
Machine Learning, 19, 153-179 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On Polynomial-Time Learnability in the Limit of
Strictly Deterministic Automata

TAKASHI YOKOMORI yokomori@cs.uec.ac.jp

Department of Computer Science and Information Mathematics, University of Electro-Communications, 1-5-1
Chofugaoka, Chofu, Tokyo, 182 Japan

Editor: Leonard Pitt

Abstract. This paper deals with the polynomial-time learnability of a language class in the limit from positive
data, and discusses the learning problem of a subclass of deterministic finite automata (DFAs), called strictly
deterministic automata (SDAs), in the framework of learning in the limit from positive data. We first discuss
the difficulty of Pitt's definition in the framework of learning in the limit from positive data, by showing
that any class of languages with an infinite descending chain property is not polynomial-time learnable in the
limit from positive data. We then propose new definitions for polynomial-time learnability in the limit from
positive data. We show in our new definitions that the class of SDAs is iteratively, consistently polynomial-time
learnable in the limit from positive data. In particular, we present a learning algorithm that learns any SDA M
in the limit from positive data, satisfying the properties that (i) the time for updating a conjecture is at most
O(lm), (ii) the number of implicit prediction errors is at most O(ln), where l is the maximum length of all
positive data provided, m is the alphabet size of M and n is the size of M, (iii) each conjecture is computed
from only the previous conjecture and the current example, and (iv) at any stage the conjecture is consistent
with the sample set seen so far. This is in marked contrast to the fact that the class of DFAs is neither learnable
in the limit from positive data nor polynomial-time learnable in the limit.

Keywords: polynomial-time learnability in the limit, iterative learning, strictly deterministic automata

1. Introduction

In the study of inductive learning of formal languages, Gold (1967) showed that any
class of languages containing all finite sets and at least one infinite set (which is called
a superfinite class) is not learnable in the limit from positive data (that is, from the
examples in the target language). This fact was shocking in the sense that even the class
of regular languages is not learnable in the limit from positive data. Angluin (1980) has
given several conditions for a class of languages to be learnable in the limit from positive
data, and presented some examples of learnable classes. She has also proposed subclasses
of regular languages called k-reversible languages for each non-negative integer k and
shown these classes are learnable in the limit from positive data with a polynomial-
time algorithm for updating conjectures (Angluin, 1982). Motivated by a question posed
by Angluin, however, one natural question has been recently recognized as significant:
In what sense should we analyse the time complexity of an "in-the-limit" algorithm ?
Because there are a great variety of possible definitions for polynomial-time learnability

154 T. YOKOMORI

in the limit. Among others, Pitt has proposed the following definition for polynomial-
time learnability in the limit from positive and negative data (Pitt, 1989). Informally, a
class of concepts (or representations) M is polynomial-time learnable in the limit if and
only if there is an algorithm A which, given a sequence of strings accepted by M in M,
learns an equivalent M' in M in the limit, with the property that there exist polynomials
p and q such that the time for updating a conjecture is at most p(n, N) and the number
of times A makes a wrong conjecture is at most q(n), where n is the size of M, and N
is the sum of lengths of data provided. It turned out, however, that this definition was
too strong to have positive results for non-trivial language classes. For example, a recent
result shows that even the class of all finite languages or a subclass of regular languages
called zero-reversible languages is not polynomial-time learnable in the limit (Angluin,
1990; Pitt, 1989). In fact, to the author's knowledge, no non-trivial class of languages
has been yet proven polynomial-time learnable in the limit in this definition. It is beyond
question that the polynomial-time learnability in the limit (in particular, from positive
data) is of great significance from not only the theoretical but also the practical point of
view.

In our previous paper (Tanida & Yokomori, 1992), we have introduced a subclass of
DFAs called strictly deterministic automata (SDAs) and shown that the class is learnable
in the limit from positive data requiring polynomial time for updating conjectures. An
SDA is intuitively a state transition graph in which the set of labels W for edges is a
finite subset of strings over an alphabet E. For each symbol a in E there is at most
one w in W starting with a. The motivation for introducing the notion of an SDA is
explained as follows. Consider the following sentences :

"you feel very happy"
"she is very very happy"
"she came long long ago"

These are recognized by, for instance, the acceptor M in Figure 1. We observe that
all edges of M are labeled by words that all start with distinct letters, and that double
occurrences of an identical word (say, "very" or "long") ensure the existence of a self-loop
in the transition graph. These features lead to a language class of specific sentences with
which we are concerned in the present paper. This notion is also motivated by the work on
Szilard languages of linear grammars (Makinen, 1990). The class of Szilard languages of
linear grammars is a proper subclass of the class of zero-reversible languages, while our
class of languages properly includes the class of Szilard languages of linear grammars,
but is incomparable to the class of zero-reversible languages.

In this article, we first discuss the difficulty of Pitt's definition in the framework of
learning in the limit from positive data, by showing that any class of languages with
an infinite descending chain property is not polynomial-time learnable in the limit from
positive data. Since most of the existing language classes satisfy the property, this result
strongly encourages us to propose new definitions for polynomial-time learnability in the

LEARNING STRICTLY DETERMINISTIC AUTOMATA 155

Figure 1. A Simple Natural Language Recognizer

limit from positive data. In fact, we propose two new definitions for polynomial-time
learnability in the limit from positive data by making modifications to a straightforwardly
restricted version of Pitt's definition for the case of positive data only.

Then, we make a visit to the class of SDAs again to generalize and strengthen the
learnability results of SDAs in the new definition. We show that the class of SDAs is
polynomial-time learnable in the limit from positive data, by presenting an improved
version of the learning algorithm given in Tanida and Yokomori (1992). This result is in
marked contrast to the fact that the class of DFAs is neither learnable in the limit from
positive data nor polynomial-time learnable in the limit. As corollaries, it follows that
the class of SDAs is learnable in polynomial time via equivalence queries only and it is
also PAC-learnable in polynomial time from positive examples only. The main results in
this paper extend and supplement those in not only Tanida and Yokomori (1992) but also
Makinen (1990). Further, we discuss an interesting feature of our learning algorithm,
namely, iterative consistency which enables the algorithm to be efficient in space as well.

2. Definitions

2.1. Basic Definitions and Notations

We assume the reader to be familiar with the basic notions in automata and formal
language theory. For the notions and notations not stated here, see, e.g., Hopcroft and
Ullman (1979). An alphabet E is a finite set of symbols. For any finite set S of finite-
length strings over E, we denote by S* (respectively, S+) the set of all finite-length
strings obtained by concatenating zero (one, resp.) or more elements of S, where the
concatenation of strings u and v is simply denoted by uv. In particular, E* denotes the
set of all finite-length strings over E. The string of length 0 (the empty string) is denoted

156 T. YOKOMORI

by A. By len(w) we denote the length of a string w. A language over E is any subset
L of E*. The cardinality of a set 5 is denoted by |S|. In a directed graph, called a
transition graph, an edge from node p to node q labeled u is denoted by (p, u, q) and
is called a transition. A string u(E E+) is called the label of (p, u, q). For a language
L C S* and x E £*, let x\L = {y|xy € L}.

2.2. Polynomial-time Learning in the Limit from Positive Data — Difficulty and
New Definitions

Let £ be fixed and let M be the class of acceptors to be learned, where each M E M.
specifies a language L over E, denoted by L = L(M). Let L be a language such that
L = L(M) for some M in M. A string in L is called a positive example of L and
positive examples are often called positive data. A positive presentation of the language
L is any infinite sequence of strings such that every string w £ L occurs at least once
in the sequence, and no other strings occur in the sequence. In our model of learn-
ing, a learning algorithm A takes, as an input, an arbitrary positive presentation of L :
w1 ,W2 , • • •, and outputs an infinite sequence of acceptors (conjectures): M1 ,M2, • • •• An
algorithm A is said to learn an acceptor M in the limit from positive data if and only if
for any positive presentation of L(M) the infinite sequence of acceptors in M produced
by A satisfies the property that there exists M' in M such that for all sufficiently large
i, the i-th conjecture (acceptor) M is identical to M' and L(M') = L(M). A class
of acceptors M is learnable in the limit from positive data if and only if there exists
an algorithm A that, for any M in M, learns M in the limit from positive data. For
each i > 1, let Wi be the i-th example provided and Mi be the i-th conjectured acceptor
produced by an algorithm A. Then, A is said to make an implicit error of prediction
at the i-th step if and only if the conjecture Mi fails to accept the (i + l)-st example wi+1.

From the original Pitt's definition (Pitt, 1989) for polynomial-time learnability in the
limit, one may propose the following definition for the case of positive data only.

Definition 1 A class M is polynomial-time learnable in the limit from positive data
if and only if (1) M is learnable in the limit from positive data, and (2) the learning
algorithm A in (1) satisfies the property that there exist polynomials p, q such that for
any n, for any M of size n, and for any positive presentation of L(M), the time used
by A between receiving the i-th example Wi and outputting the i-th conjectured acceptor
Mi is at most p(n, l1 + ••• + li), and the number of implicit errors of prediction made
by A is at most q(n) , where lj = len (w j) (j= 1,2,..., i).

However, no non-trivial class of acceptors (or languages) has been yet proven polynomial
time learnable in the limit in this definition. (In fact, it has been proved that even the
class of all DFAs recognizing only finite languages is not polynomial-time learnable in
the limit (Angluin, 1990). On the other hand, the class of DFAs is polynomial-time
learnable in the limit with the help of membership queries (Angluin, 1987).)

LEARNING STRICTLY DETERMINISTIC AUTOMATA 157

Moreover, we can show the following negative result in this definition.

THEOREM 1 Let M be any class of acceptors with the property that there exists an
infinite sequence of acceptors M0 , M1 , M2 , • • • such that L(M 0) D L(M 1) D L(M2) • • •,
that is, the sequence forms an infinite descending chain with respect to the inclusion
relation. Then, M cannot be learned according to Definition 1.

Proof: Suppose that there exists an infinite descending chain : L(M0), L (M 1) ,
L (M 2 } , . . . , where for each i > 0 L(Mi) properly contains L(Mi+1). Let A be any
algorithm that learns every M in M in the limit from positive data. We show that for
every positive integer k, we can construct a positive presentation of L(M0) on which A
must make at least k implicit errors of prediction.

Begin by enumerating the elements of L(Mk) and providing them as input to A until
the output sequence of conjectures of A converges to an acceptor equivalent to Mk. This
must happen in finite time, since A learns every M in M in the limit from positive data.
When this happens, choose any element of L (M k - 1 } - L (M k) as the next example in the
positive presentation. On this element, A makes an implicit error of prediction. Then,
we continue the construction of positive presentation by enumerating the elements of
L(M k - 1) until the output sequence of A converges to an acceptor equivalent to Mk-1 .
At this point, choose any element of L(M k - 2) — L (M k - 1) as the next example in the
input sequence on which A makes an implicit error of prediction, and we continue with
an enumeration of I/(Mk_2).

Thus, if we continue in this way, then the output sequence of A converges to an
acceptor equivalent to MO after having made at least k implicit errors of prediction.

Let no be the size of M0. Then, since no is some fixed value, no function f(n) has
the property that k < f(n0) for all positive integers k. Thus, no algorithm that learns
every M in M in the limit from positive data can make a number of implicit errors of
prediction bounded by a polynomial in the size of the target acceptor. •

Since most of the non-trivial classes of acceptors have the infinite descending chain
property stated in the theorem, this implies that Definition 1, a straightforward modifica-
tion of Pitt's definition, is too restrictive to obtain any positive result of polynomial-time
learnability in the limit from positive data, leading us to new definitions.

We now propose the following two new definitions for polynomial-time learnability in
the limit from positive data.

Definition 2 A class M is polynomial-time learnable in the limit from positive data
if and only if (1) M is learnable in the limit from positive data, and (2) the learning
algorithm A in (1) satisfies the property that there exist polynomials p, q such that for
any n, for any M of size n, and for any positive presentation of L(M), the time used
by A between receiving the i-th example wi and outputting the i-th conjectured acceptor
Mi is at most p(n, l1 + ••• + li), and the number of implicit errors of prediction made

158 T. YOKOMORI

by A is at most q (n , l) , where lj = len(wj) (j = 1,2, ...,i), l is the maximum length
of any positive example provided up to that point of the run of the learning algorithm,
and the size of M is assumed to be appropriately defined.

Definition 3 A class M is polynomial-time learnable in the limit from positive data
in the strict sense if and only if, in addition to all the conditions in Definition 2, the
algorithm A also satisfies the property that for any target acceptor M in M and for any
positive presentation of L(M), each conjectured acceptor Mi from A accepts a subset
of L(M), i.e., it holds that for all i > 1, L(Mi) C L(M) (the subset requirement).

In comparison to Pitt's definition for polynomial-time learnability in the limit (Pitt,
1989), there are two major differences among these definitions. That is, in the new
definitions above, the algorithm is allowed to have the maximum length of all data sup-
plied as a new parameter for a polynomial that bounds the number of implicit errors
of prediction (in (2)), while Definition 3, in turn, requires the algorithm to confine its
conjectures to subsets of the target languages. Note that the learnability in Definition 3
obviously implies the learnability in Definition 2.

In the next section, we will introduce a non-trivial subclass of DFAs and show the class
is polynomial-time learnable in the limit from positive data in the sense of Definition 2.
In fact, we prove even a stronger result in the sense of Definition 3 whose introduction is
motivated by the fact that it has some implications to other types of learning paradigms, in
particular, learning with equivalence queries (Angluin, 1987) and PAC-Learning (Valiant,
1984)(see Corollary 17).

2.3. Strictly Deterministic Automata and Their Languages

We introduced in Tanida and Yokomori (1992) the notion of strictly deterministic au-
tomata which was defined in two steps, that is, first by extending the notion of (usual)
deterministic finite automata and then by making a certain restriction on them. In this
article, we will reformalize the notion in an extended manner.

Definition 4 (Wood, 1987) An extended deterministic finite automaton (EDFA) M over
£ is a 5-tuple (Q , T , 6 , p 0 , F) , where

Q is a finite, nonempty set of states,

T(C £+) is a finite set of strings,

6 : Q xT — Q is a state transition function (possibly) partially defined,

p0 is the initial state in Q, and

F (C Q) is a set of final states.

LEARNING STRICTLY DETERMINISTIC AUTOMATA 159

Figure 2. An SDA M accpeting L(M)

For convenience, we sometimes take 6 as the set of transitions {(p, u, q)\6(p, u) = q}.

Definition 5 [Strictly Deterministic Automaton] Let M = (Q, T, 6,p0 , F) be an EDFA.
Then, M is a strictly deterministic automaton (SDA) if and only if M satisfies the
following:

(1) for any u & T, there uniquely exists a pair (p, q) such that (p, u,q) 6 6 (i.e., the
uniqueness of labels).

(2) for any u1 ,u2 6 T, the first symbol of u1 differs from that of u2. (We say that T
has the strict prefix property.)

A partial function 6 is often extended from Q x T to Q x T* in a usual manner:
for all p€ Q,x E T * , u € T

S(p,\)=p
8(p,xu) = 6(6(p,x),u).

The language accepted by M, denoted by L(M), is defined by {w E Y , * \ 6 (p 0 , w) e F}.
A language L is called a strictly regular language (SRL) if L = L(M) for some SDA
M.
Note. Besides (1) and (2) above, the original definition of an SDA in Tanida and
Yokomori (1992) requires an additional condition which disallows multi-edges in the
transition graph of M.

Example 1 Let £ — {a,b,c,d}. Consider an EDFA M = ({P 0 ,P1 , P 2 } ,{ab,b,c,db} ,
<5,P0,{p2}), where 6 = {(p0 , ab,p 1) , (p0,db,p2), (p1,c,p0), (p 1 , b , p 2) } . Then, M is an
SDA and L(M) is the language expressed by the regular expression (abc)*(abb + db).
The transition graph of M is shown in Figure 2. D

160 T. YOKOMORI

In what follows, we fix the alphabet £ for SDAs or SRLs. Further, we assume that
each SDA M = (Q , T , 6 , p 0 , F) has no useless states, where a state q € Q is said to be
useless if it is not on any path from the initial state p0 to a final state in F.

2.4. Characterization Results on SDAs

The next result is basic for all characterization results we will obtain in the sequel.

LEMMA 2 Let M = (Q,T,6,p0,F) be an SDA, and p,p',q,q' be in Q, and a e T+.
If 6(p, a) = q and S(p', a) = q', then p = p' and q = q'.

Proof: Let a = u1 • • • un ; (ui € T, 1 < i < n). We will show by induction on n that
if 6(p, a) = q and 6(p',a) = q', then p = p' and q = q'. Assume that n = 1, then
clearly the claim holds from the definition of SDA. Let us assume the claim holds for
n = k (k > 1). Let B = auk+1 , where a = u1 • • • uk , and uk+1 e T. Then,

where

Similarly, we have that 6(p', B) = 6(r', uk + i) = q', where r' = 6(p',a). Then, from the
inductive hypothesis, p = p' and r = r', and hence q = q'. Thus, the claim holds for
k= n + 1, which completes the proof.

•

From Lemma 2, we have the following corollary.

COROLLARY 3 Let M = (Q,T,6 ,p 0 ,F) be an SDA, and let u1,u2 be in T* and v be
in T+. If M accepts u1v and u2v, then 8(p0 ,u1) = 6(p 0 , u 2) .

A regular language L is zero-reversible if and only if for u1 ,u2 G S* and v £ S+,
whenever u1v,u2v are in L, it holds that u1\L = u2\L (Angluin, 1982). Corollary 3
means that an SRL is zero-reversible if it is restricted to T*.

Example 2 Consider the strictly regular language L = L(M) in Example 1. Clearly, L
is not zero-reversible, because, for example, abb and db are both in L but ab\L ^ d\L.
On the other hand, the language of the regular expression a*ba* is zero-reversible, but
not strictly regular, which can be proved using Lemma 2. D

Since there is a language which is both strictly regular and zero-reversible (e.g., the
language of the regular expression a* 6), the following theorem holds.

LEARNING STRICTLY DETERMINISTIC AUTOMATA 161

THEOREM 4 The class of strictly regular languages is incomparable to but not disjoint
with the class of zero-reversible languages.

Using Lemma 2, it is easy to obtain the next lemma which gives an interesting property
of SRLs.

LEMMA 5 Let M = (Q,T,6,p0 ,F) be an arbitrary SDA. Then, for x,z € £*, y e S+,
if xz,xyz and xyyz are in L(M), then for each i > 0, xy iz is in L(M).

Proof: Let v be the longest common prefix of z and yz. Then, xv is the longest
common prefix of xz and xyz, and xyv is the longest common prefix of xyz and xyyz.
From the strict prefix property of an SDA, it is easy to see that if M accepts two strings
x and y, then the longest common prefix of x and y reaches a state of M from q0.
Hence, let p1 = 6(p0 ,xv) and p2 = S(p0 ,xyv).

Since v is the longest common prefix of z and yz, it is also the longest common prefix of
z and yv. To see this, consider the following two cases. Case (1) len(v) < len(y) : Then,
v is also clearly the longest common prefix of z and yv. Case (2) len(v) > len(y) : Let
z'(e S*) and z"(e E+) be strings such that z = vz' and v = yz". Then, v can be also
split as (v -)z"v' for some v' e £*, where z = z''V'z'. Note that z = vz' = (yz")zr,
yz = y(vz') = y(z"v')(z') = (yz")v'z' and yv = y(z"v') = (yz"}v'. Since v(= yz")
is the longest common prefix of z and yz, v is also the longest common prefix of z and
yv. Thus, in either case, we conclude that v is also the longest common prefix of z and
yv. This implies that there exists a string y' such that yv — vy'. Since y is non-empty,
y' is non-empty. We now prove by induction on j the following : [Claim] for each
j > 0, yjv = v (y ') j . The case when j = 0 or j = 1 is trivially true. Now consider

Let z = vz'. Then, since v is a prefix of z, it holds that

and

Thus, as we have seen above, since p1 = S (p 0 ,xv) and P2 = S (p 0 ,xyv), we have
that 6 { p 1 , y ' z ') = qf € F and 6(p2 , y'z') = q'f e F. Since y'z' is non-empty, from
Lemma 2, we conclude that p1 = p2 (and qf = q'f). Since xyv = xvy', this implies that
6 (p 0 , x v) = p1 = p2 = f (p 0 ,xvy') and therefore, p1 = 6(p1 ,y'). Thus, for each j > 0,
every string of the form xv(y '} jz ' is accepted by M, while it holds that

Therefore, for each j > 0, M accepts every string of the form xy jz.

162 T. YOKOMORI

3. Learning Strictly Deterministic Automata

3.1. The Learning Algorithm LA

We present a learning algorithm LA for SDAs which comprises four subprocedures
named "UPDATE", "REFINE", "PARSE" and "CONSTRUCT"; we first give intuitive
descriptions of these procedures.

Let T be a set of strings corresponding to edge labels of a conjectured SDA to be
constructed by LA. We say that T can parse a string w iff w can be uniquely written
as the concatenation of strings from the set T, i.e., if w = x1 ...xm = x'1 ...x'n
(xj,x'k e T; 1 < Vj < m, 1 < Vk < n), then m = n and xj = x'j (1 < Vj < m). It is
easy to see that if w can be written as the concatenation of elements of T and T satisfies
the strict prefix property, then w can be uniquely written. (Thus, provided that T has the
strict prefix property, the fact that w can be written as the concatenation of elements of
T immediately implies that T can parse w.)

Intuitively, the algorithm LA behaves as follows. The algorithm maintains a set T
of edge labels that, at any time, is sufficient to parse all example strings seen so far.
The goal of UPDATE is to update the set T so that the new example can be parsed,
while maintaining the parsability of all previously seen examples. Suppose that the first
positive example is abba, the set T consists only of the string abba and clearly this is
sufficient to parse itself. Now, if a new positive example is obtained, say abaa, then
T = {abba} is not sufficient to parse abaa. Since the edge labels of the target SDA M
satisfy the strict prefix property, the edge label of M that begins with a must be a prefix
of the longest common prefix of abba and abaa, i.e., a prefix of ab, in order for M to
parse both abba and abaa. Thus, in T we replace abba with ab. Now, the edge labels
of M must parse the corresponding suffixes ba and aa of abba and abaa, respectively,
so UPDATE must ensure that both of these suffixes can be parsed. UPDATE maintains
a queue of strings that need to be parsed in order for the final set T to be able to parse
the new string and all previously parsable strings.

In general, the set T maintains a tentative set of edge labels of the SDA to be learned,
and the elements of T always satisfy the strict prefix property. At any time, elements of
T may be replaced, or they may be split into smaller pieces and new elements of T may
be added.

After updating T with a new example, a procedure REFINE takes as input each tran-
sition from the currently conjectured SDA, and breaks it up into the new smaller parse
strings of the updated set T, introducing a chain of new states if necessary. Then, a pro-
cedure PARSE adds into the current automaton a new chain of states (using the updated
set T of edge labels) that can exactly parse the new example.

Finally, CONSTRUCT takes the refined automaton, along with the new chain of states
for the parse of the new example, and then condenses it into a deterministic automaton

LEARNING STRICTLY DETERMINISTIC AUTOMATA 163

using Lemma 2.4 to merge equivalent states and edges.

Let L be an SRL over £ = {a1 , . . . , am} and Si = {w1 , • • •, wi} be the finite sample
set of positive examples of L provided up to the i-th stage of the learning process.

(1) UPDATE
We describe how the set T is updated, when a new positive example w is provided. Let
Wi be the i-th positive example provided at the i-th stage of the learning process and
let Mi-1 = (Q i _ 1 ,T i _ 1 ,£ i _ 1 ,p 0 ,F i - 1) be the conjectured SDA at the (i - l)-st stage,
where the set of strings of edge labels Ti has the strict prefix property of Definition 5.

We now suppose that wi is not consistent with Mi-1, that is, wi is not in L (M i - 1) .

The procedure UPDATE(Ti_1,wi) takes as input Ti_1 and wi, and returns as output
an updated set Tj such that (1) Ti can parse any string w in Si (which includes the new
string w i) , and (2) Ti has the strict prefix property.

In describing the procedure, the following notations will be used :

• firstchar(w) denotes the first symbol of w if w ^ X

• \cp(u, v) denotes the longest common prefix of u and v.

The procedure UPDATE is given below.

[Correctness of UPDATE]

From the way Ti_1 is updated, it is clear that UPDATE(Ti_1, wi) always halts and returns
an output set Ti. In order to prove the correctness of UPDATE, we must show that after
the execution of UPDATE(Ti-1 ,wi) the following properties hold :

(1) Ti can parse every string w in Si , and

(2) Ti has the strict prefix property.

Let w be a string from Q. As a notation, w =$x w' iff w' is a suffix of w obtained by
making one application of an operation x(€ {(a), (b), (c)}) of the case statements in the
repeat loop. That is,

The property (2) is shown by induction on i. For i = 1, T1(= { w 1 }) trivially has
the strict prefix property. To see that Ti(= UPDATE(Ti_1,wi)) has the strict prefix
property, from the inductive hypothesis, we have only to observe that the strict prefix

164 T. YOKOMORI

property of Ti_1 is preserved at any time through the operation of each case statement
(a) , (b) and (c) in the repeat loop, by construction.

Consider a sequence of operations : w =>xl w1 =>x2 • • • =>xn-1 wn-1 =>xn wn(= A).
In this case, a word x1 ...xn (E {(a), (b), (c)}+) is called the associate word of u.

Procedure UPDATE(Ti-1,wi)
begin

let T := Ti-1 ;
let Q := {wi} ; /* Q is a queue of strings to be parsed */
let w be the element of Q removed from the top ;

/* w holds the current string being parsed */
repeat (forever)
if w = A then

if Q =0 then HALT outputting Ti = T
else let w be the element of Q removed from the top

case
(a) firstchar(w) ^firstchar(t) for any t e T :

let T := T U {w} ;
let w := A ;

(b) w = taw' (with ta eT) :
let w := w' ;

(c) w = xaw' and ta = xat'a (with ta eT,t'a^ \ and xa = lcp(w,ta)) :
let T := (T - {ta}) U {xa} ; /* replace ta with xa */
let w := w' ;
put t'a at the end of Q

end repeat
end

In order to prove the property (1) above, we first show the following claim :

[Claim] Every string w ever put into Q can be parsed by Ti.
Proof. Noting that every string w in Q is removed from the top of Q to be scanned,
let a be the associate word of w. We show by induction on n = len(t) that w can be
parsed by the current set T during the execution of UPDATE(Ti_1, wi). For n = 1, by
construction, exactly one of the following three cases occurs : (i) T := T U {w} (in
case (a)) , (ii) w = ta with ta 6 T (in case (b)), (iii) w - xa(= lcp(w,ta)) e T
(case (c)) . Thus, in all cases, w can be parsed by T. Suppose inductively that any
string in Q whose associate word has length less than n can be parsed by T, and con-
sider w =$x w1 =$a A (for some w1), where a = xa' is the associate word of w,
len(a') = n — 1 and x e {(b), (c)}. Then, by definition, either w = taw1 with ta e T
or w = xaw1 with xa e T. By the inductive hypothesis, since w1 can be parsed by
T, we conclude that w can be parsed by T. T may be further updated by case (c}
to finish scanning all strings in Q. In case (c) , suppose that t'a is put into Q, where

LEARNING STRICTLY DETERMINISTIC AUTOMATA 165

w — xaw', ta = xat'a and ta is replaced with xa in T. But, as argued above, since t'a
is parsed by the current T, T can also parse ta. Thus, we conclude that when UPDATE
eventually terminates, Ti can parse every string w in Q. (End of the proof of Claim.)

We now prove the property (1) by induction on i. First, T1 = {w 1 } can trivially parse
every string in S1(= {w1}). Thus, we may assume as an induction hypothesis that Ti-1

can parse every string in Si_1.

Suppose that w is Wi in Si(= Si_1 U {wi}). Then, from the manner of constructing
UPDATE, since w is the first and only element of Q, the Claim implies that Ti can
parse w. Hence, we have only to show that Ti can parse every string in Si-1. But,
to argue this, from the inductive hypothesis above, it suffices to show that Ti can parse
every string in Ti-1. This is clearly true for each element of Ti-1 n Ti. Now, consider
the case (c) that can only replace ta in Ti-1 with some prefix ta in Ti, where
ta = ta u and u is put at the end of Q to be later parsed. Then, by the Claim, u
can be parsed by Ti ,and since t(i-1) can be written as the concatenation of ta and u,
we eventually conclude that every t(i-1) in Ti-1 can be parsed by Ti. This completes
the proof of the property (1).
(2) REFINE and PARSE
LetTi = UPDATE(Ti-1,wi) and Mi-1 = (Q i - 1 ,T i - 1 , S i - 1 , po ,F i - 1) be the (i-l)-st
conjecture. We describe how an SDA Mi is constructed from Mi-1 and Ti. For that
purpose, we need two subprocedures.

For a transition t = (p,x,q) e < 5 i - 1 , we define REFINE(Ti,Mi-1,t) by the set of
transitions

where qo = p, qn = q, x = u1 ...un, and for each j(1 < j < n) uj equals ta for
some ta £ Ti, and for each j(l < j < n - 1) qj is newly introduced if a transition
(q j - 1 ,u j ,q j) is not in Si-1.

Further, define PARSE(Ti, M i - 1 ,w i) by the set of transitions

where wi = u1 ...un, and for each j(l < j <ri) uj equals ta for some ta € Ti, and for
each j(1 < j < n) qj is newly introduced if a transition (q j - 1 , u j , q j) is not in 6i-1,
and go = Po and qn is marked as a new accepting state if it is not in Fi-1. (That is, this
entails the construction of Fi.)
(3) CONSTRUCT
Let Ai be the set of all transitions defined by

166 T. YOKOMORI

The procedure CONSTRUCT(Ai) takes as input Ai and returns a conjectured SDA Mi

by merging equivalent states and edges in Ai using Lemma 2.

Procedure CONSTRUCT(Ai) :
let Ai = Utgfc., REFINE(Ti, Mi-1, t) U PARSE(Ti, Mi-1, Wi) ;
merge identical states and edges in Ai using Lemma 2 ;
let 6i be the result of merging states and edges from Ai ;
return Mi = (Q i ,T i ,6 i ,p 0 ,F i) , where Q i , F i are obtained

from 5i in the obvious manner.
The complete algorithm LA is given below.

3.2. Correctness of LA

In this section we will prove the correctness of the presented algorithm LA. To this end,
we start by defining an operation which is useful for our purpose.

Define a binary operation O on strings as follows : for x, y € £*,

where

(Recall that lcp(x, y) denotes the longest common prefix of x and y.) Further, for a finite
set of strings S, extend O by

Then, consider the closure of S under O and denote it by O*(S), i.e., let O*(S) =
Un>0On(S), where O°(S) = S and On+l(S) = O(On(S)} (for each n > 0).

Let F be a finite set of strings over E* where every symbol of S appears in some
string in .F. For each a € E, Fa denotes the set of strings in F that start with a. Further,
by min F we denote {sh(Fa}\a € £}, where each sh(Fa) is the set of shortest strings
in Fa. (If sh(Fa) is a singleton {fa}, then we simply write fa rather than {fa}.)

We now claim that for each a e E, if O*(S)a is not empty, then there is a unique
shortest string xa in it, i.e., sh(O*(S)a) = xa. Suppose there are shortest strings x\ and
x2 in O*(S)a such that x1 = uav, x2 = uaw, len(v) = len(w) and ua = lcp(x1,x2).
If v ^ A, then len(ua) < len(x1) and ua € O*(S)a, contradicting the shortestness of
x1 in O*(S)a. Hence, it must hold that v = A(= w), and we have that x1 = x2, thus
proving the claim.

LEARNING STRICTLY DETERMINISTIC AUTOMATA 167

[Learning algorithm LA]

Input: a positive presentation of a strictly regular language L.

Output: a sequence of SDAs for strictly regular languages.

Procedure
initialize i = 0 ;
let To = 0 ;
let M0 = ({po},0,0,Po,0) be the initial SDA ;
repeat (forever)

begin
let i := i + 1 ;
let Mi-1 = (Q i - 1 , T i - 1 , 6 i - 1 , p 0 , F i - 1) be the current conjecture ;
read the next positive example wi ;
if wi € L(Mi - 1) then output Mi = Mi-1 as the i-th conjecture;
else

begin
let Ti = UPDATE(Ti-1,wi) ;
for all t e < 5 i - 1 , make REFINE(Ti, Mi-1,t) ;

/* refine old transitions using new edge labels */
for wi, make PARSE(Ti,Mi-1,wi) ;

/* parse wi using new edge labels */
let Ai be the unions of each REFINE(Ti, M i - 1 , t) (t e ^i-1)

and PARSE(Ti,Mi-1,wi) ;
let Mi =CONSTRUCT(Ai) ;
output Mi as the i-th conjecture ;

end
end

For each i > 1, let Si = {w 1 , . . . ,w i } be a sample set of a target SRL L. Let
TSi = min O*(Si) = {xa \ a € £}, where for each a € E, xa = sh(C*(Si)a). TSi

clearly has the strict prefix property. Also, from the strict prefix property of TSi , it is
easy to show that any string w in Si can be parsed by Tsi , i.e., w can be written as the
concatenation of elements of Tsi with the property that w = x1 . . .xm = x'... x'n
(xj, x'k € Tsi; 1 < Vj < m, 1 < Vk < n) implies that m = n and x' = x'
(1 < Vj < m).

Using this formalization, Ti(= UPDATE(Ti-1, wi)) is characterized by TSi as follows

LEMMA 6 Let Si — {w1,..., wi}. Then, for each i > 1, TSi coincides with Ti.

168 T. YOKOMORI

Proof: By induction on i. Suppose % = 1, then S1 = {w\} and TO = 0. Since
O(Si) = {A, w1} = {A}uSi, we have that O*(S1) = {A}u5j. Hence, TSl = {xa} =
TI(= UPDATE(Tb,iui)), where xa = w\ and a is the first symbol of w1.

Since $-1 C O*(5<_i), it holds that O*(5<_i U {wj}) C £>*(£>* (SV-i) U {tu4}).
Conversely, since 0*(Sj_i) U {toj C 0*(Sj), we have that O*(O*(Si-1) U (luj) C
O*(£>*(Sj)) = 0*0$) = 0*OSi-i U {wj}). Thus, it is proved that

Suppose now that TSi-1 = T,_i, in other words, suppose that

By construction, since every string in C?*(S i - 1) can be parsed by TJ_I(= min 0*(Sj_i)),
it holds that

Then, noting that Tt = min 0*(Ti_i U {iu»}), we have

Thus, the lemma is proved. •

We also show that Tj is the "coarsest" finite set in the following sense.

LEMMA 7 Let Tj = TSi and let T' be any finite set of strings over E with tne strict
prefix property and such that every string in Si can be parsed by T'. Then, every element
in Ti can be parsed by T".

Proof: Since the O(X) operator adds only shorter strings to a set X, there is some
finite fc such that C?*(5j) = Ok(Si). Now we show by induction on n that T' can
parse every string in On(Si). Then, since I* = TSi = min O*(5j) = min Ofc(5j), this
immediately implies that every element in Ti can be parsed by T'.

By the hypothesis of the lemma, T' parses every string in Sj = 0°(Sj). Assume
inductively that it parses every string in On(Si). Then, the only strings in O"+1(Sr,) -
On(Si) are triples of strings u,v and w such that uv and uw are in 0n(Sj), and the
first characters of u and w are different. Thus, for such strings, T' parses uu and uw by
the inductive hypothesis. Since T' has the strict prefix property, it is now not difficult to

LEARNING STRICTLY DETERMINISTIC AUTOMATA 169

show that T" parses each of u, v and w, thus completing the proof.

•

We are now in a position to prove the following lemma.

LEMMA 8 For each i > I, Ml accepts the smallest SRL containing Si That is,
Si C L(Mi) and for each i > 1, if L' is an SRL containing Si, then -L(M,) C L'.

Proof: Let Mi = (Qi,Ti,6i,pQ,Fi) be the i-th conjecture. Then, by construction,
it holds that 5, C L(Mt). Let M' = (Q1',T'\6'',p'0,F') be an acceptor such that
L' = L(M') containing Si. By Lemma 7, each element of Ti can be written as a
concatenation of elements of T'. Consider any u that is a prefix of a string w in Si
and is such that u can be written as a concatenation of elements of Ti. Then, since M'
accepts w and u is a prefix of w that can be written as a concatenation of elements of
Ti, S'(PO,U) is a state in Q'.

Now, define a mapping / from Qi to Q' as follows: For each p 6 Qi, let up be a
prefix of a string in Si such that the number of transitions in 6l(p0, up) = p is minimum.
Then, define f(p) = 6'(p'0,up). (As seen above, this is well-defined.) We show the
following : (1) f(po) = p'0, (2) if p is in Ft, then f(p) is in F', (3) for every p e Ql

and every label string t such that 6(p,t) = q for some q, f (6 i (p , t)) = 6'(f(p),t).

By letting upn = A and from the definitions of / and 6', we have

Suppose that p is in Fi. Then, since up is a prefix of a string in Sj, there exists a string
v such that up and upv are in L(Mi) and that upt> is in Si, where 6»(p, u) € Fj. Let iyp

be a string in Si such that Si(p0, wp) = p e Fi. From the manner Fj is constructed using
5j and the minimality of up, up is in L(Mi) implies that up = wp and, therefore, up is
in Si. Since Si is contained in L', we have that up is in L'. That is, /(p) = 6'(p'0,up)
is in F'.

To prove (3), since t is a label string in Ti and t can be written as a concatenation of
elements of T', there exists a state 6'(f(p),t) in Q'. For q £ Qi such that Si(p,t) — q,
let u9 = upt. Then, from the manner of choosing up, uq is a prefix of a string in Si such
that the number of transitions in Si(po,uq)(= 6i(po,upt)) = q is minimum. Further,
from the manner Si is constructed, there is a string in Si whose prefix is uq. Therefore,
we have that f(q) = S'(p'0,uq). Then,

170 T. YOKOMORI

Thus, (1), (2) and (3) above immediately imply that L(Mi) C L'. •

As a corollary, we have

COROLLARY 9 Let L be a target SRL. Then, for each i > 1, it holds that L(Mj_i) C
L(Mt) C L.

In order to prove the correctness of the algorithm LA, we need to introduce the
notion of a characteristic sample for a target SRL L. A finite subset 5 of L is called a
characteristic sample of L if and only if L is the smallest SRL containing S, i.e., for
any SRL L', S C L' implies that L C L' (Angluin, 1982).

Corollary 9 together with the definition of a characteristic sample almost immediately
implies the following.

LEMMA 10 For any i > 1, if Si is a characteristic sample of L, then L = L(Mi).
Further, for any S if S is a characteristic sample of L, then so is any S^ containing S.

We will show that there effectively exists a characteristic sample SL of each SRL L.
We say that M is in normal form iff (1) it has no useless states, (2) every accepting

sink state has exactly one transition defined into it, and (3) for every non-accepting state
which is not the initial state, there are at least two transitions defined from it, where sink
state is a state from which no transitions are defined.

Using an example, we demonstrate that SDAs in this form actually provide "normal
forms" for SDAs.

Example 3 Consider an SDA M given in Figure 3. M has no useless states. For an
accepting sink state p4 that violates (2), duplicate it and introduce new state p'4. For
non-accepting states pi and p3 that violate (3) and are not the initial state, we "haul up"
each chain of transitions until the condition (3) holds, and delete p\ and p3 and, finally,
replace old transitions involved in them with new transitions (po,ab,p2), (p2,db,p2) and
(P2,C/,P4). Thus, a normal form M' is obtained such that M' is equivalent to M. D

It should be clear that any SDA can be transformed into such a normal form without
changing the language.

Let M = (Q, E, 6,po, F) be an SDA in normal form that accepts L. We now construct
a finite set SM as follows. If M accepts only one string w, then let SM = {w} = L(M).
Otherwise, we proceed below.

For each p e Q, define the string up such that 8(po, up) = p in the following manner:

1. upo = A,

2. for any state p that is non-accepting or is not a sink state, let up be any string such
that 6(po, up) = p.

LEARNING STRICTLY DETERMINISTIC AUTOMATA 171

Figure 3. M and Its Normal Form Ml

3. for each accepting sink state q such that 6(p, t) = q, let uq = upt, where t is the
unique label of a transition from p into q.

Also, for each p € Q, we choose any string vp such that 6(p, vp) e F. Finally, for each
q 6 Q, we define a set Xq consisting of one or two strings as follows:

(1) if q is an accepting sink state, then Xq = {A},

(2) if q is an accepting state with at least one transition defined from it, then choose one
such transition (q,t,p) in 6, and Xq = {X,tvp},

(3) if q is a non-accepting state (hence by the normal form, there are at least two
transitions defined from it), then choose distinct transitions (q, ti,q1) and (q, £2,<7a) in
6 and let Xq = {tiVg^tiv^},

(4) finally, if the initial state po is non-accepting and has nothing but one transition
defined from it, then Xpo = {vpo}.

Now, we define a finite set SM as follows :

172 T. YOKOMORI

Example 4 Consider the SDA M' in Example 3. For each p 6 Q, we choose up and vp

as follows:

(Note that we could instead choose up2 = abdb, UP4 = abdbe, up> = abdbcf.)

Then, construct

Finally, define SM> by

LEMMA 11 For any SDA M, SM is a characteristic sample of L(M).

Proof: By construction, SM Q L(M). We may assume that M accepts at least two
strings. Let M' be the SDA MSM produced by LA when SM is provided as a sample
set. As we have seen in Lemma 8, since L(M') is the smallest SDL containing SM,
we have that L(M') C L(M). Suppose it is proved that L(M) C L(M'), then we have
that L(M) = L(M'), which implies that L(M) is the smallest SDL containing SM-
Therefore, it suffices to show that L(M] is contained in L(M').

Let M = (Q,T,6,pQ,F) and M' = (Q',T',6',p'0,F'} be SDAs described above. We
show the following :

[Claim] For each p e Q and each t such that (p, t, q) e 6 for some q e Q, both
strings up and upt lead to states of M' from p'0.
(Proof.) If p is an accepting state, then up is clearly in SM and, hence, in L(M'). Thus,
up leads to a state of M'. If p is neither the initial nor an accepting state, then there are
two strings uptivqi and upt^vq^ in SM(C. L(M')), where t\ and £2 begin with different
symbols. Since both are accepted by M', the longest common prefix of the two, up,
leads to a state of M'. (Recall that if strings x and y are accepted by an SDA M, then
the longest common prefix of x and y reaches a state of M from the initial state.) If p
is the initial state po, then since upn = A, by definition, upo trivially leads to a state (p'0)
of M'.

Further, suppose that p has a transition (p,t,q), then from the manner SM is con-
structed, either there is a string or there are two strings of the form uptvq in uptXq(C.
SM C L(M'}). If q is an accepting state, then one can take vg = A from Xq and

LEARNING STRICTLY DETERMINISTIC AUTOMATA 173

upt(= UptVq) is in L(M'). Thus, upt leads to a state of M'. If q is neither the initial
nor an accepting state, then there are two strings v\, v% in Xq such that they begin with
different symbols. Since uptv\ and uptv-2 are accepted by M', the longest common
prefix upt of these two leads to a state of M'. Finally, if q is the initial state po of M,
then there is a non-empty string vpn in Xpo such that uptvpo is in SM(^ L(M')). By
definition, since vpa is in 5^, it is also in L(M'). From Corollary 3, this implies that
upt leads to a state p'0 of M' (End of the proof of Claim).

We now define a mapping / as follows : for each p € Q, f(p) = 6'(p'0,up). We
would like to verify that (1) /(p0) = p'0, (2) if p & Q is an accepting state, then so is
f(p), and (3) for each transition (p , t , q) , f (6 (p , t)) = S'(f(p),t). Since, by definition,
upo = A, (1) obviously holds. If p is in F, then up is in SM, and hence, in L(M').
Thus, f (p) (= 6 ' (p ' 0 , U p)) i s i n F ' .

To show (3), it is sufficient to show that f (q) = 6'(f(p),t), since

To show that f (q) = 6'(f(p),t), we may equivalently show that 6'(p'0,upt) = 6'(p'0,uq).

Consider the cases for the state q e Q : if q is an accepting sink state, then by
definition, uq = upt. Thus, the identity relation to be proved holds trivially. Otherwise,
i.e., if q is a state with at least one transition defined from it, then Xg contains at least
one non-empty string v' such that 6(q,v') e F. Then, there are two strings uqv' and
uptv' in SM(Q L(M')}. Since M' accepts these two strings, from Corollary 3, we have
that <5'(po, Uq) = 6'(p'0,upt), completing the proof that (3) holds.

From these properties (1), (2) and (3), we conclude that L(M) C L(M') holds, which
completes the proof of Lemma 11. •

We are now in a position to prove the following theorem.

THEOREM 12 The algorithm LA learns the class of SDAs in the limit from positive
data.

Proof: We prove that the algorithm LA converges to a correct SDA M accepting the
target language L. We claim the following:
[Claim] For a characteristic sample Si of L, if SL C Si(] for some IQ, then L = L(Mia).
From Lemma 10, when the sample set •%„ contains a characteristic sample SL, St<> is
also a characteristic sample of L. Then, from the property of a characteristic sample
of L, it holds that L C L(Mj ()). On the other hand, by Corollary 9, we have that for
each i > 1, L(Mj) C L, and hence, we conclude that L = L(Mi(i). Thus, the claim
holds. Since SL, is finite, there exists IQ > 1 such that SL, C Sil}. From the claim, this
completes the proof. •

174 T. YOKOMORI

3.3. Time Analysis of LA

We analyze the time complexity of the algorithm LA.
[1] Time for Updating Conjectures

For each i > 1, let M, = (Qi,Ti,^,po,-fi) be the SDA produced by LA and Si be
the set of positive examples at the i-th stage. Each time a new positive example Wi
is given, updating the previous conjecture Mi-1 is performed in time at most O(^m),
where t — Max^€5i{Zen(u;)}, m = |E|. This is proved as follows :
(1) First, we consider UPDATE(T*_i, u^). An important observation about UPDATE is
that only string matching operations are performed and nothing else is used throughout
the procedure. Hence, all we have to do is to analyse how many lengths of strings, in
total, must be scanned by UPDATE. Recall the construction of UPDATE. Each time case
(c) occurs, some ta in T is replaced with a proper suffix. (See Figure 4.) Thus, the

number of times case (c) can occur is bounded by x = £)t &Tlen(ta). Hence, the
sum of the lengths of all of the strings ever put into Q (except for Wi) is at most x. Note
that the length of each element of T is bounded by i.

The algorithm halts after all strings ever put into Q (including the input string wi)
have been scanned. At each iteration of the repeat loop, at least one character of one of
these strings is scanned as a prefix of the current string w in case (a) , (b) , or (c) .
Hence, the total number of iterations of the repeat loop is at most len(wi) + x.

Thus, the total complexity of UPDATE(Ti-1, wt) is bounded by:

(2) First, for each t = (p,u,q) £ &i-i (u € Ti_i), REFINE(r,Mi_i,t) is performed
in time linear in len(u). For PARSE(T,Mi_i,iUi), it requires at most linear time in
len(wi). Thus, REFINE and PARSE require at most im + len(wi).

In order to check if two transitions (p,u,q),(p',u',q') 6 A$ are mergable or not, we
have only to check the first symbols of u and u'. Since the cardinality of A» is bounded
by im + len(wi), CONSTRUCT requires at most tm + len(wi).

Hence, we have the following :

THEOREM 13 The algorithm LA may be implemented to run in time O(|E|f), where t
is the maximum length of all positive data provided.

[2] A Bound on the Number of Implicit Prediction Errors
We now consider the number of implicit errors of prediction needed for learning a
correct SDA M accepting the target SRL L. First, we define the size of an SDA
M = (Q,T,S,po,F] based on the sum of the lengths of all elements in T, that is,

LEARNING STRICTLY DETERMINISTIC AUTOMATA 175

Figure 4. Updating T in UPDATED n>;

size(M) — £)u6T(£en(u) + 1). This may be justified when we think of an equivalent
minimum DFA in the usual sense.

LEMMA 14 The number of implicit errors of prediction LA makes is at most O(\Y,\i),
where t is the maximum length of all positive data provided.

Proof: Let M be a correct SDA for the target L, and for each i > 1, let Mi be the
i-th conjecture. Each time LA makes an implicit error of prediction, let us see what
can happen to the conjecture in the algorithm LA. Suppose that w(= Wi) is a positive
example inconsistent with the previous conjecture Mi-1, i.e., Wi £ L(Mj_i). First,
since the set of transitions of each conjecture contains at most |E| elements of the form
(p, u, q), the maximum number of distinct states of any conjecture is bounded by 2|E|.
The following are possible cases where some changes to Mi-1 must be made to produce
a new conjecture Mj '•

1. The set T is unchanged and exactly one non-accepting state of MJ_I becomes an
accepting state of Mi. This can happen in total at most 2|E| times.

2. The set T is updated such that w causes at least one new element to be added to
T. In this case, since the new elements added begin with characters that no other
element of T began with, no states will be merged and exactly one new accepting
state is added to Mi-1. Noting that the maximum number of occurrences of adding
new elements to T is bounded by |E|, this can happen in total at most |E| times.

3. The set T is refined such that at least one element of T is replaced by a proper prefix.
Since the length of each element of T is bounded by t, this can happen in total at
most |S|£ times.

176 T. YOKOMORI

From these observations, we have that the number of implicit errors of prediction is
bounded by O(|E|f). •

Noting that |E| < ^2ueT(len(u) + 1) = size(M) = n, the following corollary follows.

COROLLARY 15 The number of implicit errors of prediction LA makes is bounded by
O(ln), where n is the size of a correct SDA for the target language L.

Thus, from Corollary 9, Theorems 12 and 13 and Corollary 15, we have the following
theorem.

THEOREM 16 The class ofSDAs is polynomial-time learnable in the limit from positive
data in the strict sense.

Now, suppose that we have an algorithm A by which a class .M is polynomial-time
learnable in the limit from positive data in the strict sense (Definition 2). And, consider
a learning model in which only equivalence queries are available for learning M. From
the learnability of M in the strict sense, we may assume that the algorithm A always
confines its conjectures to subsets of the target language L(M) for any M in M. Then,
equivalence queries can only return positive (counter)examples to A. Further, the number
of equivalence queries needed is bounded by that of implicit errors of prediction made
by A. Thus, the algorithm A can also achieve the polynomial-time learning of M using
equivalence queries.

Under the same assumption, consider, in turn, a learning model in the PAC paradigm
where equivalence queries can be replaced with a polynomial number of random sam-
pling oracles EX() (Angluin, 1987). Again, a polynomial number of implicit errors
of prediction and the subset requirement of the algorithm A ensure that the number of
random examples needed is bounded by a polynomial and the conjectures actually make
no errors on negative data.

Thus, we have a corollary :

COROLLARY 17 The class of SDAs is polynomial-time learnable using equivalence
queries only. It is also PAC-learnable in polynomial time from positive examples only.

3.4. Incremental Feature of LA

We have seen that the proposed algorithm LA is a polynomial-time algorithm that learns
in the limit. Note that LA can actually learn a correct SDA M in polynomial time in
the size of M and in the maximum length of data in the framework of learning in the
limit. Although there are quite a few learnability results with polynomial-time efficiency,

LEARNING STRICTLY DETERMINISTIC AUTOMATA 177

little is known about learning algorithms which achieve space efficiency as well. This is
because it is generally hard to realize a learning strategy with restricted space, and most
work proposed so far assumes unrestricted space for storing all the samples provided, in
order to gain time efficiency. A learning algorithm is called iteratively consistent if and
only if at each stage of learning, in order to make a new consistent guess it only uses
one example and the current guess consistent with the data provided so far (Wiehagen,
1976; Jantke & Beick, 1981; Osherson, Stob, & Weinstein, 1986). Porat and Feldman
(1991) discuss the learning problem of regular languages with finite storage. A learning
algorithm with finite working storage is an algorithm that uses only finite working storage
in addition to that for storing the current guess and the current example string. They
showed that the class of DFAs is not learnable in the limit by any iteratively consistent
algorithm with finite working storage. We note that the learning algorithm LA presented
in the previous section has this nice property of iterative consistency with finite additional
working storage. (In fact, LA can be implemented so that, besides storing the current
guess and the current example, it requires at most 0(|E|) space for refining, parsing and
merging operations.)

THEOREM 18 The class of SDAs is polynomial-time learnable in the limit from positive
data by an iterative, consistent algorithm with finite working storage.

This is also in contrast to the negative result above for the whole class of DFAs.

4. Conclusions

In this paper, we have first proposed new definitions (Definitions 2 and 3) for polynomial-
time learnability in the limit from positive data, and discussed the motivational back-
ground for introducing those concepts, by showing that any language class with an infinite
descending chain property is not polynomial-time learnable in the limit from positive data
in a simple definition (Definition 1) induced from Pitt's definition. Since many of the
existing language classes have this property, this strongly suggested to "relax" the re-
quirements of Definition 1 in some manner. In fact, Definition 2 has been defined as
such a relaxation of Definition 1.

Then, after introducing a subclass of DFAs called strictly deterministic automata
(SDAs), we have shown that the class of SDAs is iteratively, consistently polynomial-
time learnable in the limit from positive data in the strict sense, that is, in the sense
of Definition 3. Note that Definition 3 requires a stronger constraint called the subset
requirement than Definition 2. As is well-known, the class of DFAs is neither learnable
in the limit from positive data nor polynomial-time learnable in the limit in Pitt's defi-
nition (Pitt, 1989). Hence, the main result in this paper is in marked contrast to the fact
above. (Note also that, besides iterative consistency and polynomial-time efficiency, the
proposed learning algorithm has additional preferable features of conservativeness and
responsiveness discussed in Angluin (1980).) As a corollary, it has been shown that the

178 T. YOKOMORI

class of SDAs is polynomial-time learnable using equivalence queries only and it is also
PAC-learnable in polynomial time.

Makinen (1990) discusses the problem of learning Szilard languages of linear grammars
compatible with a given finite sample and gives a learning algorithm for solving the
problem. It is interpreted that in the "in the limit" framework his algorithm runs in linear
time for updating conjectures, but no discussion of implicit prediction errors is given. The
class of Szilard languages of linear grammars is a proper subclass of the class of zero-
reversible languages (Angluin, 1982). Note that the class of zero-reversible languages is
not polynomial-time learnable using equivalence queries only (Angluin, 1990). On the
other hand, although the class of strictly regular languages is incomparable to the class
of zero-reversible languages, it properly contains the class of Szilard languages of linear
grammars. (In fact, a Szilard language of a linear grammar is a language accepted by
an SDA, with a single final state, having E as the set of labels.) Therefore, the main
result in the present paper strengthens Makinen's result in two ways. As easily seen
from the definition, the class of SDAs over an alphabet E strictly depends upon the size
of E. However, it is the case that the class is infinite even if S is fixed. Further, the
algorithm given in the present paper allows us to learn any SDAs with arbitrary alphabet
size in time polynomial in the size of E, the size of a target SDA and the maximum
length of all sample data. In other words, the algorithm works in polynomial time for
the class of SDAs over a growing alphabet. This feature distinguishes our algorithm
from most other existing ones. For future research, an interesting open problem is
to find possible applications of the learnability results of SDAs to domains such as
natural language acquisition (Berwick & Pilato, 1987), and syntactic pattern recognition
in general (Gonzalez & Thomason, 1978).

Acknowledgments

The author would like to express his deepest gratitude to the referees for many useful
suggestions and invaluable comments which significantly improved an early draft of the
paper. In fact, many parts of this paper including Definition 2 and Theorem 1 have been
contributed by the referees' efforts.

This work is supported in part by Grants-in-Aid for Scientific Research Nos. 03245104
and 04229105 from the Ministry of Education, Science and Culture, Japan.

References

Angluin, D. (1980). Inductive inference of formal languages from positive data. Information and Control,
45:117-135.

Angluin, D. (1982). Inference of reversible languages. Journal of the ACM, 29:741-765.
Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and Computation,

75:87-106.
Angluin, D. (1990). Negative results for equivalence queries. Machine Learning, 5:121-150.
Berwick, R.C. & Pilato, S. (1987). Learning syntax by automata induction. Machine Learning, 2:9-38.

LEARNING STRICTLY DETERMINISTIC AUTOMATA 179

Gold, E. M. (1967). Language identification in the limit. Information and Control, 10:447-474.
Gonzalez, R. C. & Thomason, M. G. (1978). Syntactic Pattern Recognition: An Introduction. Addison-Wesley,

Reading, Mass.
Hopcroft, J. E. & Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, Massachusetts.
Jantke, K.P. & Beick, H-R. (1981). Combining postulates of naturalness in inductive inference. Journal of

Information Processing and Cybernetics, 17:465-484.
Makinen, E. (1990). The grammatical inference problem for the Szilard languages of linear grammars. Infor-

mation Processing Letters, 36:203-206.
Osherson, D.N., Stob, M., & Weinstein, S. (1986). Systems That Learn: An introduction to learning theory

for cognitive and computer scientists. MIT Press, Cambridge, MA.
Porat, S. & Feldman, J.A. (1991). Learning automata from ordered examples. Machine Learning, 7:109-138,

1991.
Pitt, L. (1989). Inductive inference, DFAs, and computational complexity. In Proceedings of 2st Workshop on

Analogical and Inductive Inference, Lecture Notes in Artificial Intelligence, Springer-Verlag 397, pp. 18^4.
Tanida, N. & Yokomori, T. (1992). Polynomial-time identification of strictly regular languages in the limit.

IEICE Transactions on Information and Systems, E75-D:125-132.
Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27:1134-1142.
Wiehagen, R. (1976). Limeserkennung rekursiver funktionen durch spezielle strategien. EIK, pp.93-99.
Wood. D. (1987). Theory of Computation. Harper and Row, New York.

Received July 16, 1992
Accepted August 2, 1994

Final Manuscript August 22, 1994

