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Abstract. Speedup learning systems are typically evaluated by comparing their impact on a problem solver's
performance. The impact is measured by running the problem solver, before and after learning, on a sample
of problems randomly drawn from some distribution. Often, the experimenter imposes a bound on the CPU time
the problem solver is allowed to spend on any individual problem. Segre et al. (1991) argue that the experimenter's
choice of time bound can bias the results of the experiment. To address this problem, we present statistical hypothesis
tests specifically designed to analyze speedup data and eliminate this bias. We apply the tests to the data reported
by Etzioni (1990a) and show that most (but not all) of the speedups observed are statistically significant.

Keywords. speedup learning, statistics, explanation-based learning, experimental methodology

1. Motivation

Speedup learning systems are systems that automatically generate search-control knowledge
(e.g., Etzioni, 1990b; Knoblock, 1990; Minton, 1988a; Mooney, 1989; O'Rorke, 1989;
Shavlik, 1990). The effectiveness of a speedup learning system is typically evaluated by
comparing the performance of a problem solver, guided by the learned knowledge, with
the performance of the problem solver given no control knowledge, or given control
knowledge acquired by a different learning system. The problem solver is run on a sample
of problems randomly drawn from some distribution. In many experiments, the problem
solver requires an inordinately long time to solve one or more of the problems due to the
combinatorial nature of its search. To allow the experiments to complete in reasonable time,
the experimenter imposes a bound on the CPU time that the problem solver is allowed
to spend on any individual problem. When that bound is exceeded, the problem is marked
"unsolved" and the problem solver moves on to the next problem. The same time bound

The statistical tests described in this article are encoded as COMMON LISP routines. The routines, and the data
analyzed in the article, are available by sending mail to ETZIONI@CS.WASHINGTON.EDU. We hope that other researchers
will use the routines to validate their own speedup learning experiments.
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is imposed on each individual problem under all experimental settings. The information
available regarding that problem's solution time is said to be truncated or censored due
to the time bound.

In a recent paper, Segre et al. (1991) argue that the experimenter's choice of time bound
can influence the results of the experiment. Segre et al. illustrate this point with a hypothetical
example reproduced in tables 1 and 2. In table 1, using a time bound of 1000 CPU seconds,
learning appears to increase total problem-solving time; in table 2, using a time bound
of 3000 CPU seconds, learning is shown to actually reduce total problem-solving time.

1.1. Analysis

We agree with Segre et al. that this potential bias is undesirable. An obvious solution is
to eliminate time bounds (or, more generally, resource bounds). In practice, this is not
feasible, particularly as we scale our experiments to increasingly difficult problems. If we
accept that some of our data may be censored, due to a resource bound, we need to analyze
the impact a bound can have on the results of our experiment. Ideally, since the bound
is under the experimenter's control, the bound should have no impact on the results in
order to ward off claims that the experimenter could have manipulated the experiment to
yield a particular outcome. In section 1.2, we propose statistical methods for analyzing
censored data that have this property. Initially, however, we present several alternative ap-
proaches and identify their limitations. The fundamental question that all methods grapple
with is this: how much weight should we assign to censored data?

An extreme approach is to discard all censored data, assigning it zero weight; the im-
plicit assumption is that the relative performance of the two systems, as observed in the
uncensored data, will extrapolate to the censored data. However, as tables 1 and 2 illustrate,
this assumption can lead to erroneous conclusions.

Another alternative is to extend a standard test of average pairwise difference, such as
the matched-pair t-test, which assumes that the observed differences between the pairs of
solution times are drawn from a particular (e.g., normal) distribution. In such a test, even

Table 1. Segre et al.'s hypothetical speedup learning experiment, where the learned knowledge appears to slow
down problem solving using a time bound of 1000 CPU seconds.

Problem

Before learning
After learning

1

100
100

2

200
275

3

300
600

4

900
1000+

5

1000+

1000+

Total

2500
2975

Table 2. The learned knowledge turns out to speed up problem solving (as revealed when the time bound is
increased to 3000).

Problem 1

Before learning 100
After learning 100

2

200
275

3

300
600

4

900
1560

5

3000+

1078

Total

4500
3613

+A problem whose solution time exceeds the bound.
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though we do not know the true value of a censored difference (e.g., the difference in run-
time due to learning on data points 4 and 5 in table 1), we impose a probability distribution
on the possible difference, which enables us to compute the likelihood that a censored dif-
ference will turn out to be sufficiently large to change the outcome of the experiment; we
then factor this likelihood into the test's result. Unfortunately, the distributional assump-
tion severely restricts the generality of the test. In fact, the actual distributions observed
in many speedup learning systems have no straightforward mathematical characterization—
they are certainly not normal. Thus, using a test that presupposes a normal distribution,
such as the matched-pair t-test (DeGroot, 1986), is inappropriate.

The ideal statistical test would test for "average speedup," which is the intuitive notion
employed in the machine-learning literature, without making distributional assumptions.
It is easy to see that, given censored data, no such test exists. Consider a sample contain-
ing at least one censored data point for each system. In the absence of distributional assump-
tions, the impact of the censored data points on the average performance of the two systems
cannot be bounded. As a result, the systems could turn out to have the same performance,
on average, or either system may turn out to be considerably fester than the other. There
is no way to tell without increasing the resource bound.

To address this problem, we could posit an upper bound on the value of censored data
points. We could then perform a worst-case analysis by replacing each censored data point,
for the system purpored to be faster, with the upper bound and apply a standard statistical
test for average difference to the transformed data set. This approach may be satisfying
when a tight bound can be derived. However, when trying to investigate average speedup,
a loose upper bound assigns too much weight to censored data points. Since the bound
is under the experimenter's control, the experimenter would be open to claims that she
manipulated the experiment. For illustration, refer back to table 1. If we replace each cen-
sored data point with any upper bound that exceeds 1000, learning would appear to be
ineffective. Yet, as table 2 illustrates, this conclusion is misleading.

Worst-case analysis is appealing, in this context, because it could potentially eliminate
any bias due to the experimenter's choices. However, we need to bound the impact of any
single censored difference on the outcome of the experiment. Otherwise, assigning a worst-
case value to a small number of censored data points will obscure a definitive trend in
the rest of the data. We avoid this problem by reformulating the hypothesis being investigated.
Instead of directly testing for average speedup, we use statistical methods that are not
"swayed" by the value of a small number of data points. We return to this issue in section
4.4, after providing the appropriate background and describing our approach.

1.2. Maximally conservative tests

Our approach is based on a combination of standard statistical methods and worst-case
analysis. The key idea is to eliminate bias from an experiment by interpreting censored
data in a maximally conservative manner, without assigning too much weight to censored
data points. We introduce statistical hypothesis tests guaranteed to draw reliable conclu-
sions from censored data. The guarantee is the following:
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If our test provides evidence for a particular conclusion, given a resource bound, the
evidence for that conclusion would be at least as strong if the experiment was run to
completion without any resource bound.

We restate this guarantee in precise statistical terms at the end of section 2.
The remainder of this article is organized as follows. Section 2 reviews the statistical

background necessary to understand the article, describes standard statistical methods for
analyzing censored data, and considers their strengths and weaknesses. Section 3 describes
the data set we use to illustrate our approach. The data set, taken from Etzioni (1990a),
compares the performance of PRODIGY, EBL, STATIC, and human experts on PRODIGY'S bench-
mark tasks. Section 4 introduces the statistical tests we propose. We apply each test to
our speedup learning data, and discuss the results.

2. Statistical background

This section provides a precise but accessible exposition of statistical hypothesis tests, and
considers standard statistical methods for analyzing censored data.

2.1. Hypothesis tests

Statistical hypothesis testing has become an important tool in any discipline in which ob-
served data are subject to uncertainty. We provide a brief description of the basic concepts
and procedure below. See Gibbons (1971), Wilks (1962), or any standard statistics text-
book for a detailed exposition.

Broadly speaking, the goal is to estimate, using the data, a "state of nature," or an underly-
ing data-generating mechanism from a finite space of possibilities. Consider the simple
case of a coin toss, and let P(h) be the probability of the coin turning up heads. If one
is interested in whether the coin is biased in favor of heads or not, the two possible states
of nature are P(h) > 1/2 or P(h) < 1/2. The aim of a hypothesis test is to use available
data to decide which state prevails.

In formulating a hypothesis test, the researcher typically designates the hypothesis she
wishes to establish as the alternate hypothesis; its negation is called the null hypothesis.
The null hypothesis is denoted H0, and the alternate hypothesis is denoted Ha. In our coin
toss example, H0 might be P(h) < 1/2, and Ha would then be P(h) > 1/2. In a speedup
learning experiment, H0 might be that the problem solver with no control knowledge per-
forms at least as well as the problem solver with control knowledge, and the alternative
hypothesis would be that the problem solver with control knowledge is superior. Note that
the precise formulation of the null and alternative hypotheses is key to understanding ex-
actly what conclusion is licensed by the test. See section 4.4 for further discussion of this
issue.

The crux of the hypothesis test is the decision whether the data provide sufficient evidence
against H0 to allow one to reject it. In essence, a hypothesis test is the statistical analog
of a "proof by contradiction." The idea is to assume, tentatively, that H0 is true and to
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ask how unlikely is the experimental outcome observed, or one that favors Ha even more.
If the likelihood of observing such extreme experimental outcomes is very low, then there
is strong evidence for rejecting H0. In the coin toss example, suppose that a coin turns
up "heads" 5 out of 10 times. If the coin is fair (i.e., H0 holds), the probability that at
least 5 out of 10 tosses will come out "heads" is 0.62. Thus, the evidence against H0 is
weak. Suppose, on the other hand, that a coin turns up "heads" 98 out of 100. The prob-
ability of an observation at least as large as this, assuming that the coin is fair, is prac-
tically zero. Thus the evidence against H0 is very strong in this case.

The p-value is the probability, assuming H0 holds, of encountering data that favors Ha

as much as or more than the data observed in the experiment. Thus, a small p-value leads
one to reject H0.

If H0 is rejected, the p-value is the probability that it has been rejeced in error; natur-
ally, one would like this probability to be small. The threshold for the p-value is decided
before the experiment and is called the significance level. If a test is performed at significance
level a, then H0 is rejected if the p-value is less than a, and we say that the test is
statistically significant at level a. All this means is that we are rejecting the null hypothesis
with the caveat that we are making an error with probability at most a. Note that if H0

is not rejected, we do not accept it; all we can conclude is that we do not have evidence
to reject it. In general, we can never conclude that the null hypothesis is true; we can only
conclude that it is probably false.

In many cases, p-values are straightforward to compute. Consider a coin-tossing experi-
ment where Ha is that P(h) > 1/2; h denotes that a coin turn up "heads." Suppose q out
of n tosses turn up heads. The p-value is the probability of having q (or more) heads given
that H0 is true, where H0 is that P(h) < 1/2. Although H0 covers an interval rather than
exactly one value (i.e., H0 : P(h) < 1/2 as opposed to H'0 : P(h) = 1/2), the p-value cor-
responding to the H0 is bounded above by the p-value for H'0 . 1Thus, we typically report
this upper bound as the p-value in hypothesis tests with interval (or composite) null
hypotheses. In the coin-tossing example, the p-value is simply the proportion of the n-long
toss-sequences of a fair coin where q or more of the tosses turn up heads. This proportion
can be computed using the binomial formula as follows:

The normal approximation to the binomial distribution can be used if n is larger than 25
(DeGroot, 1986).

In many experiments, the significance level, a, is taken to be 0.05, but there is no reason
that this value should be adopted in all situations. It is up to the experimenter to decide
what significance level is appropriate. Factors to consider include the acceptable level of
error and the number of tests being performed. If several tests are being performed, each
at significance level 0.05, then the chance that at least one null hypothesis will be rejected
in error is substantially larger than 0.05; this is called the multiple comparisons problem
(Brown & Hollander, 1977). For k independent tests, each conducted at level a, the prob-
ability of at least one incorrect rejection of the null is 1 - (1 - d)k. For example, if we
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conduct nine independent tests, each at level a = 0.05, then the probability of incorrectly
rejecting the null hypothesis at least once is 37 %! To control the overall error probability
in multiple testing, the experimenter has to reduce the significance levels in the individual
tests. To achieve an overall significance level of 0.05, when conducting nine independent
tests, the significance level of each test should be approximately one ninth of 0.05.

2.2. Statistical tests for censored data

The methodology described above applies to data that are not censored. Below, we con-
sider statistical tests extended to analyze censored data. Censoring is not peculiar to speedup
learning data. In fact, it abounds in reliability studies (where we encounter failure time
data) and in medical studies (where we encounter survival or lifetime data). Consider, for
instance, a clinical trial comparing two medical treatments. Patients are followed for five
years, and their survival from the start of the trial is recorded. At the end of five years,
some of the patients will have died, and their survival times will be known. However, the
survival times of the patients who are still alive at the end of the trial will be unknown.
These observed times are said to be censored at the end of the trial; all we know is that
they exceed the trial duration. This is exactly the same situation as in a speedup learning
experiment. The different treatments correspond to different problem solvers, or to the
same problem solver with different control knowledge. The five-year length of follow-up
corresponds to the resource bound. Problems that are solved within the resource bound
are analogous to patients who die within the trial period; problems that remain unsolved
at the resource bound are censored. Table 3 summarizes the analogy between survival
analysis and speedup learning.

A large body of statistical theory has been developed for survival analysis; Kalbfleisch
and Prentice (1980) is a classic reference. However, we have found that the theory relies
on stronger assumptions than are warranted in the analysis of speedup learning data. Con-
sider, for example, doubly censored data in which the problem-solving time (or the sur-
vival time) is truncated for both systems being studied.2 It is standard statistical practice
to discard such data and only analyze the singly censored and uncensored pairs in the sam-
ple (Holt & Prentice, 1974; Woolson & Lachenbruch, 1980). However, this practice amounts
to assuming that the relative performance of the two systems as observed in the uncensored
and singly censored data extrapolates to the doubly censored data. This assumption can
introduce bias into the experiment.3 The assumption is made in the medical and reliability

Table 3. The analogy between the speedup learning and survival analysis.

Elements compared
Termination criterion
Data
Censoring due to

Experiment

Speedup Learning Trial

Problem solvers
Problem solved
Solution time
Resource bound

Clinical Trial

Treatments
Death of patient
Survival time
End of follow-up
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contexts, where data may be extremely expensive to obtain, in order to enhance the ability
of statistical tests to draw definitive conclusions from relatively small samples (samples
containing only 20 to 30 data points are quite common).

To avoid making this assumption, we take a maximally conservative approach and inter-
pret each doubly censored data point as supporting the null hypothesis. As a result, a larger
sample may be needed to reject the null hypothesis in the presence of doubly censored
data. Our maximally conservative choice decreases the sensitivity (also known as power)
of our tests.4 However, we feel that this tradeoff is appropriate because we can compensate
for decreased sensitivity by increased sample size and, in speedup experiments, large samples
are easy and inexpensive to generate.

Finally, with this statistical background in place, we are able to restate our guarantee
from section 1 in statistical terms: whereas a hypothesis test computes a p-value, our tests
compute an upper bound on the p-value that would be derived if the experiment were run
without a resource bound. If this upper bound licenses the rejection of the null hypothesis,
we can guarantee that the null hypothesis would have been rejected, with at least as much
confidence, had the experiment been run without a resource bound. As with any hypothesis
test, this guarantee is one-sided. If we fail to reject the null hypothesis, our tests are in-
conclusive; we can never conclude that the null hypothesis is true,

3. Speedup learning data

We demonstrate the value of our approach by applying it to speedup learning data taken
from Etzioni (1990a). The data set compares the performance of the PRODIGY problem
solver in the absence of control knowledge, to the performance of PRODIGY guided by the
control rules generated by EBL, STATIC, and by human experts. Specifically, we analyze
the pairwise comparisons PRODIGY versus STATIC, STATIC versus EBL, and EBL versus the
human experts, on each of PRODIGY'S benchmark tasks (the Blocksworld, Extended-
Stripsworld, and Schedworld problem spaces). The problem sets, the human control rules,
and the problem space definitions are taken from Minton (1988b). PRODIGY'S total problem-
solving time and the number of censored data points, in each experimental setting, are
summarized in table 4. To the untrained eye, the table seems to indicate that STATIC and
the human "significantly" outperform EBL, and that all three sources of control rules outper-
form PRODIGY, in each of the problem spaces. We will see how these intuitions fere under
rigorous statistical scrutiny in section 4.

Table 4. Total problem-solving time in CPU seconds and number of censored data points in each experiment.

Human
STATIC

EBL

PRODIGY

Blocksworld

Total

46
47

139
2182

Censored

0
0
0

12

Stripsworld

Total

193
226
292

4347

Censored

0
0
0

18

Schedworld

Total

948
685

1262
4391

Censored

4
1
6

23

Note: The number of problems in each problem set is roughly 100, and the resource bound is 150 CPU seconds
on a SPARC Workstation.
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From a statistical perspective, the central feature of speedup learning data is that they
are censored. Another important feature of speedup learning data is that they are paired.
Problems are generated at random, and both systems attempt to solve each problem. This
is as opposed to unpaired, or independent data, where two sets of problems are generated
and each system is allocated its own set of problems. The paired scenario is analogous
to a trial comparing two opthalmic treatments, in which each patient receives both treatments,
one in either eye. Applying both treatments to the same subject means that the two responses
for a given subject are associated and cannot be treated as independent observations. Ig-
noring the paired nature of the data would amount to overlooking a key relationship in
the data, and would result in formulating an overly conservative test. We rely exclusively
on paired data techniques.

The third feature of our data is the presence of tied observations within a pair. If data
are continuous, the likelihood of such an occurrence is practically zero, but in our data
set such pairs make up a nontrivial fraction of the total. Although the actual running time
of each system is some real number, the data were recorded on an integer scale. As a result,
run times that are within one CPU second of each other can appear to be identical. We
discuss how our statistical procedures are adapted to handle ties in the following section.

4. Statistical methods

Statistical methods for analyzing paired data are typically based on the differences between
the paired observations. Below we describe two nonparametric statistical tests ordered by
the amount of information they extract from their samples.5 The first method, the sign test,
relies only on the sign of the differences between pairs. The second method, the signed
rank test, relies on both the sign and the rank, or order, of the differences. In this section,
we apply both tests to our speedup learning data and discuss their limitations.

The sign test is a conceptually straightforward procedure that is readily extended to
speedup learning data. However, as we shall see, it may lack the sensitivity to detect dif-
fernces between two systems. To address this problem, we turn to the more sensitive signed
rank test. This test is a member of the class of linear rank methods, methods based on
the rank of the observed pair differences (Hajek & Sidak, 1967).

4.1. The sign test

The sign test is based on the sign of the difference between the observations in a pair.
Suppose that systems s and f are being compared. A pair difference is the difference in
problem-solving time between system s and system/, on a given problem. The test's null
hypothesis is that the probability of a positive pair difference is equal to the probability
of a negative pair difference. That is, the probability that system f is faster than system
s, on a given problem, equals 1/2. In what follows, we consider the one-sided alternative
hypothesis Ha: the probability that system f is faster is greater than 1/2.

Given the number of pairs, and assuming pairs are independent, the observed number
of positive differences is a binomial random variable. Suppose that q out of n differences
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are positive. Then the p-value is based on the binomial distribution with probability of
success equal to 1/2, and is computed exactly as described in section 2. Note that the test
considers the sign, but ignores the magnitude, of pair differences.

The above formulation does not consider the possibility of tied observations within a
pair. As noted earlier, such pairs make up a nontrivial fraction of our data. One solution
to the problem is to discard the tied pairs and to perform the sign test on the remaining
data. A second solution is to count half the tied pairs as positive differences and half as
negative differences. (See Hemelryk (1952) and Lehmann (1975) for analyses of the two
solutions.) We choose the second solution here because it is more conservative. Our tied
observations are almost certainly run times that are very close, and counting half of these
pairs as positive and half as negative supports the null hypothesis, providing a conservative
test statistic. The discreteness of our data is an artifact of the integer scale on which they
have been recorded. In future experiments, we would recommend preserving the continuous
nature of the data as much as possible. Then the number of tied pairs should be small,
and both solutions to the problem of ties should yield the same inference.

4.1.1. Censored data

In speedup learning experiments, where censoring occurs because of a resource bound,
all censored observations clearly exceed all non-censored observations. Thus, singly cen-
sored pairs represent complete data if all we are interested in is whether one member of
a pair exceeds the other. On the other hand, doubly censored pairs represent no additional
information whatsoever on the relative magnitudes of the observations within a pair. In-
stead of discarding doubly censored pairs from the sample, we take a maximally conser-
vative approach and interpret each doubly censored pair as supporting the null hypothesis.

More precisely, we add the number of doubly censored pairs, d, to the number of negative
differences, n-. This extension has an elegant statistical interpretation: the test is now com-
puting an upper bound on the p-value that would have been derived had the experiment
been run without a time bound. This is precisely the figure we need in order to eliminate
bias due to the experimenter's choice of time bound. If the p-value bound is sufficiently
low, then we can guarantee that the null hypothesis would have been rejected even in the
absence of the time bound. If the p-value bound is high, however, then, depending on the
degree of double censoring, this high value may lead to a decision to increase the time
bound and to repeat the experiment. Alternately, we may conclude that the experiment
does not provide enough evidence to reject the null hypothesis. This conclusion may lead
to a decision to run a substantially larger sample for greater sensitivity.

4.1.2. Application

We performed our censored-data extension of the sign test on the data described in section
3. Table 5 gives the resulting bounds on p-values. We find that, with the exception of the
EBL-STATIC Stripsworld comparison, each of the pairwise comparisons in table 5 is significant
in the Blocksworld and the Stripsworld, and no comparison is significant in the Schedworld.
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Table 5. Upper bounds on p-values for our sign test to three decimal places.

STATIC-EBL

Human-EBL
STATIC-PRODIGY

Blocksworld

0.000
0.000
0.000

Stripsworld

0.04
0.000
0.000

Schedworld

> 0.5
> 0.5
0.309

Note: The null hypothesis states that the source of control rules listed second is at least as effective as that listed
first ("PRODIGY" refers to the PRODIGY problem solver run without learned control rules). For example, the
"STATIC-EBL" row reports p-value bounds on the null hypothesis that EBL is as effective as STATIC. The sign
test enables us to reject this hypothesis in the Blocksworld and Stripsworld, but not in the Schedworld.

The lack of a significant difference in the STATIC-PRODIGY Schedworld comparison is highly
counter intuitive, considering that the STATIC'S total problem-solving time is 685 CPU seconds
compared with 4391 CPU seconds for PRODIGY (table 4). A closer look at the data in-
dicates that in 48 problems STATIC is faster than PRODIGY, and that the reverse is true in
41 problems.6 Thus, if we only look at the signs of the differences, the number of positive
differences is roughly equal to the number of negative differences)—hence the lack of a
significant result. However, it turns out that in this comparison, the negative differences
are close to zero, while the positive differences are sizable, which explains the large dif-
ference in total problem-solving time.

These data illustrate an important limitation of the sign test. Since the sign test ignores
all information about the magnitudes of the pair differences, it fails to reject the null
hypothesis in such cases. This problem is particularly acute when measuring the impact
of control knowledge on problem-solving time, as in the STATIC-PRODIGY comparison. Due
to the overhead of utilizing control knowledge, we expect the unguided problem solver
to run slightly faster on easy problems. If the control knowledge is effective, the unguided
problem solver will be much slower on more difficult problems, but the sign test will not
take this into account. The signed rank test, described below, is designed to remedy this
deficiency of the sign test.

4.2. The signed rank test

The signed rank test weighs both the sign and magnitude of pair differences. The test pro-
cedure is as follows. The absolute values of the pair differences are ranked in increasing
order. The smallest value is assigned the rank of one, the second smallest is assigned the
rank of two, and so on. The signs of the differences are recorded along with the ranks.
The null hypothesis is that the distribution of the pair differences is symmetric about zero.
The alternate hypothesis is that the pair differences are slanted towards positive (or negative)
values, in a sense made precise by Lehmann (1975, p. 157).

Under the null hypothesis, we expect the sum of the ranks corresponding to the positive
differences to be at least as large as the sum of the ranks corresponding to the negative
differences. The p-value is equal to the probability that sum of the positive ranks (denoted
by T+) is at least as large as that observed under the null hypothesis. Suppose there are
n pairs. Then there are 2" possible sign-rank configurations. In small samples, one can
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enumerate the sign-rank configurations yielding a value of T+ at least as large as that
observed; assuming the null hypothesis, each one has a probability of 1/2". The p-value
is the number of sign-rank configurations yielding a value of T+ at least as large as that
observed times this probability. If n is at least 25, a normal approximation to the distribu-
tion of T+ may be employed.

As with the sign test, we handle zero pair differences by counting half the tied pairs
as positive differences and half as negative differences. Since the value of the differences
is zero, their rank is minimal. Thus, ties have less impact on the result of the signed rank
test than on that of the sign test.

4.2.1. Censored data

The standard censored-data extension of the signed rank test is quite technical, so we omit
its description here (see Woolson & Lachenbruch, 1980). We note, however, that the stan-
dard extension makes two important assumptions. First, although the procedure is rank
based, p-values are in fact computed under a distributional assumption about the pair dif-
ferences. Second, doubly censored pairs are effectively dropped, leading to a potential bias
in the analysis due to the choice of resource bounds.

Instead of following the standard approach, we have developed a maximally conservative
extension of the signed rank test for use with censored data. Specifically, if the alternate
hypothesis is that system / is faster than system s, we assign a maximal negative rank to
each difference in which system f is censored (including doubly censored pairs). This is
the worst-case scenario that is still consistent with the data we have observed. In essence,
we are checking whether the null hypothesis can still be rejected, if on each problem where
system f was censored, f would have in fact taken much longer to solve the problem than
system s. If so, then we can be confident that changing or eliminating the bound will not
lead us to retract the rejection of the null hypothesis. After computing the ranks in this
manner, we perform the standard signed rank test. As in our sign test, the p-value thus
obtained is an upper bound on the p-value that would have been obtained had the experi-
ment been run to completion.

4.2.2. Application

We performed our censored data extension of the signed rank test on our data set. The
results appear in table 6. The comparisons that were statistically significant when using
the sign test are significant here as well. In addition, the STATIC-PRODIGY comparison in
the Schedworld shows a reduced p-value bound, demonstrating the increased sensitivity
of the signed rank test over the sign test. The reduced p-value bound is very small (0.006),
leading us to be fairly confident that STATIC outperforms PRODIGY in the Schedworld on
the problem distribution used in the experiment.
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Table 6. Upper bounds on p-values for our signed rank test to three decimal places.

STATIC-EBL

Human-EBL
STATIC-PRODIGY

Blocksworld

0.000
0.000
0.000

Stripsworld

0.009
0.000
0.000

Schedworld

> 0.5
> 0.5
0.006

Note: The null hypothesis states that the source of control rules listed second is at least as effective as that listed
first ("PRODIGY" refers to the PRODIGY problem solver run without learned control rules). For example, the
"STATIC-PRODIGY" row reports p-value bounds on the null hypothesis that STATIC fails to speed up PRODIGY.
The signed rank test enables us to reject this hypothesis in each of the benchmark problem spaces.

4,3. The effect of censoring on significance

As table 4 indicates, our data are very lightly censored. We can demonstrate that our tests
are robust to heavier censoring by positing a lower time bound, resulting in additional cen-
soring, and checking whether the differences observed remain significant. For example,
in the Stripsworld STATIC-PRODIGY comparison, even if the time bound is reduced, resulting
in 13 censored observations of STATIC'S problem-solving time, the difference between STATIC
and PRODIGY remains significant with p-value bound of 0.000 for both the sign and signed-
rank tests. If the time bound is reduced further, and the number of censored observations
of STATIC increases to 23, the p-value bound remains 0.000 for the sign test, but becomes
0.080 for the signed rank test.

We see that the outcome of the signed rank test is more sensitive to the number of cen-
sored data points than the sign test. This is not surprising, because the signed rank test
assigns more weight to censored data. As in the sign test, censored data points count in
favor of the system hypothesized to be slower but, in addition, these points are given a
maximal rank that increases their weight.

In general, given the sample size and a significance level, it is easy to compute an upper
bound on the number of censorings allowed before a test becomes inconclusive. The result
of a test is certain to be inconclusive if the number of censored observations of system
f (the faster system according to Ha) exceeds this bound. The upper bound is derived by
calculating how many censored data points will cause the p-value bound to exceed the
threshold a when the uncensored data maximally favor the alternate hypothesis. The calcula-
tions reveal that the number of censored data points should not exceed roughly 40% of
the sample size for the sign test (a = 0.01), and roughly 20% for the signed rank test
(a = 0.01). We omit the exact calculations here, but emphasize that these are only upper
bounds. In general, the impact of censored data depends on the strength of the difference
apparent in the uncensored data. If the uncensored data provide only "luke-warm" support
for rejecting the null, then a small amount of censored data may well result in an inconclusive
test. Note that our tests will not yield erroneous conclusions in the presence of heavy cen-
soring; the tests will merely fail to report a significant result. If the proportion of censored
data points is too high, a less restrictive resource bound may be necessary.
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4.4, Limitations of statistical tests

While we advocate our tests as useful statistical tools, we caution the reader that the tests
compare the total (or ranked total) of pair differences, not their actual magnitudes. This
can potentially yield counterintuitive conclusions. For instance, a test can fail to find a
significant difference in the rank metric when one appears to exist in the data metric. For
instance, we were disappointed that our tests did not detect a statistically significant dif-
ference between STATIC and EBL in the Schedworld, despite the fact that STATIC produces
control rules that appear to be almost twice as effective as EBL'S (table 4). A close ex-
amination of the data revealed that the large difference in total problem-solving time is
due to large differences on only 5 of the 100 problems in the sample (the difference be-
tween EBL and STATIC on these 5 problems is 649 CPU seconds). Since our tests place
relatively little weight on any individual problem, it is not surprising that the tests were
not "swayed" by large differences on 5% of the problems.

A more extreme consequence of outlying or atypical observations in the sample is the
detection by the test of a significant difference in favor of one system when, according
to the sample, the other system appears to be faster on average. A simple precaution, when
interpreting a significant difference, is to make sure that the average problem-solving time
of the system selected as faster by the test is in fact smaller than that of the competing
system. Our software implementation of these tests enforces this restriction.

The term significant difference refers to statistical significance as defined in section 2,
not to the magnitude of the difference. Given enough data, even a tiny difference may turn
out to be statistically significant, although the practical significance of that difference may
be questionable. Again, the solution is to examine the actual difference between the two
systems. For instance, our tests show that there is a statistically significant difference be-
tween STATIC and EBL'S search-control rules in the Blocksworld; table 4 confirms that the
difference—almost a factor of three—is nontrivial.

Neither of our tests directly analyzes average problem-solving time. The sign test rejects
the hypothesis that the number of positive differences is equal to the number of negative
differences. The signed rank test rejects the hypothesis that the positive differences and
the negative differences are of the same order. Only a parametric test, which assumes that
differences are drawn from a particular (e.g., normal) distribution, can explicitly reject
the hypothesis that the mean or average difference between the two systems is zero. However,
both of our tests can be used as indirect evidence for an average speedup hypothesis.

While we hope that other researchers will use our tests to validate their own speedup
experiments (see, for example, Kambhampati & Chen, 1993; Knoblock, 1993; Minton,
1993), we offer three final caveats. First, as with any statistical test, failure to reject the
null hypothesis is inconclusive; it is not a basis for concluding that system s is at least
as fast as system f. A more appropriate conclusion is that the experiment should be repeated
with a higher resource bound or a larger sample size. If the sample size is already so large
that the test is approaching maximal sensitivity (probability of detecting even small dif-
ferences between the systems is greater than 90%), then failure to reject the null hypothesis
can be regarded as suggestive that system s is at least as fast as system f. Second, as with
any statistical tool, even when a significant result is obtained, the test does not substitute
for a careful intuitive examination of the data, checking that the test is not "hiding" impor-
tant characteristics of the data.
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Finally, although statistical tests enable us to extrapolate from a small random sample
of observations to the particular distribution from which the sample was drawn, the tests
do not enable us to extrapolate from the behavior of the systems on small problems to their
behavior on large problems without making further assumptions, namely, that the systems'
relative behavior on small problems reflects their relative behavior on large ones. Thus,
when carrying out statistical tests, it is important to generate a "representative sample,"
a sample that reflects the distribution of problems that the systems are expected to encounter.

5. Conclusion

We have described two statistical tests that determine whether observed differences in the
performance of two systems are significant. The tests interpret truncated or censored data
in a maximally conservative manner, eliminating bias due to the experimenter's choice
resource bound. We applied both tests to the speedup learning data set taken from Etzioni
(1990a) and have shown that most of the differences observed are statistically significant
(see, in particular, the results of our extended signed rank test in table 6). We believe that
this approach helps to allay the concerns regarding the use of resource bounds raised by
Segre et al. (1991). Finally, although we have focused on speedup learning data, we note
that our methodology can be used to analyze any quantitative comparison between two
systems on a common set of problems.
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Notes

1. To see this, contrast the two null hypotheses P(h) = 1/2 and P(h) = 1/10. Under which null hypothesis
are you more likely to see 60% heads? The answer is P(h) = 1/2. In general, we have that for all q >
1/2, and for all k < 1/2. prob(> q heads, given p = 1/2) is greater than prob(> q heads, given p = k).
Thus, computing the p-value relative to P(h) = 1/2 is a conservative, and hence appropriate, choice.

2. Data point 5 in table 1 is an example of a doubly censored data point.
3. We thank Charles Elkan and Craig Knoblock for making this point.
4. See Cohen and Kim (1993) for a more sensitive statistical test, which is contrasted with our own.
5. Nonparametric tests are generally valid for a far wider range of distributions than their parametric counterparts.
6. Ten of the remaining 11 problems are ties, and one problem is doubly censored.
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