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Abstract. We present an adaptive, neural network method that determines new classes of protein secondary
structure that are significantly more predictable from local amino-acid sequence than conventional classifi-
cations. Accurate prediction of the conventional secondary-structure classes, alpha-helix, beta-strand, and
coil, from primary sequence has long been an important problem in computational molecular biology, with
many ramifications, including multiple-sequence alignment, prediction of functionally important regions of
proteins, and prediction of tertiary structure from primary sequence. The algorithm presented here uses adap-
tive networks to simultaneously examine both sequence and structure data, as available from, for example, the
Brookhaven Protein Database, and to determine new secondary—structure classes that can be predicted from
sequence with high accuracy. These new classes have both similarities to, and differences from, conventional
secondary -structure classes. They represent a new, nontrivial classification of protein secondary structure that
is predictable from primary sequence.
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1. Introduction

The conventional classes of protein secondary structure, alpha-helix and beta-strand, were
first introduced in 1951 by Linus Pauling and Robert Corey (Pauling et al., 1951) on
the basis of molecular modeling. Two periodic peptide structures, which they called
alpha-helix and beta-strand, could be built as detailed molecular models that satisfied
experimentally—determined constraints on bond angles and distances. The alpha-helix
secondary structure was later observed in the x-ray diffraction reconstruction of the
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hemoglobin protein (Perutz, 1951). Examples of beta-strand secondary structure may be
found in, for example, silk. These two classes of structure are visually quite apparent
in modern molecular graphics representations of x-ray diffraction models of proteins. It
has long been an outstanding problem of computational molecular biology to be able
to predict these classes of secondary structure from the amino-acid sequence. Before
attempting to predict such structures, however, it is necessary to have an unambiguous,
algorithmic definition of the structures, as opposed to mere visual identification.

As more crystallographically—determined protein structure models became available,
their secondary structures were annotated (often, only on the basis of visual inspection)
as apparent helices and strands. To remove confusion and conflicting classifications,
formal definitions of alpha-helices, beta-strands, and other secondary—structure classes
were constructed on the basis of certain characteristics of the local geometry of proteins.
For example, a hierarchical definition that is in widespread use today first defines potential
hydrogen bonds based on structural coordinates, and subsequently defines alpha-helices
and beta-strands as particular patterns of the potential hydrogen bonds (Kabsch & Sander,
1983).

In this paper we will consider, as a valid definition and generalization of protein “sec-
ondary structure”, any classification of protein structure that can be defined using only
local “windows” of structural information about the protein. Such structural information
could be, for example, the classic ®¥ angles (Schulz & Schirmer, 1979) that describe
the relative orientation of peptide units along the protein backbone, or any other repre-
sentation of local backbone structure. (See Figure 1.) We define a classification of local
structure into “secondary—structure classes” to be the result of any algorithm that uses
a representation of local structure as input, and which produces discrete classification
labels as output. This is a very general definition of local secondary structure that sub-
sumes all previous definitions. The goal of this paper is to use neural networks to define
such generalized secondary—structure classes, with the important restriction that the new
secondary—structure classes be highly predictable from amino-acid sequence.

It is the extra restriction of predictability that we impose which distinguishes this
work from other work (Hunter & States, 1992; Unger et al, 1989) that deals only
with representations of the local structure, and that does not simultaneously consider
the predictability of the structure from sequence. It is clearly possible to consider only
local shape information and to employ a clustering algorithm to define new secondary—
structure classes based on these local shapes. However, we employ an algorithm that
simultaneously classifies shapes and selects those classes that are highly predictable from
sequence.

The classifications we develop are more predictable than the standard classifications
(Pauling et al., 1951; Kabsch & Sander, 1983) which were used in previous machine
learning projects, as well as in other analyses of protein shape. These new, predictable
classes of secondary structure do bear some relation to the conventional category of
“helix” but also display significant differences. More analysis will be required to fully
understand the new classes. It is also presently an open question whether these new
classes of secondary structure will be more useful in protein structure analysis than
conventionally defined classes, or than classes defined by structural clustering alone. It
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Figure 1. This schematic of a polypeptide (protein) backbone structure illustrates the significance of the ¢ and
1 angles. Each amino acid molecule, or residue, in the chain features an R-group, or side-chain, characteristic
of the particular amino acid occurring in that position. The R-group is shown bonded with the a-carbon atom.
The covalent bonds comprising the backbone, and the bond angles, are fairly rigid. However, considerable
rotation is possible around certain bonds. The angles ¢; and 1); measure the torsion about the rotationally
permissive bonds in the backbone of the ith residue. The backbone structure of a protein may be specified by
the ordered list of coordinates in 3-space of the a-carbons of the residues, or by a two-dimensional table of
Euclidean distances between «-carbons, for all pairs of residues, or by a list of the ¢, ¢ angles for all residues.

is promising, however, that the general methodology we advocate has produced new
classes of secondary structure that have some relation to conventional classes, and yet
are more predictable from amino-acid sequence.

2. Prediction of Conventional Secondary-Structure Classes

A major reason that prediction of secondary structure is of interest is that a successful pre-
diction of secondary structure from amino-acid sequence may be used in tertiary—structure
prediction algorithms to constrain their search space (Skolnick & Kolinski, 1991). Ter-
tiary structure refers to the detailed three-dimensional conformation that proteins adopt
when they fold into their natural shape. The ability to calculate tertiary structure from
amino-acid sequence has many important ramifications, including the ability to predict
functional properties of a protein given only its amino-acid sequence. One approach to
prediction of the full, detailed tertiary structure of a protein begins by first predicting the
local secondary-structure class for each amino-acid. It is possible to show that accu-
rate secondary—structure information is extremely helpful in tertiary—structure prediction.
For example, Skolnick (1991) has found that biasing amino acids towards assuming
the correct, measured secondary structure, when coupled to his global tertiary—structure
prediction algorithms, greatly increases the agreement of the global tertiary—structure
prediction with the experimentally—determined structure. However, his test of the value
of knowing the secondary-structure classes used the actual secondary-structure classes
as determined from experimental data, and not error-prone algorithmic predictions of
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secondary—structure classes from amino-acid sequence. His method, and others, are not
generally successful if they attempt to use predictions of secondary—structure classes at
current levels of accuracy.

A widely adopted definition of protein secondary—structure classes is due to Kabsch and
Sander (1983). It has become conventional to use the Kabsch and Sander definition to
define, via local structural information, three classes of secondary structure: alpha-helix,
beta-strand, and a default class called random coil. The Kabsch and Sander alpha-helix
and beta-strand classification captures in large part the classification first introduced by
Pauling and Corey. Structures of many proteins have now been determined using x-
ray diffraction and many examples of alpha-helices, beta-strands, and random coils are
contained in databases such as the Brookhaven Protein Database (Abola et al. 1987).

There have been numerous attempts to predict locally—defined secondary—structure
classes using only a local window of sequence information. The prediction methodology
ranges from a combination of statistical and rule-based methods (Chou & Fasman, 1978)
to neural network methods (Qian & Sejnowski, 1988; Maclin & Shavlik, 1992; Kneller
et al., 1990; Stolorz et al., 1992). Figure 2a illustrates the Kabsch and Sander program
defining secondary-structure classes, depicted as a “black box” on the right, and also a
neural network that attempts to learn the secondary—structure classes from the amino—
acid sequences, on the left. The Kabsch and Sander “black box” first defines hydrogen—
bonding patterns from the structural information, and then uses the hydrogen—bonding
patterns to define classes of secondary structure. This picture represents the standard
approach to training a neural network to classify secondary structure from amino-acid
sequence (Stolorz et al., 1992). A local window of structure information obtained from,
for example, x-ray diffraction data in the Brookhaven database, is input to the right—
hand Kabsch and Sander black box. The box outputs the secondary—structure class
of the fragment, using the Kabsch and Sander definitions. For example, if one were
dichotomizing all the windows of structure information into “alpha-helix” and “not-
alpha-helix”, then the right-hand box will emit a “1” if the fragment is alpha-helix, and
emit a “0” otherwise. The left-hand neural network “sees” the corresponding window
of sequence information as input, and attempts to adjust its synaptic weights so that
the output neuron of the neural network agrees with the output state of the Kabsch and
Sander black box. Hence, if the input sequence adopts an alpha-helix state according to
Kabsch and Sander, then the output neuron of the network should change state to “1”.
Conversely, an input sequence fragment not in an alpha-helix should cause the state of
the output neuron to change to “0”.

We consider in this exposition the definition, and prediction from sequence, of just
two classes of structure. The extension to multiple classes is not difficult, but wili not
be made explicit here for reasons of clarity. We will not discuss details concerning
construction of a representative training set, or details of conventional neural network
training algorithms, such as backpropagation. These are well-studied subjects that are
addressed in, for example, (Stolorz et al., 1992) in the context of protein secondary—
structure prediction. We note in passing that one can employ complicated network
architectures containing many output neurons (for example, three output neurons for
predicting alpha-helix, beta-strand, random coil), or many hidden units, etc. (c.f. Stolorz
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et al., 1992; Qian & Sejnowski, 1988; Kneller et al., 1990). However, explanatory
figures presented in the next section employ only one output unit per net, and no hidden
units, for clarity.

3. Definition and Prediction of New Secondary-Structure Classes

The key ideas of this section are contained in Figures 2b and 2c. In Figure 2b the right—
hand black box implementing the Kabsch and Sander rules is replaced by a second neural
network. This right-hand neural network therefore sees a window of structural infor-
mation, while the left-hand neural network sees the corresponding window of sequence
information. Note that the right-hand neural network can implement extremely general
definitions of secondary structure. For example, if the weights in the right-hand network
are set to arbitrary values, then the right-hand network will correspondingly produce an
arbitrary classification of the structures that are input to it. On the other hand, one could
train the weights of the right-hand network to perform structure classification according
to, say, the Kabsch and Sander rules. To demonstrate the generality of the procedure we
have done the latter, and have successfully captured the Kabsch and Sander structural
definitions in the right-hand network with high accuracy. This explicitly demonstrates
that neural networks are capable of representing rules of the complexity of the original
Kabsch and Sander rules.

The representation of the structure data in the right-hand network uses ®¥ angles. The
right-hand network sees a window of ®¥ angles corresponding to the window of amino
acids in the left-hand network. Problems due to the angular periodicity of the ¥ angles
(that is, 360 degrees and O degrees are different numbers, but represent the same angle)
are eliminated by utilizing both the sin and cos of each angle. Thus, for input to the
network, each pair of ®¥ angles are replaced by cos(®), sin(®), cos(¥), sin(¥). The
representation of the amino acids in the left-hand network is the usual unary represen-
tation employing twenty bits per amino acid. We follow the conventional interpretation
of the window approach to prediction: the prediction of structure is made for the central
amino-acid residue in the window, with residues in the leading and trailing half-windows
providing contextual information. Experiments described in this paper did not use, as
some groups have used, a special twenty-first bit to represent positions in a window
extending past the ends of a protein.

The following three points summarize the major themes of this paper:

Point (1): One can replace the right—hand black box of Figure 2a with a neural
network (see Figure 2b). A neural network on the right-hand side is an equally valid
implementation of a set of rules defining secondary structure as is a traditional piece of
software. We have explicitly demonstrated this by training a neural network to reproduce
the Kabsch and Sander rules with high accuracy.

Point (2): The right—-hand network need not be restricted to implementing the Kabsch
and Sander rules for secondary structure. The right-hand neural network is capable of
representing a very general set of rules, of which the Kabsch and Sander rules are but
one choice.
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To define new rules one merely changes the synaptic weights. Arbitrary synaptic
weights would define arbitrary rules, and there would be little chance that these new
classes would be either predictable or meaningful.

Point (3): A requirement on the rules is needed. A useful requirement is that the
“secondary—structure” classes defined by the right-hand network be predictable from
the corresponding amino-acid sequence of the left—-hand network.

In other words, we require that the synaptic weights be chosen so that the output of the
left-hand network and the output of the right-hand network agree for each sequence—
structure pair that is input to the two networks. This is illustrated in Figure 2b.

To achieve this, both networks are trained simultaneously, starting from random initial
weights in each net, under the sole constraint that the outputs of the two networks agree
for each pattern — or for as many patterns as is possible — in the training set. The
mathematical implementation of this constraint is described in various versions below,
and 1is illustrated in Figure 2c. The two networks become mutually self-supervising
and implement a type of unsupervised clustering on the data. This co-evolution of the
two networks is clearly a more difficult computational problem than the conventional
approach (Figure 2a) that employs fixed targets. Each network now chases a moving
target during training, and numerical difficulties in the form of local minima occur.
These difficulties are surmountable, and new definitions of secondary structure may be
found. This procedure is therefore a general, effective method of evolving predictable
secondary—structure classifications of experimental data. The goal of this research is to
use two mutually self-supervised networks to define new classes of protein secondary
structure that are more predictable from sequence than the standard classes of alpha-helix,
beta-strand and coil.

4. Constraining the Two Networks to Agree

A naive method to require that the two networks agree is obtained by analogy to the con-
ventional neural network training algorithm, backpropagation with least mean squared—
error (LMS) (Rumelhart & McClelland, 1986). In that algorithm, one performs gradient
descent in the synaptic weights of a network in order to minimize the error function, E:

E =Y (t" — Lefto®)? (1

14

where t(P) is a specified target output value for the p** pattern, and LeftO® is the
output of the sequence neural network for the p*” pattern (see Figure 2a). LeftO®) is a
function of the synaptic weights. Gradient descent in the synaptic weights will decrease
the error, E, evaluated on the training set by forcing the output of the network, Le ftO®)
to agree with the target output, t(P, for each pattern.

Note that in Figure 2a the target values for the left-hand network are given by the fixed
rules implemented in the right-hand Kabsch and Sander black box. These target values
of conventional secondary structure, t®) are fixed constants, i.e., either “0” or “1” as
defined by the Kabsch and Sander definitions for each pattern of structural information.
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As shown in Figure 2b, one might consider using the same error function, Eqn. (1), but
replacing the previously fixed target values for each pattern by the variable output of the
right-hand network. Hence the new error function, whose minimization would enforce
agreement of the left-hand and right-hand networks is

E = (Lefto® — RightO(®)>? 2)
P

The difficulty with this is that there is a trivial way for the two nets to agree. They
merely need to decrease their synaptic weights from the inputs to zero, so each will stay
in the “0” state, regardless of the input pattern (it is also possible to have each stay in the
“1” state). The outputs of the two nets would then remain either “on” or “off” regardless
of the input data and would trivially agree, thereby minimizing E of Eqn. (2). One
might consider adding a variance term to Eqn. (2) to require the networks to respond to
their inputs (i.e., to impose variation in the network outputs as the input patterns change).
While this work was in progress we received a preprint by Schmidhuber (Schmidhuber,
1992) who essentially implemented Eqn. (2) with variance, in a totally different context.
In our hands this measure was quite susceptible to local minima, whereas the measures
we derive below to enforce agreement were less susceptible.

One way to impose the required agreement between the outputs of the two networks is
to require that they co-vary when viewed as a stream of real numbers. (See Figure 2c.)
Therefore, one can maximize the correlation, p, between the left-hand and right—hand
network outputs. The standard correlation measure between two objects, Le ftO®) and
RightO® is:

p=Y (Lefto'® — LeftO)(RightO'P — RightO) 3)

p

where LeftO denotes the mean of the left net’s outputs over the training set, and
respectively for the right net. The expression p is zero if there is no variation, and is
maximized if there is simultaneously both individual variation and joint agreement. In
our situation it is equally desirable to have the networks maximally anti-correlated as it is
for them to be correlated. (Whether the networks choose correlation, or anti-correlation,
is evident from the behavior on the training set.) Hence the minimization of £ = —p?
would ensure that the outputs are maximally correlated (or anti-correlated).

Alternatively, since one ultimately measures predictive performance on the basis of
the Mathews correlation coefficient (see, for example, Stolorz et al., 1992), it is also
reasonable to simultaneously train the two networks to maximize this measure. The
Mathews coefficient, C;, for the it? state or class, is defined as:

Pini — U0
[(ns + ) (ns + 03) (ps + ui)(ps + 05)]1/2
where p; is the number of examples where the left-hand network and right-hand
network both predict class ¢, n; is the number of examples where neither network predicts

1, u; counts the examples where the left network predicts ¢ and the right network does
not, and o; counts the reverse. Minimizing E = —C;% maximizes C;.

Ci=

4
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Other training measures forcing agreement of the left and right networks may be
used. Particularly suitable for the situation of many outputs (i.e., more than two—class
discrimination) is “mutual information”. Use of mutual information in this context is
related to the IMAX algorithm for unsupervised detection of regularities across spatial
or temporal data (Becker & Hinton, 1992). The mutual information is defined as

Dij
M= pijlo ®))
; 7708 Pi.D.j

where p;; is the joint probability of occurrence of the states of the left and right
networks. The quantity p;. is defined as p;, = 3  Pij and the quantity p_; is defined as
P = Zipij' (In previous work (Stolorz et al., 1992) we showed how p;; , p;., and
p.; may be defined in terms of neural networks.) Minimizing £ = —M maximizes M.
While M has many desirable properties as a measure of agreement between two or more
variables (Stolorz et al., 1992; Farber et al., 1992; Lapedes et al., 1990; Korber et al.,
1993), our preliminary simulations show that maximizing M is often prone to poor local
maxima.

Finally, an alternative to using mutual information for multi-class, as opposed to di-
chotomous classification, is the Pearson correlation coefficient, X2, This is defined in
terms of p;; as

2
X2 = (pij —pip.j) 6)
; Pl

P P 2
E=Zp0®, - 0Fypo

I 1

Kabsch and Sander’s rules map @, ¥ to
secondary structure classes.

OO

sequence to secondary structure
classes.

Figure 2a. Conventional neural network training for prediction of conventional secondary-structure classes.

We note that it can be shown that both the correlation-based objective function and a
variant of the mutual information function are nonlinear extensions of a standard statistical
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Figure 2b. Naive attempt at training coupled neural networks to evolve new, predictable secondary-structure
classes. The left-hand network learns a mapping from local primary structure (amino-acid sequence) to
secondary structure, while the right-hand network learns to map tertiary structure (as represented by ¢,y
angles) to secondary structure. Their joint task is to learn a mutually—predictable definition of secondary
structure. However, the use of the standard LMS error measure can lead to the definition of trivial classes.
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Figure 2¢. Use of a correlation-based agreement measure to train coupled neural networks. Such training can
produce novel and highly-predictable protein secondary-structure classifications.

method, Canonical Correlation Analysis (CCA) (Mardia et al., 1979). CCA is used to
find linear functions L1, Lo of two multi-dimensional variables, z, and z;, that maximize
the correlation p{L;(z,), L2(zp)). Our neural networks and objective functions extend
CCA by replacing simple linear combinations with nonlinear transformations (Becker,
1992).
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The objective functions described above are defined either in terms of the networks’
outputs or in terms of frequencies of the possible classification decisions observed over
the example set. It is necessary to relate the two, in order to understand the learning
task and the performance (prediction) task. There are many known ways to translate
output unit activations O; into classifications, including, for the simple 2—class case
under discussion:

1. “soft classes”, with Prob(example, € CLASS1) = O, where O € [0,1];
2. “hard classes”, with example, € CLASS1 iff O > 0.5;

3. “hard classes’, with example, € CLASS1 iff O® > O, where O is the mean
output over all examples.

4.1. Practical Challenges in Optimizing the Agreement

It is useful to separate clearly the objectives of a learning task, and hence the objective
functions, from the numerical methods used — and problems encountered, and compro-
mises made — in pursuing these objectives. In our work, the objective functions which
have the best theoretical justification pose implementational challenges.

Intuitively, it is not surprising that local minima are a significant problem for an in-
vestigation of this type that involves two co-varying networks. In contrast to the usual
situation in backpropagation, in which a single network is trained so that each train-set
pattern is matched to its fixed, target output value, here we are training the output of one
network to match the output of a second network. Hence, one network is providing a
target, in fact a moving target, for the other network. It is not surprising that numerical
problems in the guise of numerous local minima should occur. Various solutions to the
local minima problem, such as adding a small amount of noise during training, may be
possible; however, we found that moving to a gradient-less procedure (in Section 6.1,
Experiment 1) or to a smoother objective function (in Section 6.2, Experiment 2) was
sufficiently effective to complete these investigations. The price paid in using a gradient—
less procedure is speed. The simulations reported in Experiment 1 were performed on
a CMS5 Connection Machine, and typically required a few hours for training a single
network to an acceptable train-set accuracy.

The mutual information function, in particular, often gets trapped quickly in local
minima when evolved from random initial conditions, More success was obtained with
the other objective functions. Of course, it is possible to *“gang” together objective
functions: one could start training from random initial conditions using, for example,
the correlation objective function (which seems less susceptible to local minima than the
mutual information function), and then finish with the mutual information function. We
have not exhaustively investigated these strategies, and usually just chose new initial
conditions if an uninteresting, shallow local minimum was encountered.

Our simulations indicate that X2, C; and p are all less susceptible to local minima
than M. However, these other objective functions suffer the defect that predictability is
emphasized at the expense of utility. In other words, they can be maximal for the peculiar
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situation where a structural class is defined that occurs very rarely in the data, but when
it occurs, it is predicted perfectly by the other network. The utility of this classification is
therefore degraded by the fact that the predictable class only occurs rarely. Fortunately,
this effect did not cause serious difficuities in the simulations we performed. Our best
results to date have been obtained using the Mathews objective function with “hard”
classification decisions and a gradient-less optimization method.

Further details on these optimization and class-implementation issues are presented for
each set of experiments in the Results section.

5. Clustering: Secondary Structure as a Representation

The different methods described above, defined by use of different objective functions,
are related by a common, underlying type of clustering that they impose on the data.
Assume one is given a training set, considered as a set of points £, = (as, z5), where
as € A, z; € Z, where A is a space of short subsequences of amino acids, and where
Z is a space of local tertiary—structure parameters (PW angles) corresponding to the
amino-acid residues. The left-hand and right-hand networks, in any of the two-network
schemes described above, may be viewed as nonlinearly transforming the spaces A and
Z, mapping points into new spaces A’, Z', respectively, such that clusters are formed.
These structural clusters are interpreted as secondary—structure classes (see Figure 3).

The objective functions that force “agreement” between outputs of the left and right nets
enforce a compatibility constraint between the clusterings in the two different spaces, as
well as enforcing other constraints on the sizes and shapes of the clusters. In general, the
compatibility goal is achieved to the extent that neighboring points in sequence space A’
are also neighbors in the structure space Z’, and vice versa. That is, for z,. = (a., 2,) and
zs = (as, 2s), if a, and a, are in the same cluster, then z, and z, should be in the same
cluster, and conversely (as shown in Figure 3). To the extent that this constraint holds,
we say that the structure classification is compatible with the sequence classification, or
in other words that the structure classes are predictable from sequence.

Other recent work in defining new structural classes includes efforts by groups taking an
Al point of view. Here, protein secondary structure is considered to be a convenient and
important representational scheme for encoding knowledge about an intermediate level
of abstraction within a multi-level protein—analysis system. This work has focused on
finding “intrinsic” clusters in local stretches of tertiary structure (Hunter & States, 1992),
that is, classes which reflect objectively definable features as opposed to subjective visual
or historical judgements. Although these projects have produced secondary—structure
classes that meet several criteria for utility in further levels of protein analysis, they have
not explicitly attempted to find classes that are highly predictable, which is clearly an
important criterion for use in protein structure/function prediction systems.

In addition to efforts to find intrinsic clusters in the space of structural features, there
has also been work aimed at finding intrinsic clusters in sequence space (see, for ex-
ample, (Delorme & Henaut, 1988; Fitch, 1981; Hunter et al., 1992; Zhang & Waltz,
1993).) The primary difference between either the structure-based clustering work, or
the sequence—based clustering work, and our work, is that we impose the condition that



114 A. LAPEDES. E. STEEG. AND R. FARBER

A’ Z
Left Net Right Net \
A 4
Sequence Space Structure Space

Figure 3. Compatible clusterings in sequence and structure spaces.

the sequence/structure clusters implicitly defined by the two networks are compatible,
in the sense that at least one of the measures discussed in the previous section is opti-
mized. In other words, we do not separately seek clustering in the structure space, and
in the sequence space, and leave to later the investigation of whether these clusterings
are correlated. Instead, we impose from the beginning that the sequence clusters must
be correlated with the structure clusters, i.e., that one is predictable from the other.

It may be useful to locate each such approach to sequence-based or structure-based

clustering in a hierarchy of possible approaches to combining sequence and structural
information;

1.

3.

At the bottom is the basic clustering of local tertiary—structural (or amino-acid se-
quence) classes, according to some Bayesian or similar criteria, and ignoring sequence
(or structure) space (Hunter & States, 1992; Zhang & Waltz, 1993).

The next level is to assume ecither the sequence or structure classification, and make
these class designations a feature in the representation of the input examples in the
other space; and then to cluster within that other space. In other words, one is still
clustering within only one space, but this clustering is constrained, to some extent,
to respect the (fixed) class structure in the other space. For example, the standard
backpropagation training for the traditional secondary-structure prediction task may
be viewed as a clustering of short amino-acid subsequences under the constraint that
the clusters agree with the helix, strand, and coil structure classes.

The work presented in this paper is at the next level in the hierarchy. This level
corresponds to clustering within the two spaces simultaneously, with the evolving
class structure in each space constraining the evolution of the other.
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6. Experiments and Results

Reported here are the results from two sets of experiments with the coupled neural
networks system described above. In Experiment 1 a number of training runs were
performed for a very computation—intensive version of our method, from which our best
results were obtained. In Experiment 2 a much larger number of training runs were
performed with a very fast variant of the algorithm, permitting a more detailed study
of the dynamics and results of the mutually-supervised classification methodology. The
best results to date, for each of the two sets of experiments, are presented below.

The criterion for choosing the “best” result in Experiment 1 was based on how well
the networks could be trained using different objective functions and not by selecting
the algorithm and architecture that performed best on the predict set. If one chooses the
architecture and training termination time based on the predict set, then contamination of
the train and predict sets occurs, and prediction accuracy can be over-estimated. Use of
a cross-validation set to choose the network architecture, as well as the optimal amount
of training, is an acceptable procedure. However, since the training times were already
quite long (hours of CMS5 time) in Experiment 1, it was not possible to perform a full
cross-validation study. The difference between accuracies reported on the train set, and
on the predict set, does indicate that some degree of over-training occurred, and that the
predict set results might possibly be improved by cross-validation or similar schemes. A
validation set and simple cross-validation stopping criterion were used in Experiment 2;
this scheme, along with a straightforward quadratic model cost (“weight-decay”) (Hertz
et al., 1986) penalty, did produce more regularized models, decreasing the performance
gap between train and predict sets.

Networks yielding new classifications of secondary structure were obtained from ran-
dom initial weight values chosen from the uniform distribution between —0.2 and 0.2.
However, random initial conditions suffer to a certain extent from shallow local minima.
We treated this problem by repeated runs from different, random, initial weight values.
One could attempt to ameliorate the problem by first separately training both the sequence
and structure nets to predict the standard Kabsch and Sander classes (using conventional
backpropagation), and then using these synaptic weights as the initial values of a two-
network run. However, we found that the initial minimum is so deep that nothing new
develops — the Kabsch and Sander definition remains unless one initializes the network
with random initial weight values.

The database used in all experiments consisted of 105 proteins and is identical to that
used in previous investigations (Kneller et al., 1990; Stolorz er al., 1992). The proteins
were divided into two groups: a set of 91 “training” proteins, and a distinct “prediction”
set of 14 proteins. The resulting database is similar to the database used by Qian and
Sejnowski (1988) in their neural network studies of conventional secondary-structure
prediction. The training and prediction sets were chosen in such a way as to contain
little homology between the two sets. When comparison to predictability of conventional
secondary-structure classes was needed, we defined the conventional alpha, beta and coil
states using the Kabsch and Sander definitions and therefore these states are identical
to those used in previous work (Kneller er al., 1990; Stolorz et al., 1992). A window
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size of 13 residues resulted in 16,028 train set examples and 3005 predict set examples.
Effects of other windows sizes have not yet been extensively tested. All results, including
conventional backpropagation training of Kabsch and Sander classifications, as well as
two-net training of our new secondary—structure classifications, did not employ an extra
symbol denoting positions in a window that extended past the ends of a protein. Use of
such a symbol could further increase accuracy.

6.1. Experiment 1

The best results have been obtained with the Mathews objective function using an ar-
chitecture of five hidden units in each network. Therefore the “left-hand” (sequence
window) and “right-hand” (tertiary—structure window) networks had feedforward archi-
tectures of (260 — 5 — 1) and (52 — 5 — 1) respectively!. Here, 260 = 13 x 20
for the unary encoding of each of 13 contiguous amino—acid residues, and 52 = 13x 4 for
the cos(¢), sin(¢), cos(v), sin(1)) representation for each of the same 13 residues. Ad-
jacent layers were fully interconnected. Hidden and output units (“neurons”) employed
sigmoidal activation functions.

Training was accomplished with the gradient—less Powell minimization procedure de-
scribed in (Press et al,, 1988) and not by conventional backpropagation that employs
gradients®>. The Mathews correlation function was designed for use on dichotomous
data, and thus the most natural implementation for two networks employs binary deci-
sions — hard classes. Hard classification introduces discontinuities in the overall objec-
tive function, making true gradient techniques impossible. Our initial tests of gradient
optimization procedures for a smoothed approximation to Mathews showed that local
minima were a significant problem. Local minima seemed to be much less of a prob-
lem using the gradient-less Powell procedure, although this point was not intensively
investigated.

If one assigns the name “Xclass” to the newly—defined structural class, then we found
that one can evolve paired networks that classify local windows of structure into a
“Xclass/NotXclass” dichotomy with higher predictability than the predictability of the
conventional, alpha, beta, coil secondary—structure classes. Results of the two network
training using the protocol of Experiment 1 is reported in Table 1. It may be seen that
the Mathews coefficient on the prediction set of the newly—defined secondary-structure
classes is —0.43. This result is for a two-state dichotomy. To compare the predictability
of these new two-state classes to the conventional three—state secondary—structure classes
of alpha, beta and coil, it is necessary to train three backpropagation networks to perform
three separate dichotomies into alpha/not-alpha, beta/not-beta and coil/not-coil. These
results are also reported in Table 1. It may be seen that the predictability of the new two-
state dichotomies are significantly higher than any of the alpha/not-alpha, beta/not-beta
or coil/not-coil dichotomies. Adding hidden units gives negligible accuracy increase for
predicting the traditional classes; however they are crucial for accurately predicting the
new classes.
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The negative sign of the two-network result indicates anti-correlation — a feature
allowed by our objective function. The sign of the correlation is easily assessed on the
train set and then can be trivially compensated for during prediction.

Table 1. Mathews correlation values (C;) between sequence and structure network classifications, on training
and prediction sets of examples. For networks trained in Experiment 1, corresponding values for Xclass
classifications are compared with values for neural networks trained for dichotomous prediction of traditional
classes a-helix, 3-sheet, and coil.

C; on Train Set C; on Pred Set
Xclass —0.51 -0.43
a-helix 0.37 0.33
3-sheet 0.31 0.26
Coil 0.41 0.39

A natural question to ask is whether the new classes are simply related to the more
conventional classes of alpha-helix, beta-strand, and coil. A simple answer is to compute
the Mathews correlation coefficient of the new secondary—structure classes with each of
the three Kabsch and Sander classes, for those examples in which the sequence network
agreed with the structure network’s classification. The correlation with Kabsch and
Sander’s alpha-helix is highest: a Mathews coefficient of 0.25 was obtained on both the
train set and predict set. There is therefore a significant degree of correlation with the
conventional classification of alpha-helix, but significant differences exist as well. The
new classes are a mixture of the conventional classes, and are not solely dominated by
either alpha, beta or coil.

Conventional alpha-helices comprise roughly 25% of the data (for both train and predict
sets), while the new Xclass comprises 10%. It is quite interesting that an evolution of
secondary—structure classifications starting from random initial conditions, and hence
completely unbiased towards the conventional classifications, results in a classification
that has significant relationship to conventional helices but is more predictable from
amino-acid sequence than conventional helices. In Table 2 we compare the assignment of
structural features into Xclass/NotXclass categories, with the conventional assignment of
structural features into alpha-helix, beta-strand and coil, for the protein Actinidin (which
is in the predict set). The similarity, and differences, of Xclass secondary structure to
conventional alpha-helices is apparent.

6.2. Experiment 2

The fastest experimental implementation of our method employed gradient-based opti-
mization of the standard correlation, p, between two feed-forward networks. Discrete
(“hard”) classes were implemented for prediction, though the objective function was
computed over real-valued network outputs, thereby ensuring smoothness. (See the Ap-
pendix.) A conjugate-gradient procedure (Press et al., 1988) with a sophisticated line—
search component performed the optimization. The neural networks were built, trained,
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Table 2. Three representations of Actinidin (sulfhydryl proteinase) are displayed
below. (Brookhaven Protein Designator: 2ACT.) The four groups of three lines
illustrate the Kabsch and Sander definition of secondary structure (Helix, Beta,
and Coil) in relation to the predicted Xclass secondary structure, and the target
Xclass secondary structure, for protein 2ACT. Top line in each group: H=Helix,
B=Beta chain, “-”=Coil, representing the conventional Kabsch and Sander secondary—
structure classes. Second line in each group: “1”=Xclass, “.”=NotXclass, represent-
ing the predicted (left-hand network) Xclass secondary—structure categories. Third
line in each group: “1”=Xclass, “.”=NotXclass, representing the target (right—hand
network) Xclass secondary-structure classes.
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----------- HHHHHHHHHHH- - - - - - - - - - - - - - - --—-HHHHH - - - —
........................................ 111111 .1..
Lo IS B EE N N R 1.11

~.BBBB----- HHHHHHHHHH - - BBBBB - - - -HHHHH--~-BB - - - - - - -
............. IBEE S R B DU BB DU

.............. IREUE BT I B 5 § S

_BBBBBBBBBBB- -BBBBBBB- - -« ------- BBBBB-cocc - s o -

[ I b

and graphically displayed with the aid of the Xerion neural network simulation software
(Connectionist Research Group, 1990).

The same basic network architectures as in Experiment 1 were used, with varying
numbers of hidden units. The specific predictive accuracy results quoted below were
produced by networks with two hidden units each. A somewhat unique cross-validation
method was used to determine when to stop training. Because the Mathews correlation
measure was to be used to assess the success of training and prediction, even though p-
correlation was used as the objective function, training was terminated when the Mathews
correlation between networks, on the validation set, began to decrease. The validation
set comprised 1000 examples chosen randomly and removed from the training set.

The experiments with this implementation proceeded much faster than the Experiment 1
simulations. On a Silicon Graphics Iris 4D machine, slower and significantly less parallel
than the CMS system, it was possible to train each network to acceptable predictability
levels within an hour or two at most.

This speedup allowed us to perform a larger number of neural network simulations and
in fact to explore in some depth a particular region of classification space. Of 75 training
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runs from different random initial weight configurations with the same (260 — 2 — 1)
and (52 — 2 — 1) network architectures, 9 resulted in prediction set correlations
|Ci] = 0.39. Of these nine well-trained systems, four were very similar, in terms
of producing classifications very highly correlated (|C;| > 0.8) with each other. Two
of these, which we call Ylclass and Y2class, had the highest predictability values in
Experiment 2 and also display closer relationships with two of the traditional Kabsch
and Sander classes than does Xclass. Closest to the traditional classes is Y3class, which
is also slightly less predictable than the other Yclass classifications. These results are
summarized in Tables 3 and 4.

As the tables indicate, the Ylclass and Y2class classifications are more predictable
than the standard secondary—structure classes, with Mathews values of -0.42 and 0.42 as
compared to the maximum of 0.39 for coil. These prediction set correlation values are
almost equal to the —0.43 computed for Xclass, though the training set values are not
nearly in the Xclass range.

Table 3. Mathews correlation values (C;) between sequence and structure network classifications, on training
and prediction sets of examples. For networks trained in Experiment 2, corresponding values for Ylclass,
Y2class, and Y3class classifications are compared with values for neural networks trained for dichotomous
prediction of traditional classes a-helix, 3-sheet, and coil.

C; on Train Set C; on Pred Set
Ylclass —0.46 -0.42
Y2class 0.44 0.43
Y3class 0.43 0.39
a-helix 0.37 0.33
3-sheet 0.31 0.26
Coil 0.41 0.39

Table 4. Mathews correlation values, for trained network on prediction set of examples, for each of Ylclass,
Y2class, and Y3class as measured against each other and against traditional classes o-helix, 3-sheet, and coil.

Y lclass Y2class Y3class a-helix [3-sheet coil
Ylclass 1.00 —0.89 —-0.82 -0.32 0.08 0.37
Y2class 1.00 0.84 0.32 -0.00 -0.30
Y3class 1.00 0.46 -0.01 -0.34

7. Conclusions and Future Work

A primary goal of this investigation is to evolve highly predictable protein secondary—
structure classes. Ultimately, such classes could be used, for example, to provide con-
straints on tertiary—structure calculations. The results described above come from pre-
liminary investigations, and our goal will be to improve accuracy still further. However,
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it is now clear that the use of two, co-evolving, adaptive networks defines a novel ma-
chine learning paradigm that has allowed us to evolve new definitions of secondary
structure that are significantly more predictable from primary amino-acid sequence than
the conventional definitions.

Our ongoing efforts are aimed towards developing a better understanding of the struc-
ture classes found above, as well as towards developing new, computationally efficient
techniques for evolving predictable classes of protein secondary structure. Effects of
different neural architectures, window sizes, amino-acid representations, as well as use
of non-neural algorithms to replace the two adaptive networks will be further investi-
gated. Structure classifications with three or more classes will be evolved. The concept
that agreement between the two adaptive networks results from compatible clusterings
between the amino-acid representation and the structural representation, will be further
developed into cluster-based, non-neural algorithms and Bayesian joint—space density
modeling methods. It is essential to develop methods to overcome the local minima
problem, which is particularly prevalent for the most useful objective function, mutual
information.

The classifications produced by our methods are presently more predictable from
amino-acid sequences than are traditional secondary—structure classifications, as mea-
sured by the Mathews correlation function. The constraint of predictability, i.e., of
agreement between the outputs of the sequence network and the structure network, was
explicitly built in via the objective function. What other useful properties should a
secondary-structure classification have, and how may these be implemented in an objec-
tive function? For example, to effectively use secondary—structure predictions as an aid
to tertiary—structure prediction, the secondary—structure classification must significantly
constrain the ®¥ angles. It is an open problem to define, and maximize, an objective
function that quantifies the structural constraints induced by a secondary structure classi-
fication. However, towards this end, we believe that the same Bayesian/MDL framework
which provides the basis for modeling a single space (Rissanen, 1986; Zemel, 1994) can
be used to advantage in managing the within—space versus between—spaces tradeoffs
inherent in joint-space modeling. We are exploring this idea.

Finally, we note that the methods described here might be usefully applied to other
cognitive/perceptual or engineering tasks in which correlation of two or more different
representations of the same data is required (de Sa, 1994).
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Appendix

Prediction of structural class using sequence network:

Two—class secondary—structure prediction on the pth example is defined for the (left—
hand) sequence network in terms of the network output Oy on example p, the mean
output over all training examples, and the post—training correlation between the outputs
of the two networks, as follows.

Run example p through network;

if(Og’) < Oy) then class .= CLASS1

else class :== CLASS?;

if(p(OL, ORr) > 0) then
if (class = CLASS1) then predict ;== CLASS1
else predict := CLASS?;

else
if (class = CLASS1) then predict .= CLASS?2
else predict := CLASS1;

return predict;

Ve N s WL -

._
e

Essentially, this says that if a network’s output is below average, then the corresponding
input is in one class; if it is above average, then the input is in the other class. Then, in
making the prediction of the other network’s output, use the first network’s classification
as the prediction, unless the correlation between the networks is negative, in which case
predict the opposite.

This is easily extended to handie k£ > 2 classes or different correlation or “agreement”
measures.

Training of two—net system using p-correlation objective function:

E is the objective function, which in this case is E = —p% Oy is, as above, the
output of the left-hand network. w is a synaptic weight in the network. We wish to
train the network by adapting the weights in order to minimize the value of the objective
function, over all of the training examples p.

Training is accomplished by a conjugate-gradient optimization algorithm (Press et al.,
1988), where the gradients are computed as follows.

OE _B8E 8p 80P
ow ~ Op 80P dw

0E

= =9
Op P
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The standard product-moment correlation and its derivative are:

ol y) = > WP - - 7)

P

Op(y1,y2) _ 1 WP — i) V2 1 ® -

= _ 2y - _
ayip) AL 7 1(V1V2)2(y1 71)

where V; = ¥, (uiP)? — (3, 1P)? and Viz = (X, 1\ u8”) — (3, P ) (5, v)

Sigmoidal output functions, weight—cost terms, and their derivatives may be found in
any neural network reference, such as (Hertz et al., 1986).

The training of the right—hand network is entirely analogous. The two networks are
trained simultaneously, step—for—step, in our current implementations. Other objective
functions might best be optimized by alternating—minimization procedures.

Notes

1. Each of these networks trained in Experiment 1 actually employed 2 output units. The two outputs in
each network were independent, and defined two independent subnetworks, in the sense of feedforward
processing and prediction. As for learning, the first output of the sequence network was trained towards
correlation with the first output of the structure network, and likewise for the second output units of the
respective networks. The weights on the connections between the input and hidden layers were responsible
to the optimization of both sets of correlations. Interestingly, this architecture produced berter leaming and
prediction results, for at least one of the two sets of corresponding outputs, than the simpler single-output
case tried in other experiments.

2. The Powell algorithm works by performing successive line searches in conjugate directions, and does not
require a gradient. It is generally slower, however, than gradient methods, and requires O(/N?2) storage, as
compared with O(N) for conjugate—gradient methods.
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