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Abstract. The common use of static binary place-value codes for real-valued parameters of the phenotype in
Holland's genetic algorithm (GA) forces either the sacrifice of representational precision for efficiency of search
or vice versa. Dynamic Parameter Encoding (DPE) is a mechanism that avoids this dilemma by using convergence
statistics derived from the GA population to adaptively control the mapping from fixed-length binary genes to
real values. DPE is shown to be empirically effective and amenable to analysis; we explore the problem of premature
convergence in GAs through two convergence models.
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1. Motivation

Genetic Algorithms (GAs) are capable of efficiently searching complex fitness landscapes
utilizing methods inspired by biological evolution (Holland, 1975). The work reported here
used the GAuscd1 software which implements a popular form of the GA, applying the
operators of selective reproduction, mutation and crossover to a fixed-length binary genome.
While the common restriction to fixed-length genetic representations in GA experiments
is rooted in convention and convenience theoretical arguments have been made in support
of binary alphabets (Goldberg, 1989, pp. 80-82).

If the function to be optimized by the GA is defined over a continuous domain, its real-
valued parameters can only have approximate genotypic representations as binary codes
of a given length. The choice of code length determines not only the resolution of the GA
search for this gene and the precision of its result,2 but also the size of the space of represen-
tations the GA has to search.

Unfortunately the GA searches long place-value codes rather inefficiently: in the early
phases of the search a lot of computational effort is invested in evaluating the least signifi-
cant digits of the gene. The optimal value for these digits, however, will typically depend
on the more significant ones, and little useful information can be obtained from sampling
the former until the latter have converged to their optimal value. Likewise, once this has
happened there is no need to spend any more search effort on the most significant digits—
the plain GA though will pay equal attention to all digits of the representation throughout
its search, thus wasting its implicit parallelism3 on an inherently sequential search problem.

Moreover, in the absence of meaningful fitness information early in the search, the least
significant bit positions will converge to an arbitrary value due to genetic drift, a process
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aggravated by genetic hitchhiking—incidental associations with highly successful alleles
in the more significant bits (see Section 5.2). Once these bits have converged the GA can-
not search them efficiently anymore; thus the GA search progressing sequentially from
the most significant bits can only achieve a limited resolution before it is beached by the
premature convergence spreading from the less significant section of the gene.

In this situation one strategy to obtain a high-precision result might be to use a very
crude precision at first and allow the GA to converge. At this point the resulting population
could be re-encoded onto the same set of bits such that search is restricted to the identified
region, and the GA restarted. This process could then be iterated until the result has the
desired precision. In essence, this is what Dynamic Parameter Encoding (DPE) does
autonomously and for each real-valued gene in parallel. By adaptively controlling the en-
coding scheme in this way, DPE demonstrates that a sacrifice of search resolution need
not necessarily lead to an identical loss of precision in the search result. This correspondence
is just an artifact of the assumption—implicit in many implementations of the GA—that
the encoding scheme remains constant throughout the search.

The next two sections of this paper describe the DPE algorithm and demonstrate its ef-
fectiveness, respectively. We then contrast DPE with related approaches to the problem
of real value representations in GAs, and the ARGOT strategy (Shaefer, 1987) in particular.
This comparison in turn motivates an analysis of GA convergence which attempts to quan-
tify the conditions under which the DPE algorithm succeeds.

2. The DPE algorithm

For the purpose of evaluation, each parameter of a fitness function f has to be recovered
from its representation as an l-bit binary gene. The first step of this decoding process is
to interpret the gene as an unsigned binary (possibly Gray-coded) integer i. A real-valued
parameter in the search interval [a,b) can then be derived through the linear4 transformation

where X is a random value with uniform density over [0,1) included in order to eliminate
potential aliassing effects caused by the quantization error inherent in the representation.
This means that T maps each allele onto a subinterval of length (b — a)!2l instead of just
a single point on the real line; the effective allele fitness measure is therefore the Monte
Carlo integral of f over the corresponding subinterval.

The GA can identify the optimum off in [a,b) only if it is located in the subinterval
whose fitness integral is optimal. The number of subintervals must be large enough for
this to happen, thus imposing a lower bound on the length / of the gene—we call this the
minimal resolution required by / for searching this gene.

The length of each subinterval at the end of the search determines the precision of the
result obtained. For static encoding schemes a minimal precision requirement therefore
imposes another lower bound on /. In most cases this is the bound that limits the efforts
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Figure 1. Intervals used by the DPE zoom.

to improve the GA search by reducing gene length: often comparatively coarse search resolu-
tion would be sufficient to identify the optimal subinterval, but we need to know more
precisely where in that subinterval the optimum is located. DPE addresses this need by
remapping the gene such that the available search resolution is reused on a finer scale in
an optimal subinterval once that has been identified. By applying this process repeatedly
DPE facilitates final results of any desired precision independent of gene length, as long
as the minimal resolution requirement is met.

DPE treats each real-valued parameter of f identically and independently; Figure 1 il-
lustrates its operation for one such gene. Each generation the DPE algorithm constructs
a histogram of the population over the quarters of the current search interval formed by
the two most significant bits of the gene. By summing over neighboring quarters we obtain
the population counts for three overlapping target intervals, then take their exponential
traces. Such exponential historic averaging—whose time constant is a free parameter of
DPE—makes these counts less sensitive to the noise inherent in GA search than the raw
target histogram, hence more reliable as an indicator of stable convergence. If the largest
count exceeds a given trigger threshold we consider the population converged on the cor-
responding target interval and invoke a zoom operator.

The zoom operation restricts subsequent GA search to the target interval by suitably alter-
ing the decoding transformation T (Equation 1). The binary gene of every individual in
the population is then manipulated such that those lying inside the target interval are left
in place by the zoom.5 Those lying outside are "folded" onto the target interval in the proc-
ess; this method is less disruptive than random re-initialization in that it preserves the ex-
isting schema frequencies.

Note that the overlap of target intervals eliminates the risk of zooming into the wrong
target interval due to small sampling errors in case the optimum is close to a target interval
boundary. Since the zoom operator doubles the precision of the gene, each allele can be
assigned to one of two new subintervals during the remapping; this choice is made by an
independent coin toss for each individual, i.e., a random re-initialization of the gene's least
significant bit.

3. Empirical results

To verify the efficiency of the DPE algorithm we checked its performance on a classical
GA test function suite (De Jong, 1975); see Table 1 for number of genes d, length / (in
bits) of each gene, and the name of each test function to be minimized.
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Table I. De Jong's GA test function suite.

fn

fl
f2
f3
f4
f5

d

3
2
5

30
2

1

10
12
10
8

17

Comment

paraboloid
Rosenbrock's saddle
step function
x4 with noise (a = 1)
Shekel's foxholes

In a large empirical study Schaffer et al. have identified values for population size,
crossover and mutation rate that produce good online performance on this test suite (Schaffer,
et al., 1989); we are using their results (which are almost identical to earlier recommenda-
tions by John J. Grefenstette) here, and also follow their practice of Gray coding all genes
(Caruana & Schaffer, 1988). To keep the experiment as straightforward as possible we did
not follow the common practice of using an elitist strategy,6 and kept the following parameters
invariant unless noted otherwise:

Population Size: 30
Crossover Rate: 0.95
Mutation Rate: 0.005

Generation Gap: 1.0
Scaling Window: 1

Trigger Threshold: 0.9
Trace Time Constant: 10

The search resolution was held constant at / = 3 for all experiments using DPE to facilitate
comparison of results across the test suite; the control experiments used the values given
in Table 1. The results are shown in Figure 2, which traces f the average value of the ob-
jective function in the population7 over 10 identical runs (with different initial random
number seed) and 10000 evaluations of each function; experiments using DPE (dashed)
are compared to those that did not (solid) on a logarithmic scale. Other experiments showed
that the DPE parameters can be optimized further for each individual function; a few such
cases are reported below.

The positive effect of DPE is most evident on functions fl and f3. For them the experiments
both with and without DPE show a similar initial performance improvement; without DPE,
however, the curve soon bottoms out as it reaches a level where the mutation noise becomes
dominant. With DPE, each zoom operation reduces the phenotypic effect of a mutation,
thus keeping mutation noise in check.8 The result is continuous performance improvement
over many orders of magnitude: the average function values after 10000 trials with DPE
were 6 • 10-10 and 4 • 10-7 for fl and f3, respectively.

For f2 and f4 DPE initially manages to significantly improve performance, too. After
4000 evaluations, however, it levels out in both cases, albeit at a far better level than without
DPE. This happens because both functions have their optima located on an extremely flat
ridge (f2) or plateau (f4). In such a case, once DPE gets close to the optimum the fitness
differences become so small that mutation noise prevents sufficient convergence to trigger
the zoom operation.
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Figure 2. Performance for De Jong's functions with DPE (dashed) vs. without (solid).

Lowering the mutation rate does reduce mutation noise but simultaneously exacerbates
the problem of premature convergence. Although measures favoring exploration over ex-
ploitation (e.g., large populations, high crossover rates, low selective pressure) can be used
to combat premature convergence, they inherently slow down the search process—the gained
precision is thus bought at a high computational price.

Figure 3. Performance of plain GA on fl for various mutation rates, contrasted with DPE performance.
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Figure 3 illustrates that even with more than tripled population size and crossover rate9

no choice of mutation rate enables the plain GA to optimize the quadratic function fl—trivial
by optimization standards—to any high precision. Note that the initial rate of performance
improvement is now significantly less than in Figure 2 due to the more exploration-oriented
parameter settings. For comparison, DPE with trigger threshold 0.8 and a trace constant
of 12 generations supplies average results well below 10-16 (below 10-21 in some runs)
in the same number of trials.

Returning to Figure 2, we note that with our default set of parameters DPE actually
worsens the performance for f5, the only multimodal function in the test suite. However,
this merely demonstrates that there is no universally optimal parameter setting for the GA
(Hart & Belew, 1991); in this case three bits per gene do not provide enough search resolu-
tion for DPE to evaluate which of f5's 25 optima is the best. Indeed, when allowed a
resolution of six bits per gene,10 DPE consistently converges on the global optimum within
18000 trials, whereas the plain GA's performance is still an order of magnitude away
after 25000 evaluations (Figure 4).

Note that over the first 13000 trials (where no performance advantage is visible) DPE
gradually eliminates all non-global optima from consideration; once the search space has
become unimodal DPE rapidly homes in on the target and the population promptly con-
verges to the global optimum. This strategy is quite appropriate in that it puts most of
the computational effort into the hard problem of deciding which basin of attraction is
the best, then wastes little time on the comparatively easy task of converging on the iden-
tified optimum.

Since De Jong's test suite provides with f5 only one multimodal function, we performed
additional tests on the following problem (Schwefel, 1981):

Figure 4. Double resolution search of f5 with DPE (dashed) vs. without (solid).
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The best of the over 109 local optima of this function are located far from the global op-
timum yet are almost as attractive (within 3% of optimal), making it especially hard for
DPE to prune this search space.

A "fast" zoom operator (trace time constant: two generations) with a high trigger threshold
of 0.95, however, was still able to consistently identify the optimal basin of attraction of
f7 within 8000 evaluations in experiments using a population size of 100. This can be achieved
with the plain GA just as well, but any low-order bits in the genome will have converged
by that time, making further progress to the actual optimum (via mutation only) very dif-
ficult. DPE makes the transition from global to local search far more gracefully, locating
the optimum to any desired precision.

4. Previous work

We are by no means alone in suggesting that certain aspects of genetic encoding schemes
in general, and those for real numbers in particular, should be under adaptive control of
the GA itself—Deb for instance has investigated floating point optimization using a GA
with "messy" representations as advocated by Goldberg (Deb, 1991).

Shaefer in particular has influenced our work with his GA-based function optimization
strategy ARGOT (Shaefer, 1987), whose many heuristics include an operator very much
like the zoom operator described here. However, ARGOT also features an "inverse zoom"
operator that expands the search space if there is little convergence. While such an ability
to backtrack would certainly be very useful as an insurance against misguided zoom opera-
tions we believe it impossible to establish a well-founded, general trigger criterion for this
operator.

Consider the experiment reported in Figure 4 for instance. Although convergence was
very low for the first 13000 trials, this did not mean that the global optimum of f5 wasn't
in the search space—it was just hard to find. Other examples can be easily found to show
that the absence of convergence is indeed neither a necessary nor a sufficient indicator
of the situation that warrants an inverse zoom, viz., the absence of the global optimum
from the current search space. Moreover, any potential trigger criterion for the inverse
zoom has to be based upon available information. However, since the GA does by defini-
tion not provide any information about the fitness landscape outside its search space, we
are forced to conclude that in general there is no indicator for the presence of a global
optimum outside the search space.

Two more approaches closely related to ARGOT and DPE have recently come to our
attention: the Adaptive Search Space Scaling algorithm applied to medical image registra-
tion (Mandava, et al., 1989), and the technique of Delta Coding (Whitley, et al., 1991).
Like ARGOT, these methods employ a form on inverse zoom that makes implicit assump-
tions (such as piecewise monotonicity) about the function being searched, thus sacrificing
generality for performance. By contrast, the heuristic DPE employs for deciding when
to trigger a zoom operation is based on the same termination criterion typically used with
the plain GA: stable convergence of the population. In this sense DPE converges to the
global optimum if and only if the plain GA does, and is therefore best characterized as
a succession of GAs over search spaces iteratively refined through bisection.
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This strong reliance on the plain GA makes DPE highly amenable to standard GA analysis
techniques such as schema analysis; the price to pay for it is the irreversibility of the zoom
operator as argued above. Consequently, DPE also inherits the GA's premature convergence
problem, which we address by applying the zoom operator conservatively. In fact, much
of the work reported here can be viewed as an attempt to make the zoom operator safe—cf.
the overlap of target intervals and the smoothing of convergence statistics. In order to pro-
vide guidance in setting the DPE algorithm's parameters such that DPE zooms as rapidly
as possible without converging prematurely we now take a closer look at the mechanics
of GA convergence.

5. Models of convergence

With or without DPE, the GA can converge to the global optimum only if the gene length
provides sufficient resolution, so that the size of the subspace corresponding to each genotype
is small enough for its fitness integral to reliably predict its optimum. By presenting two
models of convergence in GAs we now attempt to provide similar guidelines for setting
the two parameters DPE introduces, namely trigger threshold and trace time constant.

5.7. Expected convergence level

The zoom operator should be triggered whenever a gene has converged on one of the three
target intervals. In the presence of mutation, however, convergence is never complete; rather,
the opposing forces of selection and destructive mutations lead to an equilibrium in which
the frequency of any schema depends on both its fitness and the mutation rate. In order
to formulate a sound trigger criterion for the zoom operator it is therefore necessary to
take the mutation rate m into account.

Consider a single bit position anywhere in the genotype and let r0 be the population
relative schema fitness of the zero allele in that position, i.e., r0 = f0/f. In each genera-
tion the proportion p0 of these zero alleles in a GA population will change by a factor of
r0 through fitness-proportional selection. Mutation will then destroy a fraction m of the
zeroes; however, it will also create new zeroes through back-mutation. These effects11 com-
bine to yield the expected change of proportion of zero alleles during one generation:

Equilibrium is reached when Ap0 = 0. Substituting into Equation 3 and solving for p0

we find that the equilibrium proportion p0 of zero alleles in the population as a function
of mutation rate is
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Since the relative schema fitness r0 depends on the population fitness average f, which
in turn depends on the composition of the population, Equation 4 describes the level of
allele convergence only implicitly. It can, however, be recast in terms of the absolute fitness
ratio r = f0/f1 by using the fact that / = p0f0 + (1 - p0)f1 to obtain

This equation can be substituted into Equation 4 to yield an explicit prediction of the
expected level of allele convergence, shown in Figure 5 for various values of r, assuming—
without loss of generality—that the zero allele conveys a fitness disadvantage, i.e., r < 1.
Also shown (in dashed lines) are the approximate solutions obtained by using Equation
4 directly with a fixed r0; the figure demonstrates that at low values of p0(m) this does
provide a good estimate since then f « f1 and hence r0 = r.

For a Gray-coded gene the three target intervals of the DPE zoom operator can be ex-
pressed as first-order schemata 0#.. ., 1#... and #1.... The above analysis therefore ap-
plies to the DPE algorithm and can be used to specify the trigger threshold for the zoom
operator: if DPE is to prune those parts of the search space whose absolute schema fitness
is less than r, a zoom to a target subinterval should be triggered whenever the proportion
of the population outside that subinterval fells below the corresponding value of p0(m) at
the given mutation rate.

Figure 5. Equilibrium proportion Po(m) of losing allele for various r (solid) and r0 (dashed).
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Note that in standard binary coding (as opposed to Gray coding) the center zoom target
interval is the union of two second-order schemata, 01... and 10.... Since a crossover
after the first bit between two representatives of these schemata moves both outside the
target interval, high levels of convergence will be much harder to achieve for the center
interval than for the other two targets. This disruptive effect of crossover complicates the
above analysis considerably and would necessitate the introduction of a separate DPE trig-
ger threshold (dependent on both crossover and mutation rate) for the center target inter-
val. To avoid such undesirable complications the use of Gray code for DPE-mapped genes
is highly recommended; it is also generally preferable as it reduces Hamming cliffs that
could mislead the GA search (Caruana & Schaffer, 1988).

5.2. Genetic hitchhiking

In the previous section we showed that the DPE trigger threshold must not be set too high
since this would make it impossible for DPE to eliminate slightly suboptimal areas of the
search space from consideration. On the other hand it is clear that the threshold should
not be set too low either in order to be sufficiently immune to noise. Disregarding the
non-cumulative effects of stochastic variance and quantization noise introduced by the
various genetic operators, we now demonstrate how the main contributor to the GA's noise
problem, sampling error, can distort convergence statistics.

Sampling error is the systematic and cumulative error in convergence statistics resulting
from the fact that the GA can only explore a very small subspace of the entire search space
during its search. This means that the GA has only empirical—and potentially misleading-
estimates of the true schema fitness averages to work with. Crossover reduces sampling
error by continually recombining genome fragments in novel ways, allowing more accurate
estimates of the true schema fitness averages despite a limited population size.

Sampling error can cause premature convergence—with DPE, in form of a misguided
zoom operation—and is particularly prominent in a phenomenon known as genetic hitch-
hiking, referring to the fact that a "hitchhiker" gene that does not convey any fitness may
still become predominant by exploiting an incidental correlation with a highly successful
"booster" gene.

To demonstrate this phenomenon, we model a GA operating on a 2-bit genome. The
first bit is the booster gene that conveys a high reproductive advantage R = fw/f0# upon
the individuals carrying it. The second bit is the hitchhiker that is completely neutral with
respect to selection, i.e.,foo = f01 and f10 =f11.

We assume that initially a certain proportion pi of the population have the booster allele,
and that all of these also carry the hitchhiker: p11 = pi, p10 — 0. Of the remainder of the
population, half have the hitchhiker allele: poo = P10 = (1 -p11) /2. From these initial
conditions we follow the evolution of allele frequencies through time by repeatedly apply-
ing selection, mutation and crossover to the population.

Selection is assumed to be proportional to the population-relative schema fitness, i.e.,
the allele frequencies p' after selection are given by p1,xy = rxy pxy, where
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and r10 = r11 = Rr00. Applying mutation at a per-bit rate of m next we find that

Crossover between the two bit positions, applied with a probability of c, finally gives us

After examining the new allele frequencies p" we can iterate the model by initializing
the next generation (pxy <- p'''xy ). The typical result is an evolution of the hitchhiker allele
frequency as shown in Figure 6:

1. Due to its initial correlation with the booster allele, the hitchhiker frequency rises rapidly
at first, with a slope dependent mostly on R, but also Pi,.

2. At a point jointly determined by R, c, m and pi;, crossover manages to decouple the hitch-
hiker allele from the booster, and its frequency peaks out.

3. The decay of the hitchhiker allele back to its equilibrium proportion of 50% is achieved
by mutation alone and hence very slow at realistic mutation rates.12

Figure & Evolution of modelled hitchhiker allele frequency for R = 2, c = 0.02, m = 0.001 and pi = 0.01 (solid);
variations (dashed) for fivefold increase of R, c, m and Pi,, respectively.
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The slow decay unfortunately means that this model can not be used to derive some lower
bound on the DPE trace time constant, since in a typical multidimensional genome the
abundant linkage forces will tend to overwhelm mutation, and the duration for which the
hitchhiker stays above threshold will thus be dominated by the frequency of such hitch-
hiking events. We can, however, use the maximum proportion of the hitchhiker as a lower
bound on the trigger threshold. Even so it is clear that this model is still for from reality;
we consider it but a first step towards a fuller understanding of the premature convergence
problem.

6. Discussion

The DPE algorithm described here provides a useful extension of the GA search procedure
to real-valued parameters of arbitrary precision. By tracking the convergence of a popula-
tion and using it to restrict subsequent search, DPE efficiently finds precise parameter
values using a minimal number of bit positions. The experiments reported here—and others
we have performed—suggest that DPE can often help the GA find better solutions faster.

Compared to other algorithms adapting the GA search space, DPE is more conservative
and hence amenable to standard GA analysis techniques. We have analyzed the role muta-
tion plays as an inhibitor of convergence as well as ways in which sampling error can fool
DPE into prematurely converging on sub-optimal regions, but the latter analysis is far from
complete. Further progress will require a better understanding of the conditions leading
to premature convergence—an essential step towards a more general theory of GA search.
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Notes

1. GAuscd is our variant of the GENESIS package (Grefenstette, 1984) supporting—among other enhancements—
user-transparent DPE. It can be obtained via Internet file transfer or electronic mail from the first author.

2. We use the term resolution to denote the number of alleles in a gene, and precision for the distance (on the
real line) between neighboring alleles.

3. This implicit parallelism (Holland, 1975) occurs in the evaluation of low-order schemata, i.e., exactly where
it is not useful in case of a standard place-value representation.

4. Other (e.g., logarithmic) representation schemes can be implemented by suitably post-processing 7"(i).
5. This is achieved with a bit shift left plus some additional manipulations in the two most significant bit positions.
6. Later control experiments with elitist strategy produced very similar results.
7. For display purposes this performance measure was smoothed through an exponential trace with a time con-

stant of 10 generations.
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8. A more elaborate example of this approach is the adaptive control of mutation variances in evolutionary strategies
(Schwefel, 1981).

9. Population size 100, crossover rate 3.0—that is, three independent two-point crossovers for each pair of parents.
10. To compensate for the enlargened search space we also increased the trace time constant to 50 generations;

all other parameters remained the same.
11. We deliberately ignore the linkage effects of crossover here; they are the focus of the next section.
12. There are variants of GA search employing very high mutation rates; they are not considered here since they

either use non-convergent populations, or converge by a different mechanism.
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