant description for the
class Cj:

(3.(x y)[ONTOP(x y)J[SHAPE(y) = triangle V rectangle][3.(z)(=2)[SIZE(z) = large]))

In this case, the class is described by the presence of a triangle or a rectangle under another
object, as well as by the presence of two large objects. This shows that Rigel can find descrip-
tions by searching contexts for generalizing consistent but incomplete descriptions. In fact,
the system discovers that the presence of a triangle under another object is sufficient to
discriminate some examples but then continues the search, joining the numerical property
and generalizing the obtained formula. In this way, it finds a final description that covers
all the examples of the class. This also shows the utility of a interleaving generalization
and specialization during the actual search process.

Finally, the role of the seed selection algorithm deserves analysis. To this aim, an experi-
ment was run in which each example was selected as seed in turn, while the beam size
was set (by trial and error) to the minimum value that ensured Rigel would find the desired
final descriptions. The examples that led the inductive search to generate the minimum
search space were the best seeds. Table 3 reports the number of hypotheses considered
in each case. The italicized rows show the examples that Rigel selected as its seed, reveal-
ing that its strategy for seed selection leads to considerably less search than random selec-
tion. Moreover, the time consumed by the seed selection process represents only 0.3%
of the total time needed to discriminate the three classes.

6.2. An image recognition domain

The other two testbeds are taken from the domain of image recognition. These cases repre-
sent interesting tests on Rigel’s ability to deal with real data. All the results reported in
this section have been obtained using the performance system described in Section 2.1.
The first problem involves discriminating among the five flat metallic pieces shown in Figure
6. The examples are generated from a set of 2D images of the objects, acquired by a TV
camera placed above the table supporting the pieces. The pixel map is analyzed by a low-
level module (Mangilli & Viano, 1987) that describes the contours in terms of angles, straight
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Table 3. Evaluation of the seed selection algorithm
on the data from Figure S.

Seed Beam Number of Hypotheses
evl 2 130
ev2 2 93
ev3 2 103
evd 2 83
evs 3 94
ev6 5 104
ev7 1 55
ev8 5 106
ev9 1 56
evlQ 5 123
evll 2 50
evl2 2 48
evl3 29 415
evld 2 56
evls 30 399

lines, and curves, as shown in Figure 7. Associated with each primitive is a set of features
that are invariant with respect to rotation and translation.

Due to random variations in the input images, resulting from rotation, illumination, and
noise in the low-level signal processing, the results of the segmentation process differ from
case to case. Figure 8 shows the complete set of eight training instances of the class H,
that were generated by the feature extractor and given to Rigel.

A
ore ()

Figure 6. The metallic pieces to be discriminated in the image recognition problem. The discriminant features
learned by Rigel are encircled.

4= Direction 7 /

Len%th | Angle\ Dire}tio
Radiu ‘ Angle Amplitude,
9

Figure 7. Primitive features extracted by low-level image processing.
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Figure 8 The segmentation generated for the H, class images. The capital letter A represents the angle, the marker
X the curve delimitation and the segment represents the straight line. Due to random variations in the input images
and noise in the low-level image processing, the segmentation differs from image to image, both in the number
of segments and in the labelling.

Table 4 summarizes the descriptors that Rigel uses in this task. These let one construct
a symbolic description of the input examples, starting from a point chosen at random and
following the image contour in a counterclockwise direction. For example, a partial descrip-
tion of the first example in Figure 8 can be stated as:

[TYPE(p,) = straight_line][LENGTH(p,) = 37.6][NEXT(p, p)JITYPE(p, = angle]
[AMPLITUDE-A(p,) = obtuse][ANGLE-A(p,) = 2.263][DIRECTION(p,) = left]. ..

Rigel was given a total of 55 input examples, consisting of 8 for the concept H,, 12 for
H,, 10 for H,, 13 for H,, and 12 for Hs. From these data, the system induced a set of
conjunctive rules expressing sufficient conditions to discriminate the images of the pieces.
Table 5 shows the simplest (shortest) rules proposed by Rigel to discriminate the five classes,
along with English paraphrases for each rule.

Table 4. Descriptors used for the images in Figure 6.

Descriptor Type Meaning Domain

TYPE(p) Nominal  Primitive type {angle, straight_line, curve}

LENGTH(p) Linear Straight line length (0. .150) pixel

DIRECTION(p) Nominal Curve or angle direction {left, right}

AMPLITUDE-C(p) Nominal Amplitude of the curve {acute, right, obtuse, straight_angle,
round_angle}

AMPLITUDE-A(p) Nominal Amplitude of the angle {acute, right, obtuse, straight_angle,
round_angle}

ANGLE-C(p) Linear Curve numerical amplitude (0. .6.28) radians

ANGLE-A(p) Linear Angle numerical amplitude (0. .3.14) radians

RADIUS(p) Linear Radius of the curve (0. .620) pixel

NEXT(p, p,) Nominal  Primitive p, follows primitive p,  {true false}
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Table 5. Decision rules discovered by Rigel.

Rule

Paraphrase

(3.(x)[ANGLE-A(x) = 2.04 .. 2.36}) ::> Hl

There exists an angle with amplitude between 2.04
and 2.36 rad

(3.(x)[RADIUS(x) = 86.3 .. 132.0]
[ANGLE-C(x} = 063 .. 1.26]
[DIRECTION(x) = left]) ::> H2

There exists a lefi-curve with a radius between 86.3
and 132.0 pixzels and whose amplitude is between
063 and 1.26 rad

@A.(x)1. .2)JANGLE-A(x) = right]
[DIRECTION(x) = right]) ::> H3

There exist one or two right angles whose direc-
tion is right

(3.(x)[AMPLITUDE-C(x) = round__angle]) ::> H4 There exists a curve with an amplitude round angle

(3.(x)[AMPLITUDE-A(x) = acute]) ::> HS There exists an angle with amplitude acute

These rules have also been experimentally found to be those minimizing the classifica-
tion time. Moreover, Rigel found many other discrimination rules, including the more com-
plex rule:

(3.(x Y)TYPE(x) = angle]]AMPLITUDE-A(x) = obtuse]{fNEXT(x y)]
[TYPE(y) = curve][AMPLITUDE-C(y) = acute]
(3(=3)(x)[AMPLITUDE-C(x) = right V acute])) ::> H1

This can be paraphrased as “There exists an angle whose amplitude is obtuse followed by
a curve whose amplitude is acute, and there exist more than three right or acute curves.”

The above limited experiment was run to test Rigel’s ability to find rules starting from
corrupted data, rather than to test its predictive power. Nevertheless, the data were separated
into training set (70%) and test set (30%). This splitting was performed randomly 20 times;
in each case the learned rules were used to classify the test set and the accuracy was meas-
ured. In the majority of the cases (60 %), classification was achieved with 100% accuracy
and without any ambiguity. In the other cases (40%), classification was somewhat less
correct (from 75% to 90%), with some ambiguous classification occurring. Overall, the
average classification accuracy was 97% over the 20 runs, though this sample is not large
enough for statistical evaluation.

The second task was also chosen from the image recognition domain, this one concerned
with discriminating among 18 capital letters (A, B, C, D,E, E G, H, L, M, N, B R, S,
T, U, V, Z). This task is more difficult than the previous one because some of the letters
are very similar, requiring more complex rules. Rigel was given 16 images for each letter,
but only 70% of them were used as training examples, with the remaining 30% being used
as the test set. In other words, 198 examples were given to Rigel to perform the learning
step, and a classification system used the learned rules to classify the 90 test patierns.

The resulting performance in the test set, evaluated as an average over 10 runs, can be
summarized as follows: 89% of the cases were correctly classified (i.e., only rules corre-
sponding to the correct class were matched by these instances); 2% of the cases received
an ambiguous classification (i.e., rules of the correct class were matched but some others
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were as well); 7% of the cases were not classified (i.¢., no rule was matched); and 2%
of the cases received an erroneous classification (i.e., only rules corresponding to wrong
classes were matched). The reported performance level seems quite respectable on a real-
world domain the system was not initially designed to handle.

6.3. Sensitivity analysis

We have argued that one of Rigel’s advantages is its declarative representation of knowledge
for search control. Different domains may require more or less effort to separate classes,
involve different induction operators, and so forth. One can often interview a domain expert
to obtain estimates of these characteristics, which can then be encoded to constrain the
search process. If not, one carries out an initial phase of experimental tuning to determine
reasonable settings for a given domain.

This engineering approach is suitable for the semi-automated construction of knowledge-
based systems, but it sidesteps the interesting scientific question of Rigel’s sensitivity to
these parameter settings. To answer this question, we carried out two experiments that varied
the system’s parameters. The first study compared two runs of Rigel on the image recogni-
tion task that involved metallic objects. One run used the same set of parameters as originally
used for the domain of geometric figures, whereas for the other run we changed 7 of the
12 total tunable parameters. In the latter case Rigel acquired rules that differed only slightly
from those found with the original tuned parameters values. Moreover, these rules per-
formed quite well, with only one example of class H, being ambiguously classified.

The second experiment was more systematic, varying the setting for two parameters and
measuring accuracy of the acquired rules on the metallic pieces domain. In particular, the
two parameters were the amplitude of the beam search, which was varied from 5 to 30
(with increments of 5), and the applicability threshold of one of the learning operators,
which was increased from 0.5 to 1 (with an increment of 0.1) until the operator was deac-
tivated. This gave a total of 36 combinations, and we performed two runs for each of them,
repeating the entire process for each of Rigel’s operators.

When run on the same training and test sets as described above, Rigel generally acquired
the same rules independent of the parameter setting. The system did find different rules
when the join operator w; was deactivated, but their performance did not sensibly change.
Most likely, these results are due to the simplicity of the discrimination rules for this domain,
but they are still encouraging.

7. Related work

In addition to Rigel and Induce, only a few other inductive learning systems have the ability
to deal with structured examples. Early work by Plotkin (1970), Vere (1975, 1980), and
Winston (1975) focused on methods for acquiring a concept by characterizing a set of exam-
ples, using counter-examples to constrain the search when possible. These approaches rep-
resented concepts as conjunctive first-order logical formulas containing positive literals,
although Vere (1980) also allowed disjunctions and negations (“‘counterfactuals™) for repre-
senting exceptions. These methods were limited along a number of dimensions. None allowed
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for many-to-one variable bindings, none could handle noisy training data, and some employed
exponential enumerative algorithms to search the space of concept descriptions. Taken
together, these limitations made the systems unsuitable for use in real domains.

Hayes-Roth and McDermott (1978) responded to some of these issues by describing an
alternative method that searched for the most specific generalization of a set of examples
of a given concept. One advantage of their approach was that it explicitly stated the heuristic
criteria used to choose among alternative generalizations. Thus, their Sprouter system fits
well into Mitchell’s (1982) view of generalization as search through a space of concept
descriptions. Like the other system mentioned above, Sprouter carried out a specific-to-
general search strategy, incorporating operators for dropping conditions and the turning
constants to variables.

Kodratoff and Ganascia (1986), in their “structural matching” approach, augment the
inductive learning process with deductive inference. Their approach uses background know!-
edge to construct concept descriptions that contain features and relations that are not ex-
plicitly present in the training examples. However, their method suffers from a high com-
putational complexity, which is made even worse when noise is present in the data.

Iba, Wogulis, and Langley’s (1988) Hillary uses an incremental hill-climbing strategy
to achieve lower complexity. From their perspective, concept learning involves a search
for descriptions that satisfy opposing criteria, which can be explicitly stated as a modifiable
evaluation function. Specifically, Hillary learns disjunctive concepts from examples and
counter-examples, attempting to trade off simplicity of the concept description (low number
of disjuncts) with coverage (low error rate). Experimentally, the system showed some ability
to handle noise that occurred from misclassified training examples.

Like all the systems described above, Rigel’s basic induction method involves a search
from specific concepts to more general ones. However, the use of numerical quantification
during this search, together with the extending reference rule, lets Rigel acquire descrip-
tions that the other systems cannot find. In addition, the interleaving of general-to-specific
induction operators with specific-to-general ones allows a more flexible search for useful
concepts. Finally, Rigel incorporates a body of declarative knowledge that states criteria
for guiding each step of the search, which helps the system reduce the resources it requires.
This aspect bears similarities with Hillary, though the current system has a more extensive
search control scheme.

Finally, Rigel owes several ideas to Bergadano, Gemello, Giordana, and Saitta’s (1988,
1989) ML-SMART, from which the inductive operators and declarative heuristic criteria have
been taken. Nevertheless, the two systems differ in important ways. For instance, ML-SMART
uses a general-to-specific strategy for searching the space of concept descriptions. The sys-
tem can also learn several concepts at the same time, and rather than representing its acquired
knowledge as a set of flat if-then rules, it structures this knowledge into a rule network.

8. Conclusions
This paper has described Rigel, an inductive system for the automated acquisition of knowl-

edge for concept discrimination tasks. Starting from a set of classified examples of a given
set of concepts (classes), the system learns a set of rules that let it discriminate each class



30 R. GEMELLO, F. MANA AND L. SAITTA

from the others. We have tested Rigel on several classic induction tasks, including Michalski’s
(1980) trains domain, geometric figures and chemical formulas (Michalski & Stepp, 1986).
In all cases the system has learned the descriptions reported in the literature, and it has
often discovered additional solutions. We have also appiied Rigel to the domain of image
recognition with encouraging results. At present we are applying the system to a larger
task, namely the diagnosis of faults in a telecommunication network.

However, the current version of the system has a number of limitations, including concep-
tual problems, which could be corrected by extensions, and fundamental problems, which
require a different approach. Among the first type of problem is the fact that Rigel is not
incremental, in the sense that it cannot take into account initial knowledge provided by
the teacher or by a previous run on another set of examples. This ability would be very
useful in constructing knowledge-based systems, letting an expert supply initial hypotheses
of discrimination rules and letting the learning system refine them.

Further, the current system does not carry out any kind of deductive learning. An ex-
tended Rigel might use a domain theory to guide the inductive process. The system is also
unable to interact with the user for advice and guidance, although the user can provide
precedence constraints on the descriptors used during the inductive search. Finally, the
semantics of the descriptors is Boolean and not a continuous-valued one. Such a facility
would allow the system to handle borderline cases, especially in noisy domains.

A more fundamental problem involves Rigel’s inability to generate intermediate decision
rules, which could discriminate subsets of classes. That is to say, the learned knowledge
is represented as a set of one-level rules. Constructive learning activity is essentially limited
to quantification: the system is not able to introduce new descriptors and use them in a
discovery process.

As several of these problems have been overcome with a different approach taken in a
parallel project (Bergadano et al., 1988), future research on Rigel will focus only on cer-
tain issues, such as increasing the system’s ability to handle noise. With this in mind, we
have designed a characterization module and integrated it with the discrimination module
(Gemello & Mana, 1989). We are studying the effects of this integration, both from the
viewpoint of evaluating knowledge quality and of obtaining computational benefits. The
source of these benefits is the reduction in the number of examples that must be handled
during the discrimination phase; in fact, these examples can be limited to a set of precisely
defined “near misses” (Winston, 1975). We also plan to explore approaches to introducing
incremental learning capabilities into the system, by letting it start from a set of tentative
rules, possibly given by a domain expert.

In summary, Rigel seems to be a useful tool for learning rule in structured domains,
as it couples the richness of a first order representation language with contained computa-
tional complexity.

Appendix
Here we summarize the methodology proposed by Michalski (1983) for inductive learning.

The framework is based on the representation language (VL), in which the predicate nota-
tion is replaced by the relational statement notation (selector):
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S = [T, # T,

where T, is the referee, T, is the reference, and # is a relation. An example satisfies a rela-
tional statement S iff the value, computed by evaluating the referee T, on the example, is
in relation # with the reference T,. Two versions of VL have been introduced: VL,, which
is an artribute-value language where T, is an attribute name, and VL,, which is a first
order language, where T, is a predicate in first order logic.

In Michalski’s methodology, the concepts are learned one at a time. Given a set X =
{Ki, ..., K,} of concepts to be learned, one defines a set POS(K;) of positive examples
and a set NEG(K;) of negative examples for each concept K;. Single concept learning is
performed by computing the covering set COV(POS(K;)|NEG(K;)) of the set POS(K;)
against the set NEG(K;). The covering set is defined as the set of concept descriptions
so that there is at least one description that covers each example ¢ € POS(K;) and so that
no such description exists for any example e ¢ NEG(K)).

The covering algorithm uses the concept of a star for an example e € POS(K;), called
the seed, against the set NEG(K;). A star is the set of all nonredundant descriptions of
K; that cover the seed and do not cover any counterexample. In practical problems the star
may contain many descriptions and will be computationally intractable. Therefore, the star
concept is replaced by the reduced star concept, which contains no more than a fixed number
of descriptions. The best descriptions are retained in the reduced star, in accordance with
a lexicographic preference criterion provided by the teacher.

At each cycle of the covering algorithm, the covering set is updated with the best descrip-
tion chosen from among those found in the reduced star. If the covering set is partial (if
the examples in POS(K;) are not all covered), then the algorithm continues computing the
covering of the uncovered examples, until it reaches a total covering. Thus, the covering
set can be viewed as a disjunction of descriptions generated by different stars, Michalski
has proposed two different algorithms, AQ and Induce, for computing the star. As we discuss
below, they differ in their representation language and in their generalization rules.

A.l The AQ algorithm

The AQ algorithm uses the VL, representation language, in which the simplest entity is
the selector [x; # R;]; x; is an attribute name, # € {=, =} is a connective relation, and
R; is a set containing values connected by internal disjunction. The attributes needed to
describe the application domain are given by the teacher. A domain is associated with each
attribute and is described as the set of values that the attribute can assume. The domain
is classified in accordance with the relation existing among its values: nominal if no rela-
tion between the values exists, linear if there is a linear relation among the values, and
structured if an IS-A hierarchy links the values.

A well-formed formula in VL, is called a complex and is composed of a conjunction
of selectors:

[X] # Rl] [Xz #Rz] SN [xm # Rm].
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Given a set {x; X, ... X,} of variables and an example of the application domain (i.e.,
an event ¢), the latter is described by means of an n-selector conjunction:

e =[x, =v][x2 =Va] ... [X; = vyl

Actually, it is sufficient to have an n-ary vector in which the i-th element contains the value
associated with the i-th variable.

The AQ algorithm uses the extension against rule and the extending reference rule as
its inductive operators. The first of these generalizes an attribute in the context of a complex:

eAx=Rl:>K, yA[x=R]u> K |[<eA[x#R]:u>K

where R, N R, = ¢. In contrast, the extending reference rule generalizes an attribute
by extending the set of values it can assume:

eAx=R]1:>K |<¢Alx=R]u>K,

where DOM(x) 2 R, 2 R; and DOM(x) denotes the domain of x.

The AQ algorithm computes the Star G(e|E) of an example e against a set E. The star
G will be a set of complexes that satisfy the consistency condition. Given the set of variables
{X, X, ... x,}, an example e, and a set of examples E = {e, e, ... e,}, the elementary
star G(ele;) is the set of maximally general complexes that cover e and do not cover e;.
Intuitively, the elementary Star represents each possible way of discriminating e from e;
by means of conjunctive formulas in VL,. The computation of G(ele/) is realized in the
following way:

(a Lete = (r; ... rp)and e’ = (1] ... ry).
() Let x5, ..., x5, 1 =5 = n) be the variables whose values differ in e and e’
(c) Generate k complexes in accordance with the extension against rule

Glele) = {Ix;, # rfjl |ie [l .. K]}

The Star G(e|E) is then defined as the conjunction of all possible ways of discriminating
e from every example ¢; belonging to E. Formally, G(e|E) is defined as

Gele) = A Geele)

e;€E

In order to obtain nonredundant complexes in the partial star, the conjunction task is
performed under the absorption law condition (i.e., A A A = A). As an example, let us
consider two elementary stars G(ele;) = cpx, V cpx, and G(elej) = ¢pX, V cpX;. The star
of e against the set {e;, ¢} can be computed as follows:

Geel{e; ej}) = (cpx, V CpX,)(CpX, V €pX3) = CPX; V CPX,CXpP; V CPX,CPXa.
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The descriptions contained in the star use only values already present in the examples.
During the star computation, each variable is considered as belonging to a nominal domain,
and domain knowledge is used to simplify the descriptions that are found. For this reason,
AQ applies the extending reference rule to each description, so as to search for the best
internal disjunction.

AQ computes a reduced star, in that it retains only the m best complexes of the partial
star in accordance with the preference criterion defined by the teacher.

A.2. The Induce algorithm

This algorithm works on descriptions in the VL, representation language, an extension
of VL, that can manipulate expressions containing variables and universally or numerically
quantified formulas. The simplest entity allowed in VL, is the selector [L # R], where
L is a n-ary function (descriptor), # is a connective belonging tothe set {= # < = < >}
and R is a set of values of L. The values in R are considered to be internal disjuncts. A
domain type and a range of values are associated with each descriptor.

Induce considers only a subset of the VL, language, namely the set of well-formed for-
mulas (wff) consisting of selectors and of formulas built up by means of conjunction, dis-
junction, internal disjunction, and existential quantification. Each example (event) e, con-
taining the objects a,, . . ., ay, is described as a conjunction of selectors involving the a;’s.

For its inductive process, Induce uses the dropping condition rule, the extending reference
rule, and the extension against rule. The first of these operators generalizes a formula by
dropping a selector:

e ALK =vl:>K |< ¢ > K

The other rules are the same as those defined for the AQ algorithm.

The Induce algorithm also computes the Star G(e|E) of an example e against the set E.
The algorithm consists of two steps: the first one uses only selectors of the seed to obtain
some descriptions that do not cover any counterexample, and in the second step it generalizes
these descriptions. In the first step, the dropping condition rule is applied to the seed descrip-
tion until single selector assertions are obtained. Afterwards, each single selector hypothesis
is repeatedly specialized using the reverse dropping condition rule.

The second step implements the maximal generalization of the formulas found in the first
step. This is accomplished by applying the extension reference rule. The application of this
rule is computationally more expensive on VL, expressions than on VL, ones. For this
reason, the Induce algorithm uses the AQ algorithm for the second step. Each VL, descrip-
tion is used to generate corresponding VL, examples. Given the VL, formula ¢, 2 new
formula &* is created. This has the same conjunction defined by ¢, but each involved selector
is maximally generalized; for example, [color(X) = red] is replaced by [color(X) = *],
where * represents the whole domain of color. Examples and counterexamples for the AQ
system are generated by computing each possible binding between ¢* and the VL, examples
and counterexamples, respectively. Each binding represents an event expressed in VL.

The algorithm sketched above computes a reduced star. As in AQ, the reduced star is
obtained by keeping the m best generated formulas.
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Notes

1. Rigel is also a first order magnitude star of the Orion constellation.
2. Rigel acquired concepts C,, C, and C, in 11, 14 and 18 seconds, respectively.
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