
Machine Learning, 14, 233-247 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Explicit Representation of Concept Negation

JEAN-FRANCOIS PUGET PUGET@ILOG.FR
ILOG SA, 2 avenue Gallieni, BP 85, 94253 Gentilly. FRANCE

Abstract. We present a learning method called Negative Explanation Based Generalization (NEBG) that per-
forms automatic changes of representation by computing the negation of an already known concept. NEBG is
similar to EBG as a deductive and valid learning method using a single example. It is based on new logic pro-
gramming techniques based on example-guided transformation of the completed database. We also introduce a
very powerful heuristic based on functional properties of the application domain. The implemented algorithms
are described and several examples are given.

Keywords. EBL, negation, logic programming

1. Introduction

1.1. Representation changes

Machine learning considered as a study of automatic representation changes has received
increasing interest over the past few years. Some work aims at a better usability of knowledge,
especially in problem-solving areas (see, for example, Amarel and Explanation Based Learn-
ing). We are interested in this kind of work where the goal is not to increase knowledge,
but to express it in a more efficient form.

While working on a learning planning system, we found that some negative information
had to be explicitly stated. This led to the design of a generic method for representing
negation of already known concepts. This method, called NEBG, starts from a body of
initial knowledge K represented as a logic program (a set of definite clauses) and a negative
example NE for one of the concepts C defined in K. NEBG outputs a definition of not(C),
which covers NE.

For instance, let us consider a simple family example. The theory defines the grand-
father relationship:

grand- fa ther (X, Y) - father (X, Z) A father (Z, Y)
grand-father (X, Y) <- father (X, W) Amother (W, Y)

The problem in which we are interested is to produce an explicit representation of "not-
grandfather." The example is the following family:

234 J.-F. PUGET

father (pau I , tom) A
mother (mary, torn) A
father (torn, b i l l) A
mother (anna, b i l l) A
father (John, anna) A
mother (jean, anna) A
father (John , a I)

The negative example is

grandfa ther (torn, b i l l) .

1.2. A false solution

A simple "solution" has been proposed in the past (Hirsh, I987a), which seems to elegantly
extends EBG. The idea is to try to prove the goal concept and, if there is a failure, to use
the failed proof in a similar way as in EBG and keep all the successful subgoals plus the
failed one. The foiled proof can be generalized as in EBG by removing all the parts that
are below an operational subgoal and by performing only the unifications made in the re-
mainder of the proof. If we use the preceding method, we would obtain the clause

not (g rand- fa ther (X, Y)) «- fa ther (X, Z) A not (f a the r (Z, Y))

since the first subgoal succeeds, and the second one fails. However, this result is false,
since we can now derive not (g r a n d - f a t h e r (J o h n , b i l l)) by substituting X by J o h n ,
Y by bi ll, and Z by anna in the learned clause, and we can derive g r a n d - f a t her (J o h n ,
b i l l) using the second clause of the theory.

The problem comes from the fact that we have not used all the possible proofs to con-
struct the generalization of the failure. In our example, we also have to explain why the
second clause of the theory cannot be used to prove g r a n d f a t h e r (torn, bi I I). The
above method can be enhanced to take all the failed proofs into account: the result is then
constructed by taking the conjunction of all the successful leaves plus the failed leaf of
all the failed proofs. In the example, this gives the clause

not (g rand- fa ther (X, Y)) «- fa ther (X, Z)
A not (fa ther (Z, Y)) A fa ther (X, W) A not (mother (W, Y)) (C)

However, this result is again false! Indeed, we can obtain not (g r a n d - f a t h e r (J o h n ,
b i l l)) by substituting X by j o h n , Y by b i ll, and both Z and W by a I in the learned
clause C, which contradicts the fact that g r a n d - f a t h e r (J o h n , b i l l) can be derived
using the second clause of the theory. The problem comes from a misinterpretation of the
quantifications of the variables in the clause C, as we will see in the next section.

EXPLICIT REPRESENTATION OF CONCEPT NEGATION 235

The remainder of this article is organized as follows. Section 2 describes the logical for-
malism used, especially Clark's completed program. Section 3 then describes the NEBG
algorithm, which transforms this completed program into a definition of the negation of
a concept. We conclude with a discussion of NEBG with respect to its potential use.

2. Logical formalism

We will use as a representation language a subset of first-order logic, namely, clauses (as
in Prolog). We recall here the basic definitions used in Logic Programming, and refer to
Lloyd (1987) for definitions of constants, functions, terms, predicates, atoms, and clauses.
A definite clause is noted P <- Bj A ... A Bm. P is the head of the clause, and the con-
junction B1 A ... A Bm is the body of the clause. A logic program is a set of definite
clauses.

The deduction procedure used is SLD resolution, as in Prolog. We note A |- B when
B can be obtained from A using SLD resolution.

2.1. Generality, concepts and examples

In this formalism, a concept C is defined by a predicate p. The definition of the concept
is the set of clauses having p as their head predicate. The body of the clause represents
preconditions for concept membership. The generality relation used is provability: A is
more general by B if B can be proved from A, which is noted A |- B.

An example for concept p(xl, . .., xn) is a ground clause p(tl, . . . , tn) <- B] A ...
A Bm, where ti are ground terms. Given a set of clauses K, an example clause p(tl, . ..,
tn) «- B! A ... A Bm is an instance of predicate p(xl, . . . , xn) iff

An example clause p(tl, . . . , tn) <- Bj A ... A Bm is a negative example of predicate p iff

which means that the SLD resolution foils to prove the goal p(tl, . .., tn). Two different
cases can happen: either the SLD resolution loops endlessly, or all possible proofs fail
in finite tune. In the latter case, F is said to be a finite failure for the program T (Lloyd,
1987). We will restrict NEBG to learn only from finite Mures. Thus, we start with a ground
atom p(tl, . . . , tn) such that all proofs fail. NEBG is based on the completed database
introduced by Clark (1978). This notion arises naturally when trying to explain failures
as we now present them.

236 J.-F. PUGET

2.2. The completed database

The first step is to see that a safe generalization can be made only if every possible proof
can be explained to fail. For instance, in a membership example, NE is the clause

member (1, [0, 2]) «-

and K is

member (A, [A | B]) «-
member (A, [B | C]) <- member (A, C) .

We must explain why the first clause of K cannot be used to prove membe r (1, [0, 2]) .
The reason is simple: member (X, [X | Y]) and member (1, [0, 2]) cannot be unified.
Thus we must be able to explain a unification failure. A simple way to do this is to ex-
plicate the unification that is performed at the head of the clause by introducing new
variables:

V X, Y member (X, Y) <- (3 A, B X=A A Y=[A | B])

This is called the homogeneous form of the clause in Clark (1978). The important prop-
erty of the homogeneous form is that no unification failure can happen now, since the head
of the clause is as general as possible. This transformation is carried over all the clauses:

V X, Y member (X, Y) «-
(3 A' , B' , C' , X=A' A Y=[B' |C'] A member (A' , C'))

The last step of the transformation is to say that all the possible proofs must be tested to
be sure that there is a failure. In other words, there is a success only if one of the clauses
can be used. This is expressed by the following formula (** means if and only if)

VX, Y member (X, Y) ~
((3A, B, X=A A Y=[A|B]) V

(3A' , B1 , C' , X=A' A Y=[B ' | C '] Amember (A1 , C '))) (1)

The process we have described is carried out for all predicates in the program. The resulting
set of formulas is Clark's Completed DataBase (CDB). It has been proved (Jaffar et al.,
1983; Clark, 1978) that all finite failures are a logical consequence of the CDB. In our
example, this amounts to saying that - < m e m b e r (1 , [0, 2]) follows from (1).

We have already done part of the work: we have obtained a logical justification of the
failure. Equivalently, we have built a theory of the failures of member, which is given by
the formula 1. We can have a better form of this theory by negating both sides of formula
(1) (-"A means not A) and introducing a predicate not_member, yielding

EXPLICIT REPRESENTATION OF CONCEPT NEGATION 237

VX, Y notjnember (X, Y) -
((V A, B, X*A V Y X [A | B]) A

(VA' , B' , C1 , X *A ' v Y * [B ' | C '] vnot_member (A1 , C ')))

And we have that n o t _ m e m b e r (l , [0, 2] is a logical consequence of formula (2).
This definition of not_member is not very satisfactory because it is not made of definite

clauses, mainly because of universally quantified variables in the right side. These variables
are called parameters, and the othe variables that appear in the left part are called unknowns.
In formula (2), the unknown are X, Y, and the parameters are A, B, A' , B1 , C'.

3. NEBG algorithm

3.1. Basic transformations

The basis of NEBG is to use a set of rewrite rules in order to transform a definition into
a better one by removing parameters. The applications of the rules are guided by the input
example. The idea is to keep a substitution a of the unknowns called the controlling substitu-
tion. Initially, a is the substitution of the unknown in the example.

For instance, in the member example, we start with formula (2) above. The example
is not_mernbe r (1, [0 , 2]); thus the controlling substitution a is {X/1 Y/ [0 , 2]}. For-
mula (2) will be transformed by eliminating the parameters A, B, A', B', C'.

A first rule is very useful to eliminate a lot of parameters. We give it below. In the re-
mainder of this article, the latters P, Q, and R represent arbitrary formulas when used in
rule definitions.

Elimination of parameter

This rule is applied as soon and as much as possible.

The rule (EP) can be applied in order to eliminate the parameter A. In formula (2) A is
replaced by X, and A^X disappears, yielding the new definition of not_member:

V X, Y not_member (X, Y) <- (V B, Y x [X | B]) A
(V A ' , B' , C1 , X *A ' v Y* [B ' |C '] V notjiember (A' , C '))

Another application of (EP) eliminates A', which is replaced by X:

VX, Y not_member (X, Y) - (V B, Y* [X | B]) A
(V B ' , C ' , Y * [B ' | C '] v not_member (X1 , C 1))

Nothing more can be done with (EP), since there is no expression of the form V7, Y ^ T
in the definition. We will use another rule that amounts to the instantiation of an unknown X.

238 J.-F. PUGET

Explosion

X^t V R -> R {X / f(Xl, . . . , Xn)}
XI, ..., Xn are new unknown (EX)

Explosion is used if the following conditions hold:

• X is an unknown,
• No other rule can be applied,
• X € dom(ff), where a is the controlling substitution. In that case, f is the

principal function of XCT were a is the controlling substitution.

In that case the mgu of f(Xl, . . . , Xn) and XCT is added to the controlling
substitution a.

The controlling substitution a is {X/ l , Y/ [0 , 2]} ; thus Y € dom(a), and (EX) can be
applied to replace Y by [Z | W]. Moreover, [Z | W] is unified with [0, 2], and the resulting
mgu {Z/0, W/ [2]} is added to the controlling substitution, which becomes {X/l , Z/0,
W/[2]}. The new definition is

VX, Z, W not_member (X, [Z | W]) «- (V B , [Z |W] * [X| B]) A
(V B' , C' , [Z | W] * [B ' | C '] v not_member (X, C '))

Then we need rules to simplify conditions of the form tl ^ t2, when both tl and t2 are
not parameters. These rules have no preconditions and are used as soon as possible (the
order in which they are applied does not matter).

Decomposition

Clash

Occur check

X ^ t -> true if the variable X appears in t. (OC)

Simplification

(D) is applied on [Z | W] * [X | B] and also on [Z | W] * [B1 |C'], yielding

VX, Z, W not_member (X, [Z | W]) «- (V B , Z;*X v W^B) A
(V B 1 , C' , Z*B' v W;*C' v not_member (X, C 1))

EXPLICIT REPRESENTATION OF CONCEPT NEGATION 239

(EP) can now be applied three times to eliminate B, C', C', giving the definition

V X, Z, W not_member (X, [Z | W]) «- Z*X A not_member (X, W)

Then the algorithm stops with this clause, since no rule can be applied.
Besides the rules we have given, another one may be used. It is called reduction, and

consist in dropping negative literals that are not necessary. We will not describe its use
here and refer to Puget (1989) for a detailed discussion of it.

Reduction

Reduction is used if the following conditions hold:

• L is a negative literal (either a literal not_A, or a difference s 7* t)
• L is a finite failure

The EBGF algorithm described in Siqueira et al., (1988) uses a similar rule called the
rightmost heuristic. In fact, EBGF is a combination of some very simple manipulations
of the completed database and the reduction rule (R).

We have proved that all these rules, as well as the ones presented below, are correct (Puget,
1989a, 1990): the result D' of the application of a rule to a definition D is a logical conse-
quence of D. Moreover, no other rule is needed: all the generalizations of the example
can be computed. Last but not least, we have also proved that the algorithm always stops:
there can be no loops. The termination proof is based on the fact that each rule simplifies
the formula: either the number of parameters decreases, or the height of at least one term
decreases, or one literal is removed.

3.2. Computing the negation of a concept

The process we have presented is a way to obtain a clause that partially defines the nega-
tion of a known predicate. For instance, in the previous section we have learned a clause
for not_member

notjnember (X, [Z | W]) «- Z*X A notjnember (X,W) (Cl)

Unfortunately, this clause is not sufficient to explain the example given as input: from this
clause, we cannot prove not_member (1, [0, 2]) . Indeed, if we try, we will have to
prove successively not_membe r (1, [2]) , then not_membe r (1, []), and there will be
a failure there. Thus we have to learn another clause. The basic idea is to apply NEGB
again to the new example not_member (1, []), which gives the clause

not_member (X, []) «- (C2)

240 J.-F. PUGET

Then, the two clauses (Cl) and (C2) define the negation of member.
The overall algorithm used in order to compute a negation consists of the following steps:

An example not__p(tl, .. ., tn) is given

1. If no learned clause can be used to prove not__p(tl, . . . , tn), use NEBG
to produce a clause C.

2. Apply the newly learned clause C to the example not_p(tl, . . . , tn), and
repeat 1 on all the negative literals in the body of the clause C.

We give another example to fully illustrate the incrementality of the process. The pro-
gram defines the minimum of an integer list. Integers are represented by the constant 0,
and the functions s (X) . s (X) is the successor of X, i.e., X + 1.

tnin (X, [X]) «-
min (X, [X |L]) < -min (Y, L) A less (X, Y)
min (X, [Y |L]) ^ m i n (X, L) A less (X, Y)
less (0, x (X)) «-
less (s (X) , s (Y)) <- less (X, Y) .

The example is no t_mi n (s (0) , [s (s (0)) , 0]) , that is "1 is not the minimum of
the list [2, 0]." NEBG computes the clause1

not_min (X, [Y |Z]) <- Y^X A notjnin (X, Z) (C3)

This clause is resolved with not_mi n (s (0) , [s (s (0)) , 0]) , giving the new example
n o t _ m i n (s (0) , [0]). NEBG then computes the clause

n o t _ m i n (X, [Y|Z]) «- Y*X A not_l ess (X, Z) (C4)

The new example is then no t_ less (S (0) , 0), yielding the clause

not_less (X, 0) «- (C5)

The algorithm stops there, and the learned definition of not_rn i n is made of the clauses
(C3), (C4), and (C5). If we provide another example—not_mi n (s (s (0)) , [s (0)]),
for instance—NEBG has two choices. First, it can try to apply (C3) giving the new exam-
ple n o t _ m i n (s (s (0)) , []) . From this, NEBG computes the clause

n o t _ m i n (X, []) «- (C6)

The other choice is to use (C4) instead of (C3). NEBG will eventually compute the clause

not_ less (s (X) , s (Y)) «- no t_ less (X, Y) (C7)

Thus the definition of no t_mi n already learned can be completed.

EXPLICIT REPRESENTATION OF CONCEPT NEGATION 241

3.3. Using functional properties

The preceding algorithm can be improved to perform more simplifications. We have ex-
tended it by using some functional properties of the already known predicates. Let us take
an example for the sake of clarity. We have previously learned a clause for not_min,

not_min (X, [Y|Z]) - Y*X A not_min (X, Z)

This clause can be further simplified based on the remark that mi n (X, Z) expresses a
function that computes the minimum X of a list Z. In particular, for a given Z, X is unique.
Thus X is not the minimum of the list Z if X is different from the minimum W of Z. Thus
we can replace the literal notji in (X, Z) by the conjunction m i n (W , Z) A X ^ W , yielding
the clause

n o t _ m i n (X, [Y | Z]) «- Y;*X A min (W, Z) A X*W

This is an application of Rule (EF) below. We introduce some terminology to express it.

Definition 1: A predicate p(X\, ,.., Xn, Yh ..., Yn) represents a Junction of the variables
Xj, if for all ground substitutions a or Xit there exist at most one ground substitution 0
of the Yj such thatp(Xla, . . . , Xna, Y& ..., Yn6) is true. (The Xi and the Yi are distincts).

For instance, min (X, Y) represents a function of Y.
The two rules are the following we have proved that they are correct.

Functional exclusion

not_p(t, u) V R -» p(t, Z) A (Z;*u V R)
Z represents a set of new unknowns (EF)

Functional exclusion is used if

• p(t, u) represents a function of t
• there are no parameters in t
• The goal 3Z, p(t, Z)a, where a is the controlling substituion, succeeds. If

there is a success with answer 6, then a is replaced by aO

Functional merge

p(t, u) A p(t, v) A R -> p(t, u) A R.0 if 6 is the mgu of u and v. (FF)

Functional merge is used if

• p(t, u) represents a function t
• there are no parameters in t
• in this case, 6 is added to the controlling substitution

242 J.-F. PUGET

4. A complete example

The grandfather example is a clear illustration of the power of functional relations. We
know that a given person has only one father and only one mother. In other words, both
f a t h e r (X, Y) and mother (X, Y) represents a function of Y.

The completed definition for the grandfather example is

V X, Y, grand-father (X, Y) »
(3 Z, father (X, Z) A father (Z, Y)) v (3 W, father (X, W) A mother (W, Y))

The second step is to negate both sides of the equivalence. The result gives a first defini-
tion of the negation of g r a n d - f a t h e r :

VX, Y, not (g rand- fa ther (X, Y)) »

V Z n o t (fa ther (X, Z)) vno t (fa ther (Z, Y)) A

V W not (father (X, W)) V not (mother (W, Y))

The controlling substitution a is {X/tom, Y / b i I I}. Since the goal 3 Z 1 , f a t h e r (Z l ,
Y) a, which is 3 Zl, f a t h e r (Z l , torn), succeeds with Zl=tom on this example, the rule
(EF) can be used on not (f a t h e r (Z, Y))) to obtain the formula

VX, Y, not (g rand- fa ther (X, Y)) *-

V Z 3 Z 1 , (Z1*Z v not (fa ther (X, Z)) A fa ther (Zl, Y) A

V W n o t (fa ther (X , W)) vno t (mother (W, Y))

The new controlling substitution a is {X/tom, Y /b i I I , Zl / tom}. Then (EP) can be
used to remove Z:

VX, Y, not (g rand- fa ther (X, Y)) «-

3 Zl , not (fa ther (X, Zl)) A fa ther (Zl, Y) A

V W not (father (X, W)) v not (mother (W, Y))

Since the goal 3 Zl, XI, f a t h e r (X I , Zl) a, which is 3 XI, f a t h e r (X I , torn) ,
suceeds with Xl=pau I in this example, the rule (EF) canbe used on not (f a t h e r (X,
Z l)) , which gives

VX, Y, not (g rand- fa ther (X, Y)) «-

3 Zl, XI, fa ther (XI, Zl) A (fa the r (Zl , Y) A XI ^X A

VW not (fa ther (X, W)) v not (mother (W, Y))

The same sequence (EF) (EP) (EF) can be applied to

V W not (ra ther (X, W)) v not (mother (W, Y)) ,

EXPLICIT REPRESENTATION OF CONCEPT NEGATION 243

which gives

VX, Y, not (grand-father (X, Y)) *-
3 Zl, XI, father (XI, Zl) A father (Zl, Y)) AXl^X A
3W1, X2, father (X2, Wl) A mother (Wl, Y) A X2*X

with controlling substitution a:

{X/tom, Y/bi I I , Zl/tom, Xl/paul, Wl/anna, X2/john}

This clause expresses the fact, "X is not the grand-father of Y if X is different from the
two grand-fathers XI and X2 of Y." This is interesting, since it is expressed with positive
predicates instead of their negations. If we apply the controlling substitution a to this clause,
we obtain an explanation of the negative example:

not (grand-father (tom, b i l l)) «-

father (paul , tom) A fa ther (torn, b i l l) A paul *tom A

father (John, anna) A mother (anna, b i l l) A John*torn

5. Discussion

5.1. Implementation

The formulation of NEBG is a set of rewrite rules that can be confusing since it looks
quite complicated. In fact, it can be quite straightforwardly implemented in Prolog. This
program uses the same trick as the program in Kedar-Cabelli et al. (1987): it maintains
two copies of the formulas to be transformed, one general and one instantiated by the train-
ing negative example, In the instantiated copy, unknowns are instantiated by the control-
ling substitution. This implementation avoids the manipulation of explicit quantifiers. The
use of rules is totally deterministic: if possible, uses (EP), (D), (C) (OC) as soon and as
much as possible. Then try (EF) and (R) and finally (EX). Rule (EF) requires a test of
provability. This test is performed by directly calling Prolog. The resulting program is not
very big: around four pages. All the examples presented here run in about a second or
less on a Sun 3 workstation. NEBG is implemented in Quintus Prolog.

5.2. Related work

NEBG shares the methodology of the EBG method. An explanation of the example is con-
structed and is generalized. However, the algorithm used is completely different. EBG can
be described in a logic programming context as follows.

244 J.-F. PUGET

EBG

Given

A theory T defining the predicate p
A set of facts E (the example in Mitchell's terminology)
An atom B with predicate symbol p (the goal in Mitchell's terminology)

Such that T |- (B <- E)

Find a clause H such that

H - (B <- E) and T |- H

The condition T |- H expresses that EBG is a valid method: the learned
knowledge H is correct.

NEBG proceeds completely differently from EBG. First of all, the inputs are very dif-
ferent: the theory cannot be used to prove F, and thus EBG cannot be applied. We can
summarize NEBG as follows:

NEBG

Given

A theory T defining the predicate p
An atom F with predicate symbol p

Such that T |-/- F

Find a set of clauses H such that

T, H - not_F and comp(T) |- H

The condition comp(T) - H expresses that NEBG is also a valid method:
the learned knowledge H is a logical consequence of the completed database
of the theory T.

This clearly shows the difference between NEBG and all the work based on the application
of EBG to learn from failures, such as PRODIGY (Minton et al., 1987), FAILSAFE (Mostow
et al., 1987), SOAR (Newell et al., 1987; Gupta, 1987). In all these systems, a theory
TF of the possible failures must be provided along with the theory T. Then the failure
F is explained building a positive explanation of F from TF, and then apply EBG on this
explanation. In fact NEBG may be seen as a way to automatically build TF from T, and
thus it is complementary to all these works.

This parallel between NEBG and EBG raises the question, "What about the operationality
criteria used in EBG?" Such criteria can be given, and NEBG will avoid learning defini-
tions of the negation of operational predicates. This achieves the intended effect of ignor-
ing the details of the definitions of operational predicates.

EXPLICIT REPRESENTATION OF CONCEPT NEGATION 245

Besides these works in machine learning, some work in the theoretic fields of computer
science is related to ours. The basic transformation we gave in section 3 is similar to work
on disunification (Comon, 1988). Disunification has been applied in Logic Programming
to generate the negation of a predicate (Lugiez, 1988). However, our work has two advan-
tages over Lugiez's: we use an example that enables us to have a very efficient algorithm,
and we use functional properties.

5.3. Use of NEBG

Often, in artificial intelligence, the negation of the already known concept C is accomplished
through a form of negation as failure: A is false if A cannot be proved. Unfortunately,
this is not always sufficient; an explicit definition of not(C) is required. NEBG can be used
in such cases.

For instances, we have used NEBG is planning domains as a basic mechanism to con-
struct a definition of what does not change from what changes. This is used by the LIFE
system to learn knowledge about invariant features of the application domains. This work
is fully described by Puget (1986b), and we just show here how NEBG is used.

The problem of LIFE is to explain the failures of a planner. In particular, this requires
us to be able to explain why something cannot be changed by the planner, whatever he
does. Unfortunately, in planning work, actions are often represented with so-called STRIPS
axioms (Fikes et al., 1971) of the following form:

P(Op): D -> A.

The intended meaning of such an axiom is that if the formula P(Op) is true and the ac-
tion Op is performed, then the literal D is deleted, and the literal A is added to the state
description.

Using this, it is difficult to explain why something does not change, whatever action
is performed. This equation is related to the well-known "frame problem" (Brown, 1987).
We give here our solution. A literal L can be changed by an action if and only if there
is a STRIPS axiom P(Op):D -> A such that P(Op) is true and D matches L. This is ex-
pressed by defining a predicate "change" by transforming every STRIPS axiom P(Op):D
-» A into the clause

change(D) <- P(Op)

Thus a literal L cannot be changed in a step if and only if the predicate change (L) fails.
Then, in order to explain why L cannot change, NEBG is applied to the definition of change.

Another potential use of NEBG is for nonmonotonic learning systems such as MOBAL
(Emde, 1987; Wrobel, 1992). In these systems, negative examples to an already learned
concept C are stored. When sufficiently many such negative examples are available, a
generalization NC is computed, and every clause C <- B defining C is replaced by

C <- BA not(NC)

thus introducing negations. NEBG could be used to remove these transformations.

246 J.-F. PUGET

5.4. Summary of main results

We have introduced NEBG, a completely new machine learning tool that learns the nega-
tion of already known concepts. NEBG resembles the EBG method as a valid and deduc-
tive method that uses a single example. However, the principles used are totally different,
and they are described in detail. We have proved nice properties, such as the correctness
of the results, and also the termination of the algorithm used (there can be no loops).
Moreover, our method is fully automated and does not rely on the user for control pur-
pose. It is even used as a subpart in LIFE, another learning system. Improvements are
still possible because NEBG cannot always remove parameters in the definitions it pro-
duces. This is a theoretical issue in logic programming, and the solutions are not always
satisfactory for the time being.

Acknowledgments

This work has been done while the author was a Ph.D. student in Yves Kodratoff s group
at LRI, Orsay, France.

I have really appreciated the comments made by Celine Rouveirol, Yves Kodratoff,
Katharina Morik, and Jacques Nicolas on an earlier version of this article. The author
had a CNRS scholarship and has been partially supported by PRC-IA of CNRS.

Notes

1. This is fully detailed in Puget (1989a).

References

Brown (1987). The frame problem in artificial intelligence. Proceedings of the 87 Workshop. Morgan Kaufmann.
Clark, K.L. (1978). Negation as failure. In H. Gallaire & J. Minker (Eds.), Logic and data bases. New York:

Plenum Press, pp. 293-322.
Comon, H. (1988). Unification et disunification: theorie el applications. Doctoral thesis, INPG, Grenoble.
Dawson, Siklossy. (1977). The role of preprocessing in problem solving. Proceedings of IJCAI 5 (pp. 465-471).

Morgan Kaufmann.
Dejong, J., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 2.
de Siqueira, J. & Puget, J.-F. (1988). Explanation based generalization of failures. Proceedings of ECAI88, Pisa,

Italy. New York: Pitman, pp. 339-344.
Emde, W. (1987). Non cumulative learning in Metaxa. Proceedings of the Tenth International Conference on

Artificial Intelligence. Milan, Italy. Morgan Kaufmann.
Fikes, Nilsson. (1971). Acquiring and executing generalized robot plans. In Weber & Nilsson (Eds.) (1980).

Readings in A.I. Morgan Kaufmann.
Gupta, A. (1987). Explanation based failure recovery. Proceedings ofAAAI87. Seattle, WA: Morgan Kaufmann.
Hirsh (1987). In P. Brazdil (Ed.), Proceedings of the Workshop on Metalevel Reasoning and Learning.
Jaffar, J., Lassez, J.L., & Lloyd, J.W. (1983). Completeness of the negation as failure rule. Proceedings of 8th

IJCAI, Karlsruhe, Germany. Morgan Kaufmann.
Lloyd, J.W. (1987). Foundations of logic programming, 2nd edition. Berlin: Springer Verlag.

EXPLICIT REPRESENTATION OF CONCEPT NEGATION 247

Lugiez (1989). A deduction procedure for first order programs. Proceedings of International Conference on Logic
Programming, ICLP89.

Minton, S., & Carbonell, J.G. (1987). Strategies for learning search control rules: An explanation based ap-
proach. Proceedings of the Tenth International Conference on Artificial Intelligence (pp. 228-235) Milan Italy:
Morgan Kaufmann.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based generalization: A unifying view. Machine
Learning, I.

Mostow, Bhatnagar. (1987). Failsafe. In Proceedings of IJCA187(pp. 249-256). Morgan Kaufmann.
Puget, J.-F. (1989a). (In French). Evaluation partielle d'echecs en prolog. In Actes du seminaire deprogramma-

tion en logique de Tregastel, SPLT'89 Lannion, 24-26 mai. Universite Paris Sud, 91405 Orsay, France. Also
available as report n°475, LRI, April.

Puget, J.-F. (1989b). Learning invariant from explanations. In Proceedings of the Sixth International Machine
Learning Workshop. Ithaca, NY. Morgan Kaufmann.

Puget, J.-F. (1990). Apprentissage par explications d'echecs. Ph.D. dissertation, Universite' Paris Sud, 91405
Orsay, France.

Shepherdson, J.C. (1988). Negation in logic programming. In J. Minker (Ed.), Foundation of deductive databases
and logic programming, Morgan Kaufmann, pp. 19-87.

Wrobel, Stefan. (1993). Concept formation during interactive theory revision. Machine Learning (this issue).

Received February 10, 1992
Accepted June 4, 1992
Final Manuscript September 15, 1992

