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1. Introduction
Some of us can remember the first AAAI conference in 1980 - a cozy gath-

ering of 400 AI researchers tucked away in one corner of a university campus.
There were only two parallel sessions of papers, and they filled one relatively
thin proceedings volume. There were no tutorial sessions and no exhibition
hall. For better or worse, the field of artificial intelligence has grown consider-
ably in the subsequent seven years. The recent Sixth National Conference on
Artificial Intelligence, AAAI-87, involved over 6,700 people and required the
full accommodations of the Seattle Center in Seattle, Washington (site of a
former world's fair) for its four parallel technical sessions and exhibition show;
and it still needed the University of Washington campus for its four parallel
tutorial sessions.

Machine learning (ML) has also developed over these years. It has recently
emerged as the subfield of AI that deals with techniques for improving the
performance of a computational system. It is now distinguished from studies
of human learning and from specific knowledge acquisition (KA) tools. In
addition to several ML paper sessions, there are now tutorials on the topic
and even ML programs and books on display in the trade show.

This note focuses on the ML-related articles and surveys presented in this
AAAI-87 conference. The next four sections cover the relevant presentations,
including all ten ML and three KA papers and the directly relevant surveys.1

1 These papers were selected from the 68 ML and 28 KA papers submitted to the con-
ference. The conference proceedings are published by Morgan Kaufmann Publishers, Inc.
(ISBN 0-934613-42-7). Although the surveys were not included in the proceedings, Morgan
Kaufmann plans to publish an edited version of the transcribed presentations. Canadian
Artificial Intelligence (October, 1987) includes a more general review of this conference.
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Section 2 deals with particular classification techniques, including three tech-
nical papers and one survey talk. Section 3 describes the four papers that fo-
cus on "knowledge-rich" learning systems, including various explanation-based
learning (EBL) systems. Section 4 discusses three papers that present theoret-
ical results. Section 5 describes three papers in the related area of knowledge
acquisition. Section 6 covers, in broad brushstrokes, some of the non-ML pre-
sentations considered relevant to the ML community, mentioning some papers
on analogy, theory revision, and other topics. The concluding section discusses
the perceived trends in our field and raises some general issues.

2. Classification techniques
Until recently, "learning" referred almost exclusively to classification mech-

anisms, focusing on programs that learn concept descriptions from a series of
examples and counterexamples. While learning now extends to include many
other topics and types of systems, classification is still a very active subfield.
Quinlan presented an excellent summary of these classification techniques in
his survey talk, "Data-Driven Approaches to Learning Classification Rules."
These systems have only a minimal domain theory and rely almost exclusively
on the training examples to learn an appropriate classification function. The
purpose of the classification function is to map sets of feature values onto
meaningful (but not necessarily pre-defined) classes. He explained some of the
difficulties of this task and presented many of the dimensions along which sys-
tems can differ - for example, the complexity of the input language, whether or
not the data are given incrementally, and so on. He used these dimensions to
compare a thorough cross-section of systems, including Michalski et al.'s AQ
family of algorithms, his own IDS system, Breiman's greedy approach, Stanfill
and Waltz's exemplar-based approach, Schlimmer and Granger's STAGGER
system, and the connectionist approach to learning classifications. He also
mentioned some theoretical results in the area that point to polynomial learn-
ability of decision lists.

Two technical papers provide theoretical results on induction techniques;
these are discussed in Section 4. The rest of this section discusses the three
papers that describe particular ways of finding an apt classification function.

Connell and Utgoff's "Learning to Control a Dynamic Physical System"
describes how their CART program learns to balance an inverted pole on a
cart. At each time step, the performance system2 pushes the cart (with a
fixed force) to the left or to the right, based on the current cart-pole state,
which includes the position and velocity of the cart and the angular position
and angular velocity of its pole.

To decide which direction to push, CART first estimates the states resulting
from each of the two actions and then approximates each state's "desirability"
using an interpolation function over the "desirability labels" of a few (previ-
ously memorized) states. CART pushes the cart in the direction that leads

2Following Smith, Mitchell, Chestek, and Buchanan (1977), we distinguish a learning
system's performance element (or performance system) - the component that actually performs
the objective task - from the components that attempt to improve performance.
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to the state deemed more desirable. The job of the learning component is to
select a few relevant states from each run to be memorized and to label each as
either desirable or undesirable. This credit assignment problem is very com-
plicated, because feedback only comes at the end of a run, and even then it
only indicates that the overall run has failed. The mechanism used to decide
which states to retain (for both credit and blame) involves several empirically
determined parameters.

Many previous researchers have addressed this same inverted-pole problem
using techniques ranging from control theory to connectionism. This work im-
proves on those earlier approaches, because it does not depend on a pre-defined
partitioning of the continuous state space into discrete regions. Furthermore,
in very few trials, it converges to the point that it can keep the pole balanced
for thousands of time steps. On several different runs of the overall system,
using various different initial settings, CART always converges within 16 trials.
(By contrast, the one earlier system that did not need pre-defined discrete
regions required thousands of trials.)

Fisher's "Improving Inference through Conceptual Clustering" describes the
COBWEB system, which computes conceptual clusters and uses these clusters
to predict the values of unseen attributes of new objects. The system is given
several completely specified objects in feature vector form. From these training
instances, it forms conceptual clusters having a high category utility (Gluck &
Corter, 1985) - i.e., the categories have many similarities between members
of each class, but few similarities between members of different classes. For
each of these clusters, COBWEB computes the conditional probabilities for each
value of each feature, given membership in that cluster.

The process of making predictions for new objects works as follows. Given
a new object for which only some of the feature values are specified, COBWEB
classifies this new object into one of its clusters. Then, the missing feature
values are predicted to be the most commonly occurring values for that cluster.
For example, COBWEB can use a set of training examples describing patients
and their (correct) diseases to form clusters that, presumably, group patients
according to their diseases and symptoms. To diagnose a new patient, a;,
COBWEB uses x's symptoms to classify x into the proper cluster and then
predicts x's missing feature - the disease, in this case - to be the most common
value of this cluster.

This article first motivates its use of category utilities as a way of forming
these useful categories useful for predicting the unspecified values of new
objects - and then outlines the particular heuristics COBWEB uses to find
these categories. It also provides empirical evidence that the system works
effectively by showing that COBWEB can diagnose Stepp's (1984) full range
of soybean diseases perfectly, after using only ten training instances to form
the categories! It also illustrates how tightly certain features of this particular
data set are correlated with one another - especially diagnosis with symptoms

to explain this extremely fast convergence.
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Schlimmer's "Learning and Representation Change" describes how the STAG-
GER concept acquisition system can augment its initial concept language when
necessary. Its performance system (Schlimmer & Granger, 1986) computes the
odds, that a given object belongs to a particular class based on the object's
known features. This article describes how STAGGER'S three learning mod-
ules incrementally learn this feature-set-to-class odds function from a series of
training examples.
(1) The weight-learning module examines how often each feature is, and is

not, associated with each class. It uses these numbers to compute how
strongly the presence, or absence, of this feature in some object, x, affects
the odds that x belongs to that class. As this module behaves like a
perceptron (Minsky & Papert, 1969), there are certain classifications that
it, alone, will never be able to learn.

(2) STAGGER's Boolean learning module attempts to overcome this limita-
tion by forming new features as Boolean combinations of existing ones.
It considers forming these new features whenever the first module has
misclassified some training example.3

(3) STAGGER's numerical learning module deals with continuously-valued at-
tributes. Each example supplies an actual value for this attribute; this set
of values forms the possible boundary points. (E.g., if the value of some
example's At attribute is v, then this module considers partitioning the
values of Ai into the values greater than v and the values less than v.) It
then uses a utility measure to decide which subset of these values form
the boundary points of a useful set of "buckets."

The article first describes these components and indicates how they fit together.
The latter two modules learn new representations for the examples by forming
new "Boolean features" as Boolean combinations of existing ones and new
"discretized features" as intervals over continuous ones. The first module can
then weight these new features along with the initial ones. The article also
provides a simple example of STAGGER's behavior and closes by describing
some of the system's inherent limitations.

We conclude this section with a few general comments on these papers. Each
paper describes an interesting technique for finding a meaningful classification
of a set of examples. These systems all fit within Quinlan's criteria; their differ-
ences lie in whether the classes are pre-defined, whether the training examples
are explicitly given and explicitly labeled, and whether the representations of
examples can change. CART uses a series of experiments to learn how to map
a set of pre-defined attributes into the two pre-defined classes: left-push versus
right-push. However, it must select the relevant training examples from the
set of all observed states, and it must label them appropriately. By contrast,
COBWEB is given explicitly defined training examples in a fixed, pre-defined
representation. It must form the meaningful clusters and then decide how to
assign partially specified examples to the appropriate class. STAGGER is also

3That is, STAGGER incrementally examines a given sequence of training examples and
their respective classifications. The weight-learning module proposes a class for each of
these examples; this is considered a "misclassification" if it differs from the given "correct"
class.
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given a pre-defined set of classes and an explicitly labeled series of training
examples. However, the features given in the examples are not sufficient to let
STAGGER'S very simple learning algorithm (weight learning) find correct con-
cept definitions, so it must introduce new features to overcome this problem.

All three of these papers presented some validation of their research. The
first two provide strong empirical evidence that their respective approaches
work effectively by demonstrating that they are sufficient to solve some rec-
ognized challenges. The third paper attempts a theoretical sufficiency proof -
describing when its technique is guaranteed to work.

3. Explanation-based learning techniques
Recently, there has been growing interest in machine learning systems that

learn how to solve problems more efficiently. Such systems begin with a rich
domain theory, usually one sufficient to allow the system to solve the posed
problem when given arbitrarily large amounts of computation time and space.
The objective of such "explanation-based learning" (EBL) algorithms is to
modify the performance system to allow it to find the solution faster.

An EBL system begins by explaining a given solution to a specific query;
this often involves examining the proof tree (or explanation structure) that
was constructed to solve this query. It then uses a form of goal regression to
determine some set of conditions that is sufficient to derive the query. (These
are often the leaf nodes of the proof tree.) Finally, it abstracts away the
details specific to this particular query, leaving a set of conditions that are
provably sufficient to solve a more general class of queries. This information
constitutes a new "chunk" or "compiled rule," which is then added to the
system's knowledge base. The performance system can then use this chunk to
solve future problems, often more efficiently (Mitchell, Keller, & Kedar-Cabelli,
1986; DeJong & Mooney, 1986).

All four papers reviewed in this section deal with EBL systems. The first two
papers describe how specific EBL systems can extend and generalize a given
explanation, and the latter two describe how to characterize and generalize
the output of an EBL system.

Prieditis and Mostow's "Towards a PROLOG Interpreter that Learns" de-
scribes PROLEARN, an adaptive PROLOG interpreter. Like most EBL systems,
this one first answers a query, and then employs a particular form of EBL to
generalize the execution trace. PROLEARN then applies partial evaluation to
simplify the resulting generalizations into more efficient subroutines. Finally,
these simplified generalized subroutines are added to the PROLOG program for
future use.

One example concerns the Towers of Hanoi puzzle. After solving the puzzle
with three disks, PROLEARN's learning process produces a new clause that
is, by itself, sufficient to solve the three-disk problem. This clause is asserted
"before" the general Hanoi clause so that PROLEARN will use it first in the
future. This newly learned clause considerably reduces the system's execution
time on related problems, such as the eight-disk one.
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After presenting this approach, the authors discuss some of its inherent prob-
lems. One of the major difficulties is that including a newly learned subroutine
can sometimes slow down the system's performance, as it forces PROLEARN to
consider special-case clauses that may not apply to the current query. This is
a recognized problem: it is not necessarily desirable to retain everything that
has been learned (Minton, 1985).

Shavlik and DeJong's "BAGGER: A System that Extends and Generalizes
Explanations" describes a learning system that can generalize the structure of
an explanation by generalizing the number of times an inference rule can be
used. BAGGER analyzes the explanation structure, looking for repeated, inter-
dependent applications of rules. When the system finds such substructures, it
forms a new rule by first extending the explanation to allow for an arbitrary
number of repeated applications of the rule sequence and then generalizing
using a standard EBL process. BAGGER only incorporates operational new
rules - that is, rules whose preconditions depend only on the original state
and not on the results of any intermediate applications of the original rule.

As one demonstration, BAGGER is given an example of unstacking a tower
of three blocks, to achieve the goal of exposing the bottom block. It generalizes
this into a plan to expose an arbitrary block in a tower of arbitrary height.
This generalization is beyond the abilities of a "classical" EBL system.

EBL systems seek a set of conditions that are sufficient to describe some
concept. There can, however, be many different descriptions for any given con-
cept. Kedar-Cabelli's "Formulating Concepts According to Purpose" presents
an EBL system, PURFORM, that uses an agent's purpose to select an appro-
priate concept description. For example, PURFORM could describe a cup one
way to an agent trying to satisfy its thirst and a different way to an agent
seeking an ornament.

PURFORM is given a plan that satisfies a certain goal (e.g., a plan that sat-
isfies the goal of quenching an agent's thirst). It uses EBL-style goal regression
to find the general initial preconditions of the plan. The goal regression pro-
cess is focused by a role-analysis procedure that attempts to understand how
the artifact (e.g., the cup) fits into the initial preconditions. It employs two
pruning heuristics to delete properties from this conjunction of preconditions,
leaving only properties that are relevant (i.e., that include the artifact as one
of their arguments) and intrinsic (i.e., that do not appear on the add or delete
list of any operator). Unfortunately, as the paper describes only one example
and only one purpose, it is hard to evaluate either the general ideas or these
particular heuristics.

In his award-winning paper, "Defining Operationality for Explanation-Based
Learning," Keller examines a standard definition of operationality: "a concept
description is operational if it can be used efficiently to recognize instances of
the concept it denotes." He explains how this is implemented in several EBL
systems and points out what is wrong with the definition. He also identifies
three dimensions for discussing operationality: variability, granularity, and
certainty.
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His major point is that the "efficient instance recognition" definition makes
too many restrictive assumptions about how the concept description will be
used to improve performance. For example, how is efficiency denned? Al-
though CPU time is commonly used, this may not be a good metric; e.g.,
perhaps space efficiency would be better. Keller's solution involves giving the
learning algorithm knowledge of the performance system and providing explicit
performance objectives. His METALEX program embodies the revised defi-
nition of operationality. He also notes that METALEX's particular technique
can be extremely slow, which may limit its practical application.

We close this section with a general comment on this sub-subfield. While
EBL is a fairly recent development in machine learning, we have recently seen
a great many papers on this topic, some proposing variations of the algorithm
and others examining the existing algorithms in detail, sometimes uncover-
ing errors in previous work. Machine learning (as well as AI in general) will
certainly benefit from more of this kind of focused research, in which many
diverse researchers explore important details in a common area.

4. Theoretical results
This section describes three papers that make contributions of a predom-

inantly theoretical nature. The first two offer analyses of concept learning
methods, whereas the third describes how the SOAR system can incorporate
new information from external sources.

Haussler's "Learning Conjunctive Concepts in Structural Domains" exam-
ines algorithms for learning conjunctive concepts, viewing this as a search
through a predefined space of candidate concepts, seeking one that is consis-
tent with the training examples. This research provides a theoretical analysis
of complexity in two learning paradigms - Mitchell's (1979) candidate elimina-
tion approach and Valiant's (1984, 1985) framework. Haussler's key theorem
demonstrates that candidate elimination learning can be exponential in the
number of attributes used to describe each object in an example. He also pro-
poses several ways of side-stepping this negative result and then proves that
these strategies have severe limitations for non-trivial examples (e.g., those
with more than a few objects).

Another result deals with "simple" hypotheses (i.e., those whose formulae
require few atoms) that are consistent with the observed training examples.
Haussler proves that, with a large enough set of examples, such simple hy-
potheses tend to be good approximations to the target concept - that is, they
are unlikely to misclassify a subsequently drawn random example. This cor-
roborates Occam's Razor and suggests that we should have more confidence
in simple hypotheses.

In "A Declarative Approach to Bias in Concept Learning," Russell and
Grosof view the process of learning a concept from examples as an inference
process:

bias -I- observations >—> hypothesis
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where both the "bias" (i.e., the initial collection of known information) and
the observations (read "instance descriptions") are declaratively expressed as
propositions in first-order logic. The process of updating the version space
can now be described as a deduction from the bias and examples. As the bias
limits the set of concepts the candidate elimination algorithm can express,4

it is critical to find a good bias. This paper addresses two aspects of this
challenge: how to set up the initial bias, and how to shift from one bias to
another.

The paper first shows how a learning system can use background knowledge
to derive an initial bias and, in particular, to define the languages used to de-
scribe the instances and concept candidates. It illustrates how this bias could
be used to define the initial version space used by the M E T A - D E N D R A L
system. The second half of the paper shows how to express shifts in version-
space bias as deduction in a non-monotonic formalism of prioritized defaults.
It then shows that this formalism is sufficient to represent the standard bias
shifts (viz., of weakening a strong bias when the system's conclusions are in-
consistent with observations), as well as others. This approach generalizes the
candidate elimination algorithm by allowing it to incorporate arbitrary back-
ground knowledge and by showing how it could be applied in less structured
domains.

Rosenbloom, Laird, and Ncwell's "Knowledge Level Learning in SOAR" de-
scribes the generality of the SOAR system. Earlier research (e.g., Laird, Newell,
& Rosenbloom, 1986) has demonstrated that this system can create new pro-
ductions, or "chunks," based on the results of its goal-based problem solving
and then use these chunks to speed up its performance on subsequent goals.
Because each new chunk is logically entailed by the pre-existing knowledge
base, this technique has been considered symbol-level learning (Dietterich,
1986, Newell, 1981).

This paper describes how SOAR can use this same chunking mechanism to
learn at the knowledge level - that is, to acquire new knowledge. The authors
consider a special case, which they call "data chunking," that involves observ-
ing new information from the outside and then storing some representation of
this new knowledge in memory. Learning occurs when a new chunk is created
that can retrieve the new knowledge and add it to working memory. The key is
for SOAR to set up the appropriate internal tasks, ones that allow its problem-
solving process to create chunks that represent the new knowledge. The article
demonstrates this knowledge-level chunking in two declarative memory tasks:
recognition and recall of new objects.

To summarize these articles: many learning systems must make inductive
leaps to form conclusions. Haussler shows that the problem is only effec-
tively solvable (by the candidate-elimination algorithm) on small tasks. As
consistency with observed instances is not enough, each system must embody
an implicit bias to constrain the possible hypotheses it can produce. This is
precisely the kind of information that Russell and Grosof capture in their non-

4I.e., a candidate elimination system using the wrong bias will be unable to express the
goal concept and so will be unable to return any generalization of the examples.
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monotonic formalism for shifting bias. Another fundamental problem is how
to represent the information derived from observations as new knowledge in
the theory. Rosenbloom, Laird, and Newell address this issue, describing one
way of extending a theory through perception.

5. Knowledge acquisition
Knowledge acquisition (KA), like machine learning, describes techniques

for increasing the functionality of a computer system. KA focuses on the
identification and representation of knowledge for use in expert systems. Since
this knowledge can be acquired in many ways - for example, by interviewing
human experts, analyzing test cases, and refining existing knowledge - a wide
variety of techniques have been studied. The three KA papers at AAAI-87
represent different approaches, namely, comparing two methods of encoding
a human expert's knowledge, automatically extracting an expert's knowledge,
and automatically constructing optimally predictive rules from test cases.

Henrion and Cooley's "An Experimental Comparison of Knowledge Engi-
neering for Expert Systems and For Decision Analysis" contrasts the knowl-
edge acquisition process for a traditional rule-based expert system with the
process of building a probabilistic model using decision analysis techniques.
To study the two approaches, they had an experienced knowledge engineer
and a decision analyst each interview a plant pathologist and design systems
for the same diagnostic task. Each approach involves identifying the domain
objects and building inference graphs from them. In the expert system model,
arcs in the graph represent evidential links, based on the domain expert's rea-
soning heuristics. Each inference step in the graph can be directly translated
into a rule. Uncertainty is represented as the expert's degree of belief in a rule
conclusion (diagnosis) given the premises. In the decision analysis model, a
Bayesian belief net (also called an influence diagram) is constructed; here, the
arcs represent the believed direction of causality. The expert must estimate
the conditional probability of each consequent given its antecedents.

Although the expert system and decision analysis approaches resulted in
superficially similar models of the domain, there were several important dif-
ferences in terms of the model-building processes, as well as in the resulting
systems. The expert system approach, which encodes heuristic knowledge in
a less formal language, is found to require less effort from a knowledge engi-
neering perspective. However, it is more likely to result in unexpected results,
thus requiring more testing and refinement. The decision analysis approach, in
contrast, requires a much more rigorous analysis of all possible combinations
of conditions and the estimation of their probabilities; a number of new tech-
niques for making this process more tractable are presented in the paper. Some
of the advantages of the decision analysis approach are its flexible and pow-
erful inferencing capabilities and, because of its rigorous probabilistic model
of the domain, its potential for improving on the relatively limited, intuitive
reasoning capabilities of a human expert.

Klinker, Boyd, Genetet, and McDermott's paper, "A KNACK for Knowl-
edge Acquisition," describes an automatic knowledge acquisition system called
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KNACK. Through interactions with an expert in the domain of electromechan-
ical systems, who is not familiar with expert system construction, this system
builds an expert system that is capable of evaluating specific designs.

KNACK proceeds through a number of stages of knowledge acquisition, steps
that are similar to the conventional approach that a (human) knowledge en-
gineer would take. The system analyzes a domain expert's design report and,
using its own knowledge about evaluating designs, builds a conceptual model
of the domain, including relevant concepts and vocabulary. It next analyzes
the expert's report in greater detail and, through further interaction with the
expert, forms more generally applicable abstracts from fragments of the report.
Specific instances of these fragments are displayed and can be edited by the
expert. Finally, it uses heuristics to detect gaps in the knowledge base.

Knowledge acquisition for expert systems is typically a process of recording
the informal, intuitive heuristics used by an expert, and then iteratively re-
fining this knowledge through trial and error. In "Optimizing the Predictive
Value of Diagnostic Decision Rules," Weiss, Galen, and Tadepalli examine one
way of formalizing this process. They describe an approach to generating op-
timally predictive diagnostic rules based on case analyses. Diagnosis is treated
as a standard statistical decision-making problem; thus rule formation involves
finding a combination of tests (which will become a rule premise) that have
a high positive predictive value (i.e., where a positive test outcome is highly
correlated with a correct diagnosis).

The article presents a heuristic search algorithm that finds a near-optimal
combination of tests (in terms of predictive power) for some diagnosis. The
algorithm first examines how the values for each individual feature are cor-
related with the diagnostic hypothesis and uses this to suggest "interesting"
cut-off points in the range of possible values. It then considers Boolean combi-
nations of (up to a fixed number of) these feature < cutoff tests, seeking
combinations that are optimal in terms of positive predictive power, while also
satisfying other statistical constraints.

The article discusses various heuristics used to prune the space of possible
rules. It empirically demonstrates their effectiveness by showing that this
algorithm is able to construct rules as good as those produced by human
experts by analyzing a medical data base of about 3,000 cases. It also discusses
further applications of this technique, including applying it to refine an existing
rule base and to statistically predict future performance in situations where
only an impoverished or unrepresentative sample of test cases is available.

To conclude this section on knowledge acquisition, we note that although
practical expert systems continue to be developed using standard knowledge
engineering techniques, the trend in research in this field has been toward in-
creasingly automated systems, using increasingly formal techniques. Systems
such as KNACK have been successful at automating parts of this knowledge
acquisition process. More formal and rigorous approaches, such as the decision
analysis model described by Henrion and Cooley and the automatic construc-
tion of rules from test cases as described by Weiss et al., show promise for
future research in knowledge acquisition.
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6. Other topics

There were many papers that had a definite "machine learning" theme
(based on our view of this sub-area), but that were classified into other sub-
fields. This section provides pointers to some of the relevant papers.

6.1 Analogy

Analogical reasoning is traditionally a sub-area of ML. Centner, a psychol-
ogist, presented a very thorough survey of this topic - covering more than her
title, "Cognitive Modeling of Analogy," would suggest. After presenting her
"dimensions" for the analogy process, she succinctly discussed the myriad of
recent work in this area, in each case fitting that research within her model.
She also described her experiments with human subjects, to provide psycholog-
ical evidence for various claims. For example, she summarized evidence that
the mechanism for accessing an analogy (i.e., going from a "target problem" to
the relevant target and base analogues) is different from the mechanism that
uses the analogy (i.e., that uses the target and base analogues to understand
more about the target analogue or to solve the target problem).

Various other papers dealt with analogy. For example, one cognitive mod-
eling session was devoted to "Access and Analogy." (It included Skorstad,
Falkenhainer, and Centner's paper, which describes an implementation of Cen-
tner's ideas.) The automated reasoning paper by de la Tour and Caferra dis-
cusses how to use analogies when proving theorems.

6.2 Improving efficiency

Machine learning now encompasses algorithms that attempt to reformulate
a problem, often to speed up a computation. Many other sub-fields of AI have
addressed this problem. As this also characterizes the formation of macro-
operators, many results from the search and planning areas are relevant. (Korf
mentions this in his excellent "Search" survey.) Similarly, automatic program-
ming involves changing an inefficient specification of a process into an effective
one. Papers on this topic included the automated reasoning papers by Kelly, by
McCartney, and by Manna and Waldinger, and the knowledge representation
paper by Lowry. (Many of these systems must also extend the information
given by making educated guesses - see Subsection 6.3 below.) The major
obstacle addressed by the automated deduction and theorem proving commu-
nity is finding ways of speeding up a proof. (See both Bledsoe's "Automated
Deduction" survey and the above-mentioned de la Tour and Caferra paper.)

6.3 Theory extension and revision

Given a corpus of information, one can deduce a well-defined set of conclu-
sions. This is seldom sufficient - one often needs to extend the given "theory"
by making educated guesses (e.g., default assumptions), or to revise this the-
ory, by removing some inconsistencies (Greiner, 1987). Issues related to these
processes have recently become a major focus of current research in knowl-
edge representation and reasoning: there were over 20 other papers (in addi-
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tion to the ML and automatic programming papers mentioned above) in this
conference related to this theme, including sixteen papers dealing explicitly
with issues in default reasoning and six others on technical issues in temporal
reasoning (including Shoham's "Temporal Reasoning" survey). These papers
ranged from theoretical descriptions of this abstract process, through empir-
ically collected observations based on specific implementations, and included
three prize-winning papers by Dean and Boddy, Delgrande, and Morris.

6.4 Cognitive modeling

Obviously, "machine learning" has close ties with "human learning," whose
intersection with AI falls within the category of cognitive modeling. There were
several such papers presented, including the (above-mentioned) "Access and
Analogy" session, Ballard's paper on connectionistic learning, and Drescher's
paper on early Piagetian learning.

7. Conclusion

This concluding section discusses first the trends suggested by these papers
and then some of the general issues they raise.

7.1 Trends in machine learning

Nearly all subareas of machine learning were well represented in this confer-
ence. These papers suggest two apparent trends in ML, evident across these
sub-topics. First, most of the papers dealt explicitly with symbolic knowledge-
based reasoning, in the form of an explicit domain theory (in all EBL systems),
explicit biases (Russell and Grosof), and so on.

The second trend is even more pervasive: the ML community has become in-
creasingly concerned about validating claims and demonstrating solid research
results. This has led to an increased emphasis on both theoretical statements
and on careful empirical validations. Particularly significant are the experi-
mental comparisons of different systems working with the same training data.
For example, Connell and Utgoff, Fisher, and Weiss et al. each compared their
(respective) system's performance with others that have attempted the same
task.

7.2 Issues for machine learning

This conference also raised many issues, including the imprecise definition
of machine learning and its role in these general AI conferences. While ML has
recently begun to develop its own identity, it still has a sizable overlap with a
variety of other AI concerns, as discussed in Section 6. Artificial intelligence,
as a whole, would certainly benefit from a more precise understanding of these
inter-connections, as it would help researchers to understand how their work
relates to others in seemingly disparate areas.

This understanding might also help to address another important concern.
ML has matured to the point that it now has its own conference (the Interna-
tional Conference on Machine Learning). As papers may not appear in both
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an ML conference and a general AI conference (i.e., an AAAI or an IJCAI),
researchers will have to decide which audience they want their results to reach.
Knowing which "ML issues" are important to other AI researchers will help
future researchers decide which audience will benefit most from their results
and, hence, which conference is most appropriate.

Finally, we close this review with a recommendation that ties together sev-
eral of the themes mentioned in this section. The call for papers for the
Machine Learning Conference required every submission to include an explicit
"evaluation criterion" on which it should be judged. We recommend that the
general AI conferences follow suit.
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