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Abstract. We study different genetic algorithm operators for one permutation problem associated with the
Human Genome Project—the assembly of DNA sequence fragments from a parent clone whose sequence is
unknown into a consensus sequence corresponding to the parent sequence. The sorted-order representation,
which does not require specialized operators, is compared with a more traditional permutation representation,
which does require specialized operators. The two representations and their associated operators are compared
on problems ranging from 2K to 34K base pairs (KB). Edge-recombination crossover used in conjunction with
several specialized operators is found to perform best in these experiments; these operators solved a 10KB
sequence, consisting of 177 fragments, with no manual intervention. Natural building blocks in the problem are
exploited at progressively higher levels through "macro-operators." This significantly improves performance.

Keywords: genetic algorithms, DNA fragment assembly, human genome project, ordering problems, edge-
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1. Introduction

The computational problems posed by the Human Genome Project are challenging both
because they are complex and because they involve large quantities of data. The Human
Genome Project plans to identify the exact sequence of base pairs, called a map, for
the entire human genome which consists of approximately 3 billion base pairs. There
are many different components to this project; our problem involves combining partial
information about the sequences of DNA fragments into a consistent map that accounts
for the known pieces.

We explore the application of a genetic algorithm to the problem of DNA fragment
assembly. We draw parallels to a more familiar permutation problem, the Traveling
Salesman Problem (Lawler, et al., 1985), both to explicate interesting features of our



12 R.J. PARSONS: S. FORREST AND C. BURKS

problem and as a source for possibly useful heuristics. Specifically, we find that the use
of specialized operators provides good performance on data sets up to about 10KB in
size. Two of these specialized operators, transposition and inversion, are macro-operators
in that they transform the individual based on groups of fragments as opposed to single
fragments. These groups of fragments, called contigs, are the natural building blocks for
the fragment assembly problem. We found adding these macro-operators, which operate
directly on the building blocks, significantly increased the performance of the genetic
algorithm. Throughout the course of a run, the genetic algorithm assembles larger and
larger building blocks (contigs), and the macro-operators thus operate at a higher and
higher level. This progression is an explicit example of the implicit behavior described
by the building-blocks hypothesis.

The accuracy of the various sequencing processes constrain laboratory approaches to
DNA sequencing (Howe & Ward, 1989; Hunkapiller et al, 1991; Hunkapiller, 1991;
Churchill, et al., 1993). Currently, strands of DNA longer than approximately 500 base
pairs cannot routinely be sequenced accurately. Consequently, large strands of DNA are
broken into smaller pieces for sequencing. In the shotgun sequencing method, to which
this work applies, DNA is first replicated many times, and then individual strands of
the double helix are broken randomly into smaller fragments. This produces a set of
fragments short enough to sequence. However, this process does not retain either the
ordering of the fragments on the parent strand of DNA or the strand of the double helix
from which a particular fragment came. This paper addresses the first of these problems,
hereafter referred to as the fragment assembly problem, relying on previously developed
methods for addressing the alignment and strand assignment problems (Staden, 1980;
Kececioglu, 1991; Huang, 1992; Churchill, 1993).

Large-scale shotgun sequencing projects require automated solutions that do more than
re-create the manual processes, because the complexity of the assembly process grows ex-
ponentially with the size of the project. There are several complicating factors to be con-
sidered in designing computational solutions. First, there is a large amount of experimen-
tal error. Frequently quoted rates are between 0.1% and 10% (Chen & Hunkapiller, 1992).
Further, repeated DNA sequences can be much longer than individual sequence frag-
ments. Finally, the reagents and the experimentalists' time are valuable resources, so
an important objective of any computational system is to monitor the progress of the
sequencing to determine if other strategies need to be applied. The target parent size
of many upcoming sequencing projects is cosmid size (about 40,000 base pairs, denoted
as 40KB). Most experimentalists use coverage (sequencing redundancy at a particular
point along the parent DNA) of at least 5 or 7 to compensate for some of the effects of
sequencing errors. Using these figures (and an assumed average fragment length of 500
base pairs) leaves an ordering problem of approximately 600 fragments. As the ordering
problem is NP-hard 1, an approximate method is required to determine a reasonable
layout.

Most fragment assembly packages use a greedy algorithm to form the candidate. Typi-
cally in a greedy algorithm, a candidate solution is presented to the researcher who must
then massage it to obtain a biologically plausible final result. Simulated annealing has
been applied to the ordering step of the fragment assembly problem (Churchill, et al,
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1993; Burks, et al, 1994), and genetic algorithms have been applied to this problem by
the authors (Parsons, et al., 1993) and to a related ordering problem, map assembly, by
others (Fickett & Cinkosky, 1993; Ceden & Vemuri, 1993).

The next section of this paper contains a detailed explanation of the flow of information
in the fragment assembly problem and the general computational approach we follow.
Section 3 details the genetic algorithm explored in this paper, with the results appearing
in Section 4. We explore the answers to some of our questions, and pose additional
questions in the final section.

2. The Fragment Assembly Problem

Fragment assembly is only one step in the overall process of building a base-pair map
for an unknown segment of DNA. The other steps in the process influence fragment
assembly in several ways: they affect the overall quality of the information used by the
assembly; they influence the quality of the final solution; and they introduce conflicting
information and errors into the process. An overview of the process is shown in Figure
1 (see also (Churchill, et al, 1993; Burks, et al., 1994) for a more detailed explanation
of the sequencing process).

The laboratory sequencing process provides a set of fragments and, for each fragment,
the base-pair sequence for that fragment. 2 Because the fragments can come from either
of the anti-parallel strands of the parent DNA, the orientation of the fragment relative
to the parent is not known. At the assembly stage, the only information available is
the sequence of bases, and thus the ordering of the fragments must rely primarily on
the similarity of fragments and how they overlap. A particularly important aspect of
the general sequencing problem is the precise determination of the relationship and
orientation of the fragments. A complicating factor in the overlap computation is the
frequent occurrence of repeated sequences, ranging in length from several bases to several
thousand bases. 3 Any DNA fragment assembly method based on sequence similarity is
bound to be misled by DNA repeats, confusing fragments which are similar because they
originate from the same location in the parent sequence with fragments that are similar
because they share a repeat pattern.

Once the fragments have been ordered, the final consensus sequence is generated from
the ordering. This process includes a detailed alignment step that must account for the
insertion and deletion errors potentially present in the data. As shown in Figure 2, the
steps from raw sequence data from a random sequencing project to a consensus sequence
are as follows (Churchill, et al., 1993; Burks, et al, 1994):

1. Compute pairwise relationships. Compare each pair of fragments and determine
their similarity, resulting in an overlap strength, alignment and relative orientation
of the two fragments. Each possible orientation is tried for the two fragments, and
the overlap, orientation, and alignment are chosen to maximize the similarity of the
fragments.

2. Totally order the fragments. The ordering algorithm computes the fitness, or figure of
merit, for a candidate ordering by examining the overlap information. In addition to
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Figure 1. Overview of DNA Mapping Process

the fragment ordering, a particular layout results in contigs (Staden, 1980). A contig
is a layout with no gaps; gaps occur when neighboring fragments do not overlap.

3. Determine initial alignment. Use the alignment, offset and orientation information
from the first step and the ordering from the second step to determine an initial
alignment of the fragments.

4. Determine the detailed alignment of the fragments, also known as multiple sequence
alignment. Starting with the initial alignment, the bases within the fragments are
examined to determine places where insertion or deletion errors likely occurred. To
account for these errors, gaps are inserted into the fragments to bring correspond-
ing bases back into alignment. See Waterman (1989) for a discussion of multiple
sequence alignment.

5. Generate the consensus sequence. Each column in the detailed alignment is examined
to determine the "consensus" base for this position, yielding the consensus sequence
for the contig.
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Figure 2. Overview of Sequence Assembly Process

The ordering step must find a total ordering of the given fragments that results in a
consensus sequence accurately reflecting the parent sequence. Each fragment must be
accounted for in the ordering, and each fragment can only appear in one place in the
ordering. With previously solved sequences, the parent sequence is known, and we can
judge the quality of an ordering by how closely the final consensus sequence corresponds
to the known parent. In practice, however, the fragment sets are being generated to find
the parent sequence. Thus, some other criteria must be used to evaluate an ordering.
Although a small number of contigs is one goal of the orderings, this metric is not usable
as an objective function. Many individuals with vastly different orderings have the same
fitness value using this metric, preventing the genetic algorithm from distinguishing them
and exploiting the building blocks. We examine two other objective functions, described
in Section 3.1, which both use the pairwise-overlap information as the basis for evaluating
the fitness of the layout.

2.1. Fragment Assembly and the Traveling Salesman Problem

The relationship between the ordering step and the general class of permutation order-
ing problems is clear. Probably the best known problem in this class is the Traveling
Salesman Problem (TSP) (Lawler, et al., 1985), but there are many others. The fragment
assembly problem is quite similar to TSP, with notable differences. First, the solution
to TSP is a circular tour of the cities; the endpoints of the tour are therefore irrelevant.
In the fragment assembly problem, however, the endpoints represent fragments on op-
posite ends of the parent sequence. Many solutions which are equivalent for TSP are
thus inequivalent in our context. Second, the cities in the TSP are not assumed to have
any relationship other than the distances, and the ordering is the final solution to the
problem. In the fragment assembly problem, the ordering, referred to as "beads on a
string", is only an intermediate step in the solution process; the layout process uses the
overlap data to position the bases within the fragments relative to each other. Because
there are frequently more than two fragments overlapping each other in the layout, sev-
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eral different orderings of those fragments produce equivalent results after the layout
phase, as shown in Figure 3. Additionally, many algorithms for TSP rely on the triangle
inequality holding for the distance relation; no such assumption can be made about the
overlap strengths. The errors in the overlap strength computation due to sequencing
errors, chimeric fragments and DNA repeat sequences tend to invalidate any simplifying
assumptions made about the relationships between fragments. Another distinguishing
feature of the fragment assembly problem is that the fragments are drawn from both
strands of the DNA, and the orientation of the fragment relative to the parent is lost
during the sequencing process.

Figure 3. Different Fragment Orders Can Produce Equivalent Consensus Sequence

Genetic algorithms for permutation problems have not been universally successful, but
there are successful examples. The primary problem faced by genetic algorithms in
this context is representing the solutions in some way that allows the genetic operators
to produce legal solutions. The simple representation for a solution is the permutation,
represented as a list of the fragments (labeled with unique numbers) in the order in which
they should appear. However, the standard genetic operators are then not closed over the
space of legal solutions. As the space of illegal solutions is quite large, the probability
of the operator forming a legal solution is relatively small.

There are three obvious approaches to this representation problem: (1) choose a rep-
resentation such that the standard operators are closed over legal solutions; (2) choose
specialized operators that guarantee legal solutions; (3) penalize illegal solutions in the
fitness function. We chose not to explore the third approach. The search space is so
sparsely populated with legal solutions that too much time would be wasted generating
and recognizing illegal solutions. In addition, the fitness functions are already costly
to compute, and it is not clear what kind of penalty function to apply or whether legal
blocks within these individuals would be useful building blocks. We studied the remain-
ing two approaches, first trying the sorted-order representation, in which all solutions
map to a legal permutation order (Syswerda, 1989; Bean, 1992). We then studied the
performance of the simple permutation representation in combination with two special-
purpose recombination operators, edge-recombination (Starkweather, et al., 1991) and
order crossover (Davis, 1985). In addition to recombination, we explore both bit and
position mutation for the sorted-order representation, and for the permutation representa-
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tion, we study position swaps, block moves (transpositions) and block inversions. These
operators and representations are described in the next section, along with the data sets
used for testing.

3. Genetic Algorithms Applied to Fragment Assembly

Genetic algorithms operate on a population of candidate solutions, called individuals
(Holland, 1975; Goldberg, 1989; Forrest, 1993). Typically, the population is initialized
with random individuals. After that, individuals are deleted from or reproduced in the
population on the basis of their relative fitness. New individuals are formed by applying
various operators to the existing population of individuals (see below). Each successive
population of individuals is called a generation. Processing within the genetic algorithm
typically follows these steps:

Selection: Each individual is evaluated to determine its fitness. Individuals are re-
produced (copied) differentially based on this fitness. Different genetic algorithms
use different methods to implement the idea of differential reproduction. In the
"generational GA," which we used, a new population is created at each generation,
completely replacing the previous population. Individuals with below average fitness
for the population have a low probability of being copied into the next generation,
while individuals with high fitness have a high probability of having multiple copies
in the next generation. 4

Crossover: Two individuals are selected from the population and substrings from cor-
responding positions within the individuals are exchanged. One or both of the new
individuals are inserted into the population at the next generation. The purpose of
this operator is to allow partial solutions to evolve on different individuals, and then
to combine them to produce, sometimes, a better solution. For all of the crossover
operators described in this report, the crossover rate specifies, on average, the fraction
of new individuals formed each generation through crossover.

Mutation: Mutation alters one individual by changing a primitive element of that indi-
vidual (e.g., flipping one bit). The mutation rate controls the probability with which
each component in an individual is changed. The resulting individual replaces the
parent of the mutation. Mutation is believed to be effective for two reasons: it
explores the search space near existing individuals (local search) and it prevents so-
lution components which have been completely eliminated from the population by
selection (fixation) from being lost for all successive generations.

The genetic algorithm begins with a random population, and the cycle of selec-
tion, crossover, and mutation is repeated for many generations. The genetic algorithm
used to produce the results reported here was implemented by modifying the Gene-
sis (Grefenstette, 1984) software package.

Although there is some controversy over how well genetic algorithms actually perform
and about why they perform as well as they do, the most common explanation is that
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the average fitness of the population is likely to increase in successive generations, as
good partial solutions combine to form even better composite solutions. The process
of creating good solutions is described in terms of the combination of building blocks,
which are portions of solutions that have high fitness. In the context of the fragment
assembly problem, a building block is a portion of the ordering representing several
fragments that form a contig. When considering different representations for genetic
algorithms, it is important to consider what the likely building blocks are and how they
might be combined to form a complete solution.

3.1. Fitness Functions

The choice of fitness function is crucial to the success of a genetic algorithm on a
particular problem. In the fragment assembly problem the choice of an efficient and
reliable measure of fitness is complicated by several factors, including errors in the
sequence information (insertions, deletions, etc.), repeated sequences, and the "beads on
a string" model. We studied two closely related fitness functions. The first is a natural
analog to the fitness function for TSP. Let I = f[0],f[1], . . . , f [ n - 1] be an ordering of
fragments, where f[i] = j denotes that fragment j appears in position i of the ordering.
The fitness of the individual under the first fitness function Fl is

where wi , j is the pairwise overlap strength of fragments i and j. This fitness function
only examines the overlap strengths of directly adjacent fragments in the ordering and
takes O(n) time to compute for each individual. The optimization process attempts to
find a layout that maximizes this function.

The second fitness function accounts for the additional information that is exploited in
the subsequent passes of the assembly processing (Churchill, et al., 1993). In addition to
examining the overlap strengths for adjacent fragments, it considers the overlap strengths
among all pairs of fragments, penalizing layouts in which fragments with strong overlap
are far apart. The specific fitness function F2

uses the absolute value of the distance of the fragments in the layout as a weight on
the overlap strength of the pair of fragments in those layout positions. The optimization
process searches for layouts that minimize this function. This function has complexity
O(n2) because all pairs of fragments must be considered.
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3.2. Representations

Genetic algorithms are appealing because they are largely domain independent—the prob-
lem specifics are isolated in the fitness function and in the mapping from the individual
to the problem-level solution. From this perspective, the first solution to the problem
of representing permutation problems—a representation guaranteeing legal solutions—is
more appealing than the second. Using this type of representation provides the isolation
of problem-specific information from which the genetic algorithm derives its general-
ity. For this reason, we chose to try the sorted-order representation (Schaffer, 1989;
Syswerda, 1989), also referred to as the random-key representation (Bean, 1992).

The sorted-order representation provides a rather complex mapping from the individual
to the permutation ordering. The two requisite properties for a legal ordering are that
all fragments be present in the ordering and that there be no duplication in the ordering.
These properties are ensured through the use of a sort (hence the name "sorted-order").
Specifically, consider a fragment set f1 , . . ,fn and an individual B = b1 ,..., bm where
each bi is a bit, and m - 2k > n. To find the permutation specified by B, first convert
the bit string into n key values, k1 ,...,kn , each of k bits, and then sort the key values.
If the key value in position j of the individual appears in position i of the sorted list,
then fragment fj is in the ith position in the permutation specified by the individual B. 5

Because a fragment (fj) is identified by a position in the individual (j), and a fragment
is placed in the permutation based on the position in the sort order (i) of its key (j). any
bit string represents a legal permutation.

To represent the fragment assembly problem more closely (as opposed to TSP, with its
circular solution), we introduced a modification to the sorted-order representation. In each
individual, add k bits to the end, which designates the starting point of the permutation
order. This value does not participate in the sort or in the mapping described above;
instead, it allows the shifting of the ordering to allow alternate starting positions. Figure 4
illustrates the mapping.

We also studied the straightforward permutation representation, together with a suite
of specialized operators. In this representation, the bit string is again m = 2k > n long.
Each k bits represents one fragment (labeled 0 to 2k - 1); the position of a fragment in
the individual designates the position that fragment occupies in the layout. Although this
representation vastly simplifies the mapping from bit strings to permutations, the operators
must be more complex to ensure that only legal individuals enter the population.

3.3. Recombination operators

We used both uniform and two-point crossover methods with the sorted-order representa-
tion. We found that uniform crossover did not perform well on our problem, so we report
only results based on the more standard two-point crossover, in which two points are
randomly selected, and the bits between those positions are exchanged (Goldberg, 1989).
Because the sorted-order representation is closed under the standard genetic operators,
no additional processing is required to find a legal permutation.
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Figure 4. Sorted-order Representation for the Fragment Assembly Problem. Consider a bit string which
produces the following integers (k = 3): 2 7 1 5 3 2. The fragment layout represented by this individual is
1 5 4 2 3 with an intermediate (before shifting) ordering of 3 1 5 4 2. Because the lowest key value in the
individual, 1, appears in the third position of the individual, the first fragment in the intermediate layout is
3. The next lowest value, 2, is in the first position of the individual, and therefore, the second fragment in
this layout is 1. The last key, which represents the starting position, is 2, so the first key in the permutation
ordering is 1 (because 1 appears in the second position of the intermediate layout). The final layout continues
from this position and then wraps to the beginning.

Two special-purpose crossover operators that have been successful in permutation prob-
lems are edge recombination (Starkweather, et al., 1991) and order crossover (Davis, 1985]
Different crossover operators emphasize the preservation of different kinds of informa-
tion from the parents. Thus, the success of different operators for different permutation
problems is likely tied to the ability of the crossover operator to preserve the high-value
information from the parents under crossover. There are at least three kinds of infor-
mation that might be important in a permutation ordering: absolute position, relative
ordering (e.g., precedence relations as in scheduling applications), and adjacency. In
the TSP, particularly due to its circular nature, the only relevant information is probably
adjacency information. For the fragment assembly problem, the issue is less clear. Ad-
jacency information in the total ordering is important. However, given the linear nature
of the layout, with the definite end points, and the overlapping nature of the fragments
in the ordering, relative position may also be important. We chose to experiment with
two crossover operators, order crossover and edge recombination. Order crossover pre-
serves relative ordering (and in some cases absolute position and ordering), while edge
recombination emphasizes adjacency information. For simplicity of explanation, these
crossover operators will be described in terms of integer, not bit values.

In order crossover, as in two-point crossover, two random points are selected. However,
instead of exchanging the information between these points, the information from the
first parent is copied into those same positions in the offspring, as shown in Figure 5.
Then, starting from the beginning of the second parent and the beginning of the offspring,
the fragments from the second parent are placed into the offspring, with any fragment
already placed in the offspring being skipped in the second parent. Thus, the fragments
from the first parent retain their position and relative ordering while the fragments from
the second parent retain their relative ordering.
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Figure 5. Order Crossover and Edge Recombination. Illustrates order crossover on the individuals 1 7 8 3
6 4 2 9 5 and 6 4 5 3 8 1 9 7 2 . For edge recombination, The offspring begins with the first fragment in
the first parent, 1. In examining 1 's adjacencies, we select 8 because it has a shared adjacency in its list and
the others do not. This shared adjacency is 3, and so it is placed next. Because it has a shared adjacency,
6 is chosen next, followed by 4. At 4, the next fragment 2 is placed in the individual because it has more
remaining adjacencies. This process continues until the end, where 5 is placed because it has not yet been
placed, yielding the individual 1 8 3 6 4 2 9 7 .

Edge recombination is a more complicated operator. A detailed explanation of the op-
erator implemented here appears in Starkweather, et al. (1991). In general, this crossover
attempts to preserve adjacencies in the parents, and in particular, those adjacencies that
are common to both parents. When neither of those options is possible, a random se-
lection made. An example of how the edge-recombination operator works is shown in
Figure 5. Whitley reported additional modifications to the edge-recombination operator,
which give even better results on TSP (Whitley, 1993), but we have not yet tested these
modifications.

3.4. Other Operators

The sorted-order representation allows the use of the simple bit-mutation operator
(Goldberg, 1989). With some (small) probability, each bit in each individual is altered.
However, in the permutation representation, point mutation is guaranteed to produce
an illegal solution. Consequently, we did not use point mutation with the permutation
representation. However, we tried a suite of other mutation-like operators.
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The simplest of these is the swap. Two positions in the ordering are selected at
random, and the fragments in those positions are swapped to create the new individ-
ual (Churchill, et al., 1993). This operator is a restricted form of a 4-opt transforma-
tion (Lin & Kernighan, 1973), using TSP terminology.

We used two other operators, each of which rely on some domain-specific information.
These two operators, inversion and transposition, move blocks of fragments, specifi-
cally contigs, in the ordering. Although random locations are selected in the individ-
ual for these operators, a location simply indicates to which contig(s) the operation
will be applied. Inversion reverses the order of the fragments in the selected con-
tig (Goldberg, 1989). This operator is useful since fragments come from both strands of
DNA, but the total ordering forces an orientation to the data. By inverting a contig, it
may be extended, since the contig may be oriented in the opposite direction from that of
the adjacent fragments in the ordering. We restrict inversion to operate only on contigs
within the layout, instead of the more general inversion operator which randomly selects
an area to invert.

Transposition moves a contig to a position between two adjacent contigs which may
allow the extension of a contig. This operator allows smaller contigs to form anywhere
along the individual; transpositions can correct the relative positions of these clusters,
yielding an improved solution. Transposition is also a restricted form of 4-opt, with the
restriction focusing on the selection of the edges to break and with what edges to replace
them.

Contigs are the natural building blocks of our problem. Transposition and inversion,
by design, do not disrupt these building blocks. Instead, they allow for the evolution of
larger contigs by treating the smaller contigs as primitive elements.

The meaning of the rates for the mutation and specialized operators are different. For
the mutation used with the sorted-order representation, the rate specifies the probability
of a bit in an individual being selected for mutation in a given generation. Thus, to find
the probability that an individual is altered, this rate must be multiplied by the length
of the individual. For the specialized operator, the rate quoted is the probability that an
individual will be affected. Thus, a rate of 0.2 implies that there is a 20% probability
for each individual that it will be selected for alteration by that operator.

3.5. Data Sets and Implementation Environment

Most of the fragment data sets for which we report results were artificially generated
from actual DNA sequences. The parent DNA sequence is replicated by the pro-
gram and then fragmented, at random locations, to derive a fragment set that is rep-
resentative of the data sets produced in sequencing laboratories. The generator, Gen-
Frag (Engle & Burks, 1993), allows fragment sets of different sizes, error content, and
coverage to be generated. This approach allowed us to study how these different fac-
tors affect the performance of the genetic algorithm. This baseline testing proved useful
in identifying particularly successful and unsuccessful configurations of representations,
operators, population sizes, etc. Having completed these control experiments, we are
beginning to tackle experimentally derived DNA fragment sets.
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Three DNA sequences served as the basis for most of the experiments: a human
brain DNA sequence, HUMATPK01 (Sverdlov, 1987), accession number M55090 which
is 2026 base pairs long; a human MHC class III region DNA with fibronectin type-
II repeats HUMMHCFIB (Matsumoto, 1991), with accession number X60189, which
is 3835 bases long; and a human apolopoprotein HUMAPOBF (Carlsson, et al., 1986),
with accession number M15421 which is 10089 bases long. We are also working with
two longer sequences. The 20KB sequence, AMCG, is the initial 40% of the bases from
LAMCG, the complete genome of bacteriophage lambda, accession numbers J02459 and
Ml7233 (Sanger, 1982). The data set designated SETO is the experimental data set made
available for the testing of sequencing algorithms (Seto, et al., 1993).

Most of our results were obtained using fragment sets from the first three parent
sequences. We experimented with coverages ranging from three to seven and mean
fragment length between 300 and 500 bases. In addition, fragment sets with experimental
errors at a rate of 10% mismatch errors and 5% insertion and deletion errors have been
used to determine how robust the algorithm is. Table 1 presents some information about
the specific fragment sets on which we tested our algorithm.

Table 1. Information on Data Sets: Names: ATPK - HUMATPK01, CFIB - HUMMHCFIB, POBF -
HUMAPOBF data set, AMCG - LAMCG and SETO - experimental data set. Bases: number of base pairs
in the known consensus sequence. Coverage: the average number of fragments covering any base of the
parent. Gaps: areas of the parent with no coverage. CFIB-5% and CFIB-10% have errors introduced into
the fragment sets at the specified rate.

Bases

Coverage
Fragments
Gaps

ATPK

2026

5
26

0

7
36

0

3
24

1

CFIB

3835

4
39
0

5
48
0

7
68
0

5%
CFIB

3835

7
68

1

10%
CFIB

3835

5
48

0

POBF

10089

5
127

1

7
177

0

AMCG

20100

7
352

0

SETO

34475

11
829

0

The overlap computation uses a technique that allows the setting of a cutoff value, such
that overlap scores below this value are considered to be zero (Churchill, et al., 1993) The
cutoff, which we have set to twenty, provides one filter for spurious overlaps introduced
by experimental error.

4. Results

As described earlier, it is difficult to identify a single best measure of performance for this
problem. In the case where the consensus sequence for the data is known, the correctness
of an ordering can be determined by performing the final steps of the assembly process
and comparing the resulting sequence with the known consensus sequence; the goal is a
complete match. It is also important to consider the time to reach a solution. Table 2
summarizes the results using the match with the parents, the number of contigs in the
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solution and the number of function evaluations and generations used by the genetic
algorithm. The remainder of this section explores the overall performance achieved
by the genetic algorithm and the experiments we performed to analyze the different
components of the genetic algorithm: the fitness function, the representation, and the
operators. The final section draws conclusions from these data and discusses future
directions for research.

Table 2. Genetic Algorithm Performance on Fragment Assembly Problem. Data set name
includes coverage in parentheses. Num Gens: Number of Generations. Num Trials:
Number of Fitness Function Evaluations (Gen*Pop > Trials because not all individuals
change in a generation). Num Contigs: Number of contigs in GA solution, Num Greedy:
Number of Contigs in the Greedy Solution. Num Sorted: previous results using sorted
order representation (* indicates that this experiment was not performed on sorted order).
Other parameter settings: Crossover Rate: 0.3, Specialized Operator Rate: 0.7, Pointswap
rate: 0.2, Inversion Rate: 0.4, Transposition Rate: 0.4, Scaling Factor: 2.0. Parent match
computed for single contig solutions and computed over entire region of parent.

Data Set
Name

ATPK(5)
ATPK(7)
CFIB(3)
CFIB(4)

CFIB(5)

CFIB(5)-10%
CFIB(7)
CFIB(7)-5%
POBF(5)
POBF(7)
AMCG(7)
SETO(ll)

Pop
Size

100
500
200
600
600
600
500
500

1000
1500
2500
2500

Num
Gens

135
64

167
193
304
668

1200
5635
19K
13K

5.6K
137

Num
Trials

4K
10K
10K
35K
55K

120K
180K
855K
5.7M
5.9M
2.3M
302K

Num
Contigs

1
1
2
1
1
1
1
2
6
1

13
89

Parent
Match

1.0
1.0

1.0
1.0
.97
1.0

1.0

Num
Greedy

3
3
3
4
3
6
3
5

10
7

15
65

Num
Sorted

*
*

4
*

5
*

7
7

23
43

*

#

The genetic algorithm performs quite well with the appropriate representation and
operator set, both in terms of speed and solution quality. Figure 6 shows how the
mean and best fitness improves for the CFIB data set. The genetic algorithm solves the
smaller two data sets, finding a single-contig solution representing a consensus sequence
that completely matches the parent sequence. This result, however, is not all that startling
as the fragment sets are relatively small. Most fragment assembly systems can, for data
sets of this size with no errors, produce results that are close enough to correct that a
small amount of manual intervention produces the correct solution. Even for the smaller
data sets, however, the correct representation is crucial to the performance of the genetic
algorithm. By using a representation and a suite of operators that exploit the conceptual
building blocks of the problem, we were able to construct a genetic algorithm with good
performance on our problem.

The results for the POBF data set, with the 10KB parent, are more interesting than
those for the smaller data sets. There are 177 fragments in the seven-fold coverage data
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Figure 6. Population mean and best fitness plots. Typical run for CFIB(7) data set.

set. With no manual intervention, the genetic algorithm produces a single-contig solution
whose consensus sequence completely matches the parent. We have yet to solve fully
the remaining two large data sets, the AMCG data set with a 20KB parent, and the Seto
data set, with the consensus sequence of 34KB. Table 2 presents the results on those data
sets to date.

The most exhaustive testing involved the CFIB data set, as seen in Table 2. Our
fragment sets included some with significant amounts of error; some of the data sets
contained a gap. The GA found the correct single-contig solution for all the data sets
without gaps and errors. In the case of the data set with 10% mismatch errors, the GA
finds a single-contig solution with a 97% match to the parent. Although there were mis-
match errors in 10% of the base pairs in the fragment set, the five-fold coverage and the
post-processing of the multiple sequence alignment and consensus generation algorithms
correctly reproduced 97% of the bases. For the CFIB data set with the gap but with no
errors, the solution found, while consisting of two contigs, matched on all the base pairs
covered in the solution.

4.1. Comparison to a Greedy Approach

Many of the standard assembly packages use some form of greedy algorithm to find
the appropriate ordering (Staden, 1980; Huang, 1992). To evaluate the performance of
the genetic algorithm, we compare our results to those found by a greedy algorithm.
The greedy algorithm we use, which is similar to that used in Huang (1992), examines
overlap strengths and picks the strongest overlap that connects some as yet unplaced
fragment to the contig being constructed. Table 2 includes the solutions found by our
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greedy algorithm. The greedy algorithm never uncovers the best solution, except for the
small CFIB data set with the gap, where it does find the optimal solution.

For the POBF data set, we looked at the solution found by the greedy algorithm. The
fitness values for this data set are shown in Table 3. The results from the F2 function,
which penalizes solutions that ignore significant overlap, is particularly informative. The
large difference between the F2 scores for the greedy solution and the genetic algorithm
solution provides an indication of how much manual editing would be required to convert
the greedy solution into a workable solution. The work is even greater than the difference
between 1 and 7 contigs initially indicates.

Table 3. Comparison of Greedy Algorithm and
Genetic Algorithm on POBF Seven-Fold Cover-
age Data Set.

Greedy
GA

FI Score

54,049
55,683

F2 Score

6,940,730
1,705,272

Contigs

7
1

4.2. Fitness Functions

A critical part of the design of any genetic algorithm is the selection of the appropriate
fitness function. For fragment assembly, this selection is complicated by the processing
required after the fragment-ordering step. In previous work (Parsons, et al., 1993), we
compare in detail the two fitness functions described in Section 3.1. These results are
reproduced in Table 4. The experiments with the sorted-order representation showed
the quadratic fitness function, F2, to be marginally superior in performance to the linear
function, Fl. We ran a small set of experiments on these two functions using the
permutation representation and the edge-recombination operator. In this case the linear
function performs better. The results appear in Table 4 for the ATPK data set. Although it
can be argued that this objective function is not ideal for the fragment assembly problem,
the computational results show that the function is adequate, when compared with F2
and based on the results we have achieved so far. Nevertheless, we consider the design
of a more appropriate fitness function to be an important area for continued research.

4.3. Comparison of the Representations

The results of our experiments show that, for our application, the edge-recombination
operator in conjunction with the permutation representation and the full suite of other
operators is quite successful. The final column in Table 2, reproduced from Parsons, et
al. (1993), gives the results for the sorted-order representation. Summarizing our prior
results, the sorted-order representation is too disruptive of the building blocks of the
fragment assembly problem to be useful in this context. The permutation representation
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Table 4. GA Test Results for Two Fitness Functions. Best: score for the best individual, followed
by the score for this individual under the other function. Contigs: the number of contigs in the
layout specified by the best individual. For data set ATPK with coverage 7. Parameters: 10 runs,
different random seeds, Crossover rate of 0.85, 0.7 point swap, 0.03 transposition, 0.27 inversion.

Parent

CFIB(5)
CFIB(3)
CFIB(6)
CFIB(7)
CFIB(5)-10%
POBF(5)
POBF(3)
POBF(6)
POBF(7)

ATPK(7)

Fl (O(N), Maximize) Function

Best Fl

13,900
7,534

15,809
19,513
3,873

31,372
17,989
27,029
33,823

11,284

F2 Score

570,627
488,198

1,936,597
2,679,743

162,581
4,773,694

551,698
19,224,270
22,285,703

286,118

Contigs

5
4
11
7
7

23
13
48
43

1

F2 (O(N2), Minimize) Function

Best F2

422,049
73,755

852,087
1,243,338

100,179
1,331,745

179,950
5,776,555
7,128,031

355,478

Fl Score

13,304
7539

13,274
20,163

3,333
24,040
18,092
8,305

13,582

9,671

Contigs

4
3
8
3
8

23
7
36
28

2

with the edge-recombination operators and the other specialized operators are able to
exploit the building blocks in a powerful way.

4.4. Comparison of Operators Using the Permutation Representation

This section describes several experiments we performed to analyze the effectiveness of
the various operators and to examine the way in which they interact with each other.
First, we compared the two crossover operators: order crossover and edge recombination,
described in Section 3.3. Table 5 summarizes the results obtained using order crossover.
Comparing the results from Table 5 with those in Table 2 clearly demonstrates that,
when we attempted to tune the genetic algorithm parameters for order crossover, edge
recombination is superior to order crossover.

Next, we ran several experiments applying the operators at various rates. Some of
the particular results are worth noting. The genetic algorithm was relatively successful
in solving the smaller data sets with traditional parameter settings: (crossover rate of
0.7-0.85 and rates for the specialized operators of 0.05-0.1). However, significantly
better performance occurs at much lower crossover rates and much higher rates for the
specialized operators. These rates increased the efficiency of the genetic algorithm on
the small data set and allowed the genetic algorithm to solve the larger data set. Most
of the runs reported here used a crossover rate of 0.2-0.3 and a special operator rate of
0.7-0.85.

Eliminating any one of the operators (either crossover or one of the specialized op-
erators) tended to give poorer results. There is a synergistic effect among the various
operators in finding appropriate solutions. The results of these experiments are summa-
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Table 5. Genetic Algorithm Performance Using the Order Crossover Operator. Trials:
Number of Fl Fitness Function Evaluations. Num Contigs: Number of Contigs found
in the Best Solution Over 5 Runs.

Population
Size

600
600
600
600
1000
1000
300
300

Num
Trials

100K
200K
100K
100K
200K
400K
400K
400K

Xover
Rate

0.3
0.3
0.6
0.8
0.8
0.8
0.8
0.5

Swap
Rate

0.14
0.14
0.14
0.06
0.02
0.02
0.02
0.14

Inversion
Rate

0.28
0.28
0.28
0.12
0.04
0.04
0.04
0.28

Transposition
Rate

0.28
0.28
0.28
0.12
0.04
0.04
0.04
0.28

Num
Contigs

6
6
9
12
15
13
7
8

rized in Table 6. We tracked the change in the fitness values for each application of each

Table 6. GA performace for CFIB data set
with five-fold coverage, population of 300 and
250,000 trials. * This run completely converged
at 50,000 iterations.

Xover

0.1
0.2
0.3
0.4
0.5
0.0
0.0

0.85
0.0
0.0
0.0

Swap

0.14
0.14
0.14
0.14
0.14
0.3
0.3
0.0
0.0
0.1
0.1

Trans

0.28
0.28
0.28
0.28
0.28
0.28
0.56
0.0

0.45
0.75
0.0

Inv

0.28
0.28
0.28
0.28
0.28
0.28
0.14
0.0

0.45
0.0

0.75

Contigs

1
2
1
2
3
4
1
4
6
5

9*

operator over the course of several runs. Figure 7 shows the efficacy of the different op-
erators over the life of twenty different runs. A low-pass filter was applied to smooth out
the variations in the data. The graph shows that the utility of pointwise swap decreases
as the run progresses, and inversion and transposition remain useful throughout.

We computed the genealogy of the best individuals in the population to determine
which operators contribute to the creation of good individuals and if the mix changes
as the population changes. Specifically, every 100 generations, we examined the history
of the five best individuals and recorded how often each operator occurred in its history
during the last 100 generations. Crossover is consistently contributing to the creation of
the best individuals, over the course of the run.
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Figure 7. Average change in fitness by operator, smoothed using a low pass filter. Only operations which
improved fitness considered.

5. Discussion and Conclusions

One of the interesting questions raised by this work relates to the way in which the
specialized operators exploit the building blocks in our problem and the way the full
operator suite interacts to improve the genetic algorithm's performance. Performance
suffers when any operator is removed from the suite, although a high enough rate of
transposition reduces the impact of the loss of the crossover operator. However, if
one examines the mechanics of the crossover operator between two individuals that are
similar, this result is not that surprising as transposition mimics this kind of crossover
operation.

The genealogy for the best individuals, shown in Figure 8, highlights the importance
of the crossover operator in the creation of good solutions, even at the low rate at which
it is applied. As described earlier, this low rate of crossover was the best we found
while tuning the genetic algorithm parameters. One should not conclude, however, that
this low rate indicates that crossover is unimportant to the solution power; the genealogy
information tells a very different story. Although the average fitness improvement of
the operator declines during the run, it remains an active participant in the creation of
improved individuals.

The behavior of crossover, transposition and inversion change during the run, while
that of the swap operator remains the same. Transposition and inversion affect contigs.
Early in the run, contigs are likely to be quite small and frequently contain only one
fragment. Thus, in these early generations, the specialized operators act similarly. The
decrease of effectiveness of pointwise swap in later generations is consistent with the
building-block hypothesis. Late in the run, the changes required to improve an individual
tend to be on a larger scale than can be obtained by a single swap, i.e. improvements
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Figure 8. Operator frequency in 100 generation intervals for five best individuals in population for the CFIB
seven-fold data set. The operators are displayed in the order in which they appear in the legend.

tend to require the movement of contigs, the conceptual building blocks in this problem,
rather than movement of individual fragments.

For many genetic algorithms, a significant problem is premature convergence. Our
operator suite tends to prevent this convergence. After the 668 generations of the CFIB
seven-fold coverage run, the population was not close to being converged in the traditional
sense. Although almost all of the positions in this data set had 50% or more of the
individuals with the same fragment in that position, none of those positions had more
than 60% of the individuals with the same fragment value. Thus, the GA is still searching
for improved solutions. Two factors contribute significantly to this effect. First, in the
permutation representation, the alphabet at each position is much larger than the binary
alphabet traditionally used in genetic algorithms. Second, and more importantly, the
operators used in this genetic algorithm tend to be quite disruptive in terms of the values
in a particular position towards the end of the run. Consider an inversion operation,
which inverts a contig. An entire block of positions within the individual is changed by
this operation, and the operator, at worst, creates an individual with equal fitness to itself.
Towards the end of the run when convergence is an issue, the contigs are quite large,
meaning many fragment positions are altered. The effects of the operators, coupled with
the high rates at which they are applied, counterbalances the strong convergence seen in
most genetic algorithm applications.

Some features of the fragment assembly process aid the performance of the genetic
algorithm. The results shown in Table 2 for the POBF data set are from runs with the
same number of iterations, which represents one-third fewer generations for the larger
data set when the size of the population is taken into account. One would expect that
increasing the problem by size 35% from the perspective of the optimizer — it must
now order 177 fragments instead of 127 — would make the problem more difficult.
However, for the 177 fragment problem, the genetic algorithm in that time finds a one-
contig solution while the solution for the 127 fragment problem appears stuck at a
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six-contig solution. With the increase in coverage from five-fold to seven-fold, there
is a corresponding increase in the number of essentially equivalent solutions, and the
precise ordering becomes less critical. This characteristic of the search space for the
higher-coverage problem is another indication that a genetic algorithm is an appropriate
approach, because genetic algorithms tend to find near-optimal solutions relatively easily,
but have difficulty refining those solutions.

A high degree of redundancy in the search space is also present in the sorted-order
representation, as many different combinations of numbers would map to the same per-
mutation ordering. However, the redundancy in the search space is not sufficient to
overcome the disruption of the solution building blocks caused by the operators (see
Parsons, et al. (1993) for further details).

The work so far demonstrates the feasibility of using genetic algorithms in sequencing
problems when the parent sequence is on the order of 10KB and when coverage is
sufficient (seven-fold). Since most sequencing labs use coverages at this level or higher,
the coverage range is not a restriction. We are still working with parents in the range
of 20KB - 35KB. In this range, however, problems in the other phases of the analysis,
on which the ordering depends, become more pronounced, in addition to the dramatic
increase in the size of the search space. The most obvious problem is that of DNA
repeats. Longer parent sequences tend to have more repeat sequences. The regions of
these repeats will have high overlap, since the repeat sequences are generally quite similar
(> 90% homology is not uncommon) and can be lengthly. Thus, fragments from different
sections of the DNA that have repeats will show overlaps that are, from examination of
the sequence and overlap information, indistinguishable from overlaps that result from
fragments being drawn from the same section of DNA using only overlap information.
Additional information must be provided to any program attempting to sequence DNA
with these repeated segments to allow repeat-induced overlaps to be distinguished from
true overlaps. Some auxiliary data, such as mapping information, is available, but the
objective function will have to be redesigned to take this new information into account.

The success of the specialized operators and representations which exploit the concep-
tual building blocks may influence the solution of permutation problems using techniques
other than genetic algorithms. As an example, Burks et al. (1993) have successfully
incorporated the inversion and transposition operators into a simulated annealer with im-
pressive performance improvements. More generally, there are many other interesting
questions raised by these experiments, particularly relating to the role of the solution
space redundancy and to the synergistic effects among the various operators.
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Notes

1. NP-hardness follows from a straightforward reduction from Hamiltonian Path.

2. DNA is a double helix comprised of two complementary strands of polynucleotides. Each nucleotide
consists of a purine or pyrimidine base attached to a sugar-phosphate moiety. The sugar-phosphate is
constant throughout the entire strand, but the bases vary. There are four bases found in DNA: adenine (A),
guanine (G), cytosine (C), and thymine (T). From a computational viewpoint, each strand of DNA can be
viewed as a character string over an alphabet of four letters. The two strands are complementary in the
sense that at corresponding positions A's are always paired with T's and C's with G's, although any of the
letters can appear in either strand. These pairs of complementary bases are referred to as "base pairs."

3. There are different families of repeat sequences, each with different characteristic lengths and degree of
conservation among the family members. Some repeat sequences arise due to duplicated genes, as an
example.

4. We used an elitist policy and sigma scaling with a cutoff value of 2.

5. Ties in the sort are broken arbitrarily. We use a left-to-right ordering.
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