
Machine Learning, 10, 7-55 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Synthesis of UNIX Programs Using
Derivational Analogy

SANJAY BHANSALI BHANSALI@SUMEX-AIM.STANFORD.EDU
Knowledge Systems Laboratory, Computer Science Department, Stanford University, 701 Welch Road, Palo
Alto, CA 94304

MEHDI T. HARANDI HARANDI@CS.UIUC.EDU
Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Springfield Avenue,
Urbana, IL 61801

Editor: Jack Mostow

Abstract. The feasibility of derivational analogy as a mechanism for improving problem-solving behavior has
been shown for a variety of problem domains by several researchers. However, most of the implemented systems
have been empirically evaluated in the restricted context of an already supplied base analog or on a few isolated
examples. In this paper we describe a derivational analogy based system, APU, that synthesizes UNIX shell scripts
from a high-level problem specification. APU uses top-down decomposition of problems, employing a hierarchi-
cal planner and a layered knowledge base of rules, and is able to speed up the derivation of programs by using
derivational analogy. We assume that the problem specification is encoded in the vocabulary used by the rules.
We describe APU's retrieval heuristics that exploit this assumption to automatically retrieve a good analog for
a target problem from a case library, as well as its replay algorithm that enables it to effectively reuse the solution
of an analogous problem to derive a solution for a new problem. We present experimental results to assess APU's
performance, taking into account the cost of retrieving analogs from a sizable case library. We discuss the signif-
icance of the results and some of the issues in using derivational analogy to synthesize programs.

Keywords. Derivational analogy, program synthesis, learning, UNIX programming

1. Introduction

Several systems based on the reuse of a design process have been developed in recent years,
for domains that include program synthesis (Baxter, 1990; Goldberg, 1990; Mostow & Fisher,
1989; Steier, 1987; Wile, 1983), circuit design (Huhns & Acosta, 1987; Mostow et al., 1989);
Steinberg & Mitchell, 1985), mathematical reasoning (Carbonell & Veloso, 1988), physics
problems (Hickman & Lovett, 1991), human interface design (Blumenthal, 1990), and blocks-
world planning (Kambhampati, 1989; Veloso and Carbonell, 1991). Though these systems
have demonstrated the effectiveness of a reuse-based paradigm for improving efficiency
in search-intensive tasks, most of them have been tested in the restricted context of an already
supplied base analog, or on a few isolated examples, or for "toy" problem-domains. Some
of the open issues in using the derivational analogy approach are: Would the approach
scale up for complex, real-world problems? How does the cost of retrieving analogs from
a sizable episodic memory affect the system's overall performance? How costly is the effect
of an inappropriate analog? What, if any, characteristics of the domain, its representation,
or the underlying problem-solver determine the effectiveness of the approach?

8 S. BHANSALI AND M.T. HARANDI

In this paper, we address the two issues related to the effect of retrieval—effect on overall
performance and cost of inappropriate analogs—in the context of a prototype system, APU
(Automated Programmer for Unix), that uses derivational analogy to synthesize a program
from its specification (Bhansali & Harandi, 1990a; Bhansali & Harandi, 1990b; Harandi
& Bhansali, 1989; Bhansali, 1991). Unlike most other implemented systems, APU has the
capability to automatically retrieve an appropriate candidate analog from a case library
given a new problem specification. Moreover, the search for an appropriate candidate analog
can be done at an arbitrary point in the program synthesis process, making it possible for
the system to smoothly interleave replay and problem-solving in a manner that is transparent
to the user. We describe experimental methodologies to determine whether derivational
analogy is a viable mechanism for improving the overall problem-solving performance when
the cost of retrieval and the cost of recovering from misapplied analogies are factored in.
Following the style of Minton (Minton, 1988), we assess APU's performance on a popula-
tion of real-world problems generated randomly by fixed procedures. The results of the
experiment point to certain criteria that may be used to predict the cost-effectiveness of
using derivational analogy.

We restrict ourselves to the specialized domain of synthesizing UNIX shell programs.
Even though UNIX programming is similar to conventional programming in some respects,
there are several features that are unique to UNIX programming, e.g., no support for data
structures, a rich set of highly reusable commands and library routines as well as an inter-
face that permits a compositional style of programming. On the other hand, the shell has
all the commonly used control structures of programming languages like conditionals, loops,
and sequences, and it has facilities for input-output, subroutines, parameter-passing, as
well as recursive calls. This makes the domain sufficiently general so that the approach
described here should be extensible to other programming domains.

The rest of the paper is organized as follows: Section 2 gives an overview of the entire
system. Section 3 describes how programs are synthesized without using analogy by going
through the derivation of an example in detail. Section 4 describes the derivational analogy
subsystem using an example of a program derived using analogy. Section 5 presents empiri-
cal results to demonstrate the feasibility of the approach. Section 6 discusses related work
and some of the properties of our representation scheme that determine the effectiveness
of the approach. Finally, Section 7 summarizes the main results of this work.

2. Overview of APU

Figure 1 illustrates the two main components of APU—the knowledge base and the program
synthesizer. The knowledge base contains a description of the set of primitive objects, func-
tions, and predicates used in problem specification, rules for decomposing problems, and
a library of subroutines, cliches (code templates), and derivations of previously solved prob-
lems. We assume that problem specifications and rules are encoded using the same vocabu-
lary. Although this assumption seems restrictive, some recent work (Miriyala and Harandi,
1991) suggests that schemas and case-based reasoning techniques can be applied to help
users formulate problem specifications in the terminology used to encode a knowledge base.
The information in the knowledge base is used by the program synthesizer to transform

DERIVATIONAL ANALOGY 9

Figure 1. The building blocks of APU.

a user-specified problem to the final code. The program synthesizer consists of two compo-
nents—a planner and an analogical reasoner. The planner embodies the control knowledge
for choosing a sequence of rules to derive a program from a problem specification. The
analogical reasoner works in an integrated manner with the planner; it looks for a problem
that is analogous to the current problem being solved, and uses its derivation to derive
a solution for the new problem.

2.1. Knowledge base

The knowledge base consists of three major components: a concept dictionary, a library
of components, and a rule base.

2.1.1. Concept dictionary

The concept dictionary contains a description of all the objects, predicates, and functions
known to the system and provides the ontology for specifying problems and formulating
rules. The concepts are represented using a frame-based notation. The representation of
objects includes slots for various attributes and the subclass relation between objects. The

10 S. BHANSALI AND M.T. HARANDI

representation for functions and predicates includes information about the input and output
arguments together with default values for them. Figure 2 shows examples of objects, func-
tions, and predicates in APU's concept dictionary. The class relation between concepts
defines a hierarchical relationship between objects, functions, and predicates. Figure 3 shows
parts of these hierarchies.

The function and predicate description provides their signature (number and type of argu-
ments), but does not fully define their semantics. The semantics of the functions and predi-
cates is operationally defined by the rules used in transforming them. These rules (discussed
in the following section) are formulated in terms of the most abstract concepts in the type
hierarchies, and are used to transform expressions that contain instances of the abstract
concept. These polymorphic rules and the abstraction hierarchies in the concept dictionary
form the basis of APU's analogical reasoning discussed in section 4.

Figure 2. Examples of objects, functions, and predicates in APU's concept dictionary.

DERIVATIONAL ANALOGY 11

Figure 3. A fragment of the class hierarchy for objects, functions, and predicates in APU.

2.1.2. Rule base

The rule base constitutes the heart of the knowledge base and forms the basis for APU's
program-generation capability. The rule base consists of three different levels of rules, each
representing a different level of generality. At the top-most level the system has rules deal-
ing with high level strategies of problem-solving, which are largely domain independent.
Examples of such strategies are the divide-and-conquer strategy and the greedy strategy
(Bhansali, 1991).

At the next level, we have increasingly specialized rules for classes of problem solving.
The scope of such rules range from general rules that apply to several domains to rules

12 S. BHANSALI AND M.T. HARANDI

that are specific to a particular domain—in our system, the operating system domain. A
simple example of such a rule is:

Rule: To get the nth-maximum element from a list of elements, sort the list in decreasing
order, and select the nth element from the head of the list.

The third category of rules are the UNIX rules, which are specific to the UNIX operating
system. These rules describe the function of UNIX commands and subroutines. An exam-
ple of such a rule is:

Rule: To list all sub-objects of a directory use command Is.

The level of a rule provides a rough estimate of its efficacy in finding a solution for a
problem as well as of the quality of the resultant program. Generally speaking, a UNIX
rule is more effective than a problem-solving rule which in turn is more effective than
a strategy rule. Intuitively, this is a reflection of the power versus generality trade-off. How-
ever, this is just a heuristic and does not always yield the most efficient program, e.g.,
there are cases when a combination of two or more commands, obtained by first applying
problem-solving rules and then UNIX rules, is more efficient than a single command pro-
duced by a single UNIX rule. But, for a majority of the cases, our experience has shown
this to be a reasonably good heuristic. This fact becomes important while deriving a pro-
gram by derivational analogy when we address the issue of appropriateness of replaying
a plan step.

Rule representation: Terminology and notation. Formally a rule in our system is a
5-tuple < G, F, B, T, L), where G is the goal that needs to be solved, F is a filter consisting
of a set of conditions that must be satisfied for the rule to be applicable, B is the body of
the rule, T is the type of various variables used in the rule, and L is the level of the rule.
The level of the rule is used to control rule application, which is discussed in section 2.2.

The body of the rule is a program fragment containing a set of three kinds of statements
(Dershowitz, 1985):

• assert a(x)
• achieve 3(y)
• P (z)

where x(x) and 3(y) denote formulae over parameter lists x and y, respectively. The assert
statement specifies conditions that are true at that point in the program fragment, the achieve
statement specifies a subgoal that must be solved, and P is a piece of 'primitive' code in
the target language. The primitive code consists of the common programming language
constructs, including if-then-else, while-do, for-each, assignment (:=), sequencing (;), and
a parallel construct (||), as well as subroutines and cliches in an available library.

The context at a point in the program is the set of conditions that are true at that point.
This is computed by walking down the derivation structure of a program, and collecting
the set of preconditions and the intermediate assertions. We make the simplifying assump-
tion that an assertion remains true, unless explicitly negated by an assert statement.

DERIVATIONAL ANALOGY 13

For readability, we will represent a transformational rule by specifying only the goal,
filter, body, and type, in the form:

F: G

B
where

T

Definition. A predicate (function) pg in a goal expression matches a predicate (function)
pr in the goal of a rule if pg = pr or pg is a subclass of pr in the abstraction hierarchy
for predicates (functions).

We distinguish between two types of variables in the rule: schematic variables and ordi-
nary variables. Each variable, schematic or ordinary, is associated with a type which is
an object in the object hierarchy. Intuitively, a schematic variable of type T is supposed
to represent all ordinary variables of type T' where T' is a subclass of T in the object
hierarchy.

Definition. A goal Gr in a rule matches a goal expression Gg if there exists a substitution
a such that Gg = Gra and either (1) the variable types in Gg are subclasses of the corre-
sponding schematic variable types in Gr, or (2) the types of the corresponding variables
are the same (for ordinary rule variables).

For example, suppose the rule goal has a subexpression (size ?l) where the type of ?/
is line-object. If ?l is a schematic variable, then (size ?l) matches a goal subexpression
(size ?w) where ?w is a variable of type word, but not (size ?f) where ?f is a variable of type
file, since word is a subtype of line-object, but file is not (see figure 3). If ?l is an ordinary
variable, then (size ?l) does not match either (size ?w) or (size ?f). For the rules given in
this paper, all the variables in the rule are schematic variables unless stated otherwise.

A rule can be applied to a subgoal if (1) the subgoal matches the goal in the rule, and
(2) the context at the subgoal implies the filter of the rule. Thus, in general, determining
the applicability of a rule is a theorem-proving task. Since we do not have an implemented
theorem-prover in our system, we apply a rule only when the filter condition is either directly
specified as facts in the context, or can be computed using an associated procedure.

A rule application is assumed to preserve correctness in that, if the new subgoals are
achieved, the original goal will be achieved. Thus, the final program is guaranteed to be
correct with respect to the initial goal specification (modulo the correctness of the rules).

The representation and application of rules will be illustrated through an example deriva-
tion in section 3.

2.7.3. Library

The library contains three kinds of entities—subroutines, cliches, and derivation histories.
Cliches are partial programs that represent frequently used program structures (Richter

14 S. BHANSALI AND M.T. HARANDI

et al., 1989; Waters, 1985). A detailed description of the subroutines and cliches in APU
is beyond the scope of this paper and may be found elsewhere (Bhansali, 1991). For the
purposes of this paper, the most important component of the library is the derivation history
library. The derivation history library consists of a list of problems that have been solved
by the system, together with their derivations. The structure of a derivation and its role
in replay is discussed in sections 3 and 4.

2.2. Program synthesizer

The first component of the program synthesizer is a planner based on the concept of hierar-
chical planning (Sacerdoti, 1974; Sacerdoti, 1977; Stefik, 1981), whereby first a partial plan
consisting of the high-level goals is constructed, which is then refined into more detailed
subplans until a complete plan comprised of a set of primitive operators is obtained.

Thus, the planner works at various levels of abstraction. It uses backward chaining to
retrieve rules whose antecedents match the current goal. It associates with each goal a criti-
cality value (discussed shortly), which is a measure of how critical the solution of the goal
is in solving the overall problem. It first tries to solve all goals with the maximum critical-
ity, which forms the highest abstraction space. Only after all subgoals in the highest abstrac-
tion space are decomposed to less critical goals does the planner attempt to solve other
subgoals. If a particular subgoal cannot be solved or decomposed to simpler subgoals, the
planner asks whether the user can solve the subgoal manually. Depending on the user's
response the planner either backtracks or generates a partial program.

This strategy is intended to prevent the planner from wasting time on unimportant details
and enable it to report failure early if it is unable to produce a good partial solution. More-
over, the plan generation technique ensures that if more knowledge is added to the system
after a partial program is developed and its derivation recorded, then it will be able to
extend the partial solution without having to start from scratch.

To determine criticality of subgoals, APU associates numerical values with subgoals,
as done by ABSTRIPS (Sacerdoti, 1974), but the values are determined dynamically and
not associated a priori with predicates. Two heuristics are used to determine criticality
of subgoals. The first heuristic uses the types of rules that are applicable to the subgoal:
a subgoal to which a specific rule is applicable is less critical than one to which only more
general rules are applicable. This is based on the rationale that more specific rules are
usually applicable for a smaller range of problems but use more knowledge about a problem-
solving situation, and therefore have a better chance of finding a successful plan. On the
other hand, a more general rule uses less information about the domain, and therefore
has a higher chance of failing to find a successful plan. Therefore, it is better to focus
first on subgoals for which specific rules are unavailable.

The second heuristic considers the number of rules applicable to a subgoal: the more
rules are applicable, the less critical is the subgoal. The following formula is used to com-
pute the criticality of the subgoals:

Criticality = rule-level + 1/n

DERIVATIONAL ANALOGY 15

where rule-level is 1 if a UNIX rule (which is the most specific rule) is applicable, 2 if
a problem-solving rule is applicable, and 3 if a strategy rule (which is the most general
rule) is applicable. n is the number of rules applicable. If more than one rule is applicable,
the most specific rule is used to determine the rule-level. Notice that this strategy associates
the highest criticality with subgoals that cannot be solved by any rule (1/n = infinity),
which is reasonable since we want to ensure that if a user cannot solve the subgoals that
APU cannot solve, then the planner should realize this as soon as possible and try other plans.

The analogical reasoner uses derivational analogy to speed up the derivation of programs.
It uses a set of heuristics to retrieve a previously solved problem that seems analogous
to the current problem. It then tries to replay the derivation of that program in the context
of the new problem to synthesize a program faster. Before giving a detailed description of
the analogical reasoner we illustrate the derivation of a program in APU without using
analogy. We will only outline the main steps in the derivation. The example we present
will be used later to illustrate the synthesis of an analogous program using derivational
analogy. We pretend in the following derivation that APU always finds the correct rule
to decompose a problem, and hence does not need to backtrack. Thus, the derivation really
represents an idealized history of the program generation process.

3. Example: Most frequent word in a file

The example is to determine the most frequent word in a file. In APU's specification
language, this is expressed as follows:

NAME: maxword

INPUT: (?f : f i l e)

OUTPUT: (?w :word)

PRECONDITION: true

POSTCONDITION: (most- frequent ?w (COLLECTION (?x :word) : ST (occurs ?x ? f)))

The function most-frequent is a primitive predicate in APU's concept dictionary, which
takes two required arguments—an object and a collection. The predicate is true if the ob-
ject is the most frequently occurring one in the collection.

Figure 4 illustrates APU's plan synthesis algorithm. The APU planner always begins
by searching the UNIX specific rules to see if there is a direct UNIX command to solve
the problem. This enables APU to find more efficient plans in favor of less efficient ones,
based on our assumption that programs that use a single library routine for a task are more
efficient than (or as efficient as) the ones that use a combination of two or more routines
for the same task. If a problem cannot be solved by a direct UNIX command, APU tries
to solve the problem by using analogy from a previously solved problem. If no analogs
are found, APU looks for rules in the rule base to see if the problem can be decomposed
into simpler problems. If it finds such a decomposition, the algorithm is used recursively
on each of the subproblems; otherwise the planner reports a FAILURE. For this deriva-
tion, we assume that the plan library used by the analogical reasoner is empty, so that
the call to the analog retriever always returns nil.

16 S. BHANSALI AND M.T. HARANDI

Figure 4. The plan-synthesis algorithm of APU.

For the above problem, APU fails to find an applicable UNIX rule, but finds a problem-
solving rule to reduce the problem to three subproblems:

Rule: Rl
True: (nth-frequent le (COLLECTION^* : object) :ST 1 constraints)

:Nth Inth :KEY ?jfc)

achieve (= ?/ (SET (?*' :object In :integer) :ST (A [7constmints]w
(= In (count-of ?*' (COLLECTION^* lobject)

:ST ^constraints))))));
achieve (= Ituple (Nth-maximum ?/ :Nth Inth :KEY last :ORDER >));
achieve (= 1e (select-field Ik Ituple))

where
(7e :object; ?/ :List(object integer); 7tuple :Tuple(object integer); ?nth, ?k :integer)

In the above rule, Constraints denotes a set of constraints, and [1constraints]->xfr> denotes
the expression ^constraints in which all free occurrences of Ix have been replaced by lx'.
Nth-frequent is an abstract predicate in APU's concept dictionary that takes two mandatory
arguments—an object and a collection of objects—and two optional, keyword arguments,
denoted by :Nth and :Key, respectively. :Nth specifies the value of N, and :Key specifies
which component of the tuple is to be considered (note that in general a collection is a
multi-set of tuples). The predicate is true if the object is the :Nth most frequent one in

DERIVATIONAL ANALOGY 17

the collection with respect to the :Key component. The default values for both these argu-
ments is 1. 'Last' is a special value which is interpreted to be the last component of a tuple—in
this case, 2. Thus, an English paraphrase of the rule says: To find the Nth most frequent
object in a collection of objects satisfying certain constraints, first find the set of objects
and the number of times each one occurs in the collection (the first achieve statement),
then find the tuple having the Nth maximum value of the second component of the tuple
(the second achieve statement), and then select the first component of that tuple (the third
achieve statement).

The application of this rule results in the following partial program:

achieve (= ?/ (SET (?w' :word ?n : integer) :ST (A (occurs ?w' ?f)
(= ?n (count-of ?w' (COLLECTION?x :word) :ST (occurs ?x ?f))));

achieve (= ?tuple (Nth-maximum ?/ :Nth 1 :KEY 2 :ORDER >));
achieve (= ?e (select-field 1 ?tuple))

This program is represented in APU's working memory as the derivation tree sketched
in figure 5. (Section 4.2. describes how the information in the derivation tree is used dur-
ing replay.)

The planner now computes the criticality of the three subgoals. It discovers that the first
subgoal can be solved by three strategy rules, the second goal by a single problem-solving
rule, and the third subgoal by a UNIX rule. Therefore, the criticality assigned to the three
subgoals is 3.33 (= 3 + 1/3), 3 (= 2 + 1), and 2 (= 1 + 1), respectively. Consequently,
the planner tries to decompose the first subgoal.

The three strategy rules applicable to this subgoal can be paraphrased in English as follows:

Figure 5. Partial program after application of one rule.

18 S. BHANSALI AND M.T. HARANDI

Divide-and-Conquer2 Rule. To compute a list of objects A1, A2 satisfying the relations
R1(A1), R2(A2), and R12(A1, A2), compute the list of A1 satisfying R1(A1), compute the list
of A2 such that R2(A2) is satisfied, and take a join of the two lists such that R12(A1, A2)
is satisfied.

Divide-and-Conquer3 Rule. To compute a list of objects satisfying constraints ?const1 and
?const2, compute the list of objects satisfying ?const1, compute the list of objects satisfying
?const2, and take the intersection of the two lists.

Generate-and-Extend Rule. To compute a list of objects A1, A2, generate the list of A1

satisfying R1(A1), and iteratively compute tuples o f (A 1 , A2) such that the relation R12(A1,
A2) is satisfied, until no more tuples can be found.

The second rule is more general than the first one, since it applies to a list of any objects,
whereas the first one only applies to a list of tuples with two components. The third rule
is essentially a modification of the first one, where the 'join' operation is done iteratively
on each component of the tuple. The first two rules lead to unsuccessful plans since they
involve a subplan of enumerating all words and all integers, causing the planner to backtrack.
For this example, we will assume that the planner chooses the third rule. The formal
specification of the rule is:

Rule: Generate-and-Extend

(finite-domain (SET (?x1: object) :SUCH-THAT ?cond1)):
(= ?z (SET (?x1 :object ?x2 :object) :SUCH-THAT (?cond1, A ?cond2)))

achieve (= ?y1, (SET (?x1, :object) :SUCH-THAT ?cond1));
while (read ?v1)
do

achieve (= ?y2 (SET (?x :object) :ST [?cond2)?x1,?v1;?x2,?x));
for ?v2 in ?y2

do
achieve (appended ?v1 ?v2 :TO ?z);

done
done < ?y1

where
(?z :Set(object object); ?y1 , ?y2 :Set(object); ?v1; ?v2 :object)

where ?condl represents those constraints that contain only ?x1 as a free variable and
?cond2 represents the rest of the constraints. The body of the rule contains a shell-construct
(WHILE-DO) that reads each element from a list, does some computation on the object, and
outputs the result to a variable. This rule could actually be composed of several low-level
rules, e.g., a rule that says that a set of objects may be implemented as a stream with each
object in a separate line, a rule that says that a loop construct iterating on successive lines

DERIVATIONAL ANALOGY 19

of a file may be implemented using the WHILE-DO construct and the input redirection
primitive (' <' on the last line of the rule body), etc. However, for efficiency, it is sometimes
preferable to collapse several of these rule applications into one rule (Barstow, 1979).

The application of this rule reduces the first subgoal to the following program fragment:

achieve (= ?y1 (SET (?w') :SUCH-THAT (occurs ?w' ?f)))
while (read ?v1)

achieve (= ?y2 (SET (?n : integer)
:ST (= ?n (count-of ?v1 (COLLECTION(?x :word)

:ST (occurs ?x ?f))))
for ?v2 in ?y2

do
achieve (output ?v1 ?v2 > ?z);

done
done < ?y1

A computation of the criticality of the subgoals results in the discovery that there is no
rule that can be used to reduce the goal of finding the set of integers1 representing the
number of times a word occurs in a file. This subgoal is assigned a criticality of infinity.
The planner informs the user that the subgoal cannot be decomposed further. The user
can now ask the planner either to backtrack, or else to continue and produce a partial solu-
tion. For this particular subproblem, it is relatively easy to write a small C or Pascal pro-
gram, whereas writing a shell script using UNIX commands is quite awkward. Therefore,
let us assume the user chooses to continue.

The planner then goes ahead to generate the rest of the plan by choosing an applicable
rule and reducing a subgoal until all the subgoals are reduced to primitive commands. Figure
6 shows the derivation trace of the complete program, showing the goal and the rule used
at each node. The Appendix contains an English paraphrase as well as the formal represen-
tation of each rule.

The next stage is concerned with the conversion of the derivation tree into a program.
This is done in three passes, using a set of transformational rules, and is described elsewhere
(Bhansali, 1991). The final result of the transformations is the program shown below (except
for the comments in italics):

cat ?f |
tr -s ' ' ' \012'| # replace spaces by newline
tr -s ' " \012'| # replace tabs by newline
sort | ft sort the list
uniq > /tmp/file728 # remove duplicates
WHILE read ?v370
DO

[(SET (?x : integer) :ST
(= ?x (count-of ?v370 (COLLECTION(?x :word) :ST (occurs ?x ?f))))) > ?v2]

FOR ?v371 IN ?y2

DO
echo $?v370 $?v371 > > /tmp/file729 # output word, word-count

DONE

20 S. BHANSALI AND M.T. HARANDI

Figure 6. Derivation tree for the program to find the most frequent word in a file.

DONE < /tmp/file728 # the input to the while loop
sort +2 -r /tmp/file729 # sort on the second field
head -1 > /tmp/file730; # select the first element of the list
set ?w='awk'{print $1}' /tmp/file730' # select the first field

The program is complete except for the computation of the word-count, which has to
be supplied by the user.

DERIVATIONAL ANALOGY 21

4. Program derivation using analogy in APU

In the derivation given in the previous section, it was assumed that the planner always chooses
the correct rule to decompose a problem. However, more realistically, a planner might
spend a lot of its time searching for the correct rules and backtracking, which slows down
the program synthesis process. By recording the steps in the derivation of a problem, the
planner can reduce search time by replaying portions of an old plan, in the context of a
new, analogous problem.

APU's analogical reasoning consists of two main processes: retrieval of a source analog
from the derivation history library, and elaboration or replay of its derivation history in
order to solve a target problem. For ease of exposition and maintaining continuity with
the previous section, we reverse the order of presentation of these two stages: we first de-
scribe how the derivation given in the previous section is used to derive an analogous pro-
gram, and then describe APU's retrieval mechanism.

4.1. Elaboration: Replay of plans

A derivation of a problem consists of the subgoal structure of the problem showing the
decomposition of each goal into its subgoals. With each subgoal that is solved by the planner
the following information is stored:

1. The expression representing the subgoal.
2. The subplan used to solve it. This is essentially a pointer to the sequence of subsubgoals

into which the subgoal is decomposed (see figure 5). Thus the derivation has a recursive
tree-like structure.

3. A pointer to the rule applied to decompose the problem.
4. The set of other applicable rules.
5. The types of the various arguments.
6. The binding of rule variables to subexpressions in the goal.

The subgoal at a particular node forms the basis for determining whether the subplan
below it could be replayed in order to derive a solution for a new problem. When a subplan
is stored in the derivation history, the subgoal is indexed using the retrieval heuristics to
be described in the next section. The decision to store a particular subplan is currently
made by the user.

The rules stored at the node contribute to some of the speedup of replay over direct plan-
ning in two ways. The first one is based on the rationale that if the rule applied to the
source problem is applicable to the target problem, then, since the rule led to a success
for the source, it is likely to lead to a success for the target. If there are potentially several
rules, and only a few of them lead to success, then this rationale could result in considerable
speedup by avoiding rules that led to failure. (Of course, in some cases this could result
in degradation of performance by deliberately leading the system to a failure path. But,
if the retrieval heuristics are good enough, this should not happen too often.) The set of
other applicable rules results in some speedup if the original rule is found to be inapplicable,

22 S. BHANSALI AND M.T. HARANDI

since the system does not have to recompute the set of applicable rules when they are still
valid for the target subgoal.2

The types of the variables are useful for determining the best analogs for a given problem
by comparing them with the types of the corresponding variables in the new target prob-
lem. If the types of all corresponding variables are identical, it may represent a perfect
match (depending on whether the corresponding predicates and functions are identical),
and the derivation below the node can be copied (after checking that the filter conditions
of the rule still hold)—a much faster operation than replay.

Finally, the binding of variables is used to establish correspondence between variables
in the target and source. Expressions bound to the same rule variable are assumed to cor-
respond (Mostow et al., 1989; Mostow & Fisher, 1981; Steier, 1987).

Figure 7 gives an outline of the algorithm to derive a program using analogy. We illus-
trate the working of an algorithm by an example.

Figure 7. The analogy algorithm.

DERIVATIONAL ANALOGY 23

4.1.1. Example: Most frequent file in a directory

The example is to derive a program to find the most frequent filename among descendants
of a given directory. This example may seem a bit contrived and has been chosen for illus-
tration purposes only. The specification of the program is:

NAME: maxfile

INPUT: (?d :directory-name)

OUTPUT: (?fn :file-name)

PRECONDITION: true

POSTCONDITION: (most-frequent ?fn (COLLECTION(?y :file-name) :ST (descendant ?y ?d)))

We assume that APU has already solved the maxword problem described in section 3.
The top-level algorithm (figure 4), after determining that there is no direct UNIX command
to solve the problem, attempts to find an appropriate source analog. We describe in the
next section how APU's retrieval heuristics are used to retrieve the maxword problem as
an analog for the maxfile problem. For now, we pretend that the maxword program is deter-
mined to be the most appropriate analog for this problem. The top-level algorithm now
calls the ANALOGY algorithm.

The ANALOGY algorithm first checks to see if the source analog rule, associated with
the top-level node of the solution, is applicable to the target problem. There are three
possibilities:

1. The rule is applicable, the corresponding subexpressions in the target and source are
identical up to variable renaming, and the argument types for the corresponding variables
are the same (section 2.1.2). Then the two problems are identical and the entire subtree
below the source analog is copied (with the appropriate variable substitutions).

2. The rule is applicable, but the corresponding subexpressions in the target and source
are not identical, or their corresponding variables are of different types. Then the ana-
logical reasoner applies the rule to the target problem. In general, this rule application
would result in a decomposition of a problem into subproblems s1, s2, ..., sm for the
source and subproblems t1, t2 tn for the target. The algorithm attempts to solve
subproblems t1 ... tmin(m,n} first, by analogy using subproblems S1 . .. Smin(m,n), and
if any of them remains unsolved, by calling the planner. When n > m, the problems
tm+1 ... tn are also attempted using the planner. If any of the subproblems t1 .. . tn

remains unsolved (by both the planner and user), the algorithm returns a FAILURE.
3. The third possibility is that the rule is no longer applicable. The algorithm then checks

to see whether any of the other applicable rules stored at the source node is applicable.
If any of them are, then they are tried in turn until one of them returns a successful
subplan for the problem. If none of the rules result in a complete solution, then the
analogy algorithm calls the general planner.

Note that in case 2, it is not necessary that ti always correspond with si, and a more
general algorithm would put all the si's into a pool, from which the appropriate corre-
spondences would be established by reinvoking the retrieval algorithm. However, this would

24 S. BHANSALI AND M.T. HARANDI

require the identification phase to be repeated after each replay step, making the algorithm
very inefficient. The current scheme allows us to skip this identification phase, the trade-
off being in missing some of the analogical correspondences (when the ti's correspond to
Sj's, i ^ j). Note also that the subgoals t1, t2, ... are solved in the order determined by
the rule, and not using the subgoal ordering determined by the criticality measure. Again
this reflects a trade-off between recomputing the subgoal ordering versus the possibility
that a critical unsolvable goal is not detected early. We chose not to recompute the subgoal
ordering, using the argument that most of the time all the target subgoals would be solvable
since all the source subgoals were solved.

The ANALOGY algorithm discovers that the source analog rule Rl (shown in section 3),
associated with the top-level node of the source derivation, is applicable to this problem
with the following binding of parameters:

{?e = ?f, ?constraints = (descendant ?y ?d), ?nth = 1, ?key = 1}

This is different from the original parameter bindings, where ?constraints was bound to
(occurs ?x ?/), and hence corresponds to case 2 of the ANALOGY algorithm. The decom-
position of the problem results in the following three subgoals:

1. Compute the set {(file-name, file-count)} of files that are descendants of a directory.
2. Select the tuple with the maximum file-count from the set.
3. Select the first field from the tuple.

The algorithm now checks whether the subgoals can be solved directly using a UNIX
command. Thus, APU's derivational analogy paradigm is sometimes able to improve upon
a previous solution even when it is replaying its derivation. In the above case, APU discovers
(as before) that the third subtask can be solved using a UNIX command. For the first and
second subtasks, there is no direct solution, and hence the analogy algorithm is called recur-
sively using the corresponding subgoals in the source problem as the source analogs.

For the first subgoal the original rule, R3, applies with a different substitution of param-
eters, and as before, the algorithm uses it to decompose this subgoal to create the following
subgoals:

4. Compute a list of unique filenames that are descendants of directory ?d.
5. Compute the file-count of a given filename among descendants of directory ?d.

Next, having checked and found that there are no direct commands to solve either of
the two subgoals, the analogical reasoner tries to apply the same rules used in the corre-
sponding source nodes. For subgoal 4, this produces the two subgoals:

6. Compute a list of files that are descendants of directory ?d.
7. Remove duplicates from the list.

The analogical reasoner continues to reason as before until it comes to the point where
it tries to apply rule R4 in the source derivation. At this point it discovers that the original

DERIVATIONAL ANALOGY 25

rule used to get a list of words in a file no longer applies for getting a list of files that
are descendants of a directory, since that rule is only applicable for line-objects in a stream.
Thus, this problem is passed to the planner, which synthesizes the code for finding a list
of files that are descendants of a given directory and returns to the analogical reasoner,
reporting a success.

Subgoal 5 was unsolved in the source solution, and so the analogical reasoner finds no
applicable rule for it. This subgoal is also passed to the planner. The planner (as before)
fails to find a solution for it and asks if the user can solve it. As before, we assume that
the user answers Yes, and the planner returns to the analogical reasoner, reporting a success.

For the second subgoal, the algorithm discovers that the same sequence of rules used
in the source analog are applicable, and it replays the subtree below that node in the derivation
tree to obtain the same subplan as before.

Figure 8 shows the derivation tree for the target problem. The completed plan is trans-
formed into a program using the transformation rules mentioned earlier. The complete pro-
gram for the problem (without the code for computing a list of files that are descendants
of the input directory) is shown below:

<code to get list of files that are descendants of ?d>|
sort | # son the list
uniq / tmp/f i le801# removedupl ica tes
WHILE read ?v525 # for each element in the sorted list
DO # compute the count of a particular

[(SET (?x : integer) :ST # filename in a collection of filenames
(= ?x (count-of ?v1 (COLLECTION(?x :file) :ST (descendant ?x ?d))))) > ?y2]

FOR ?var526 IN ?y2

DO
echo $?v525 $?var526 > /tmp/file802 # print (file, file-count) in a file

DONE < /tmp/file801 # the input to the while loop
sort +2 -r /tmp/file802 | # sort on the second field
head -1 > /tmp/file803; # select the first element of the list
set ?f='awk 'print $1' /tmp/file803' # select the first field

4.2. Retrieval: Determining source analogs

Many analogy-based systems start off with the assumption that the source analog is explic-
itly given to the system in the form of a specific cue or a specific goal concept (Burstein,
1986; Dershowitz, 1986; Greiner, 1988; Kedar-Cabelli, 1985). However, in our system,
no such information is given. The system has to find the appropriate source analog given
the target problem.

We have developed a set of four heuristics to detect candidate analogs. Before presenting
the heuristics, we state three desiderata for a retrieval algorithm:

Fast: The retrieval algorithm should be fast. (If retrieving analogs takes so long that deriv-
ing programs without analogy is faster, there is no point in using analogy.)

26 S. BHANSALI AND M.T. HARANDI

Figure 8. Derivation tree for a program to find the most common filename among descendants of a directory.
The dashed box represents the program fragment derived without using analogy from the max-word program.
(Compare with figure 6.)

Flexible: It is acceptable even if only part of the retrieved analog's solution is applicable
to the target problem. (In fact, it is rare that the entire solution for a target problem can
be derived by reusing the derivation of a single source analog.)

Best match: If there are several candidate analogs, the retrieval algorithm should select
the best analog among them. The best analog is defined as one using which a solution
for the target problem can be derived with minimum effort (in terms of CPU time). This
is a difficult criterion to satisfy, since there is no operational measure for evaluating the
"goodness" of an analog, other than trying all the analogs and measuring their respective
times. However, the retrieval algorithm should at least guarantee that if there are several
candidate analogs, and one of them is identical to the target problem, then the identical
problem should always be retrieved in preference to any other analog since its solution
can simply be copied.

DERIVATIONAL ANALOGY 27

1. Solution Structure Heuristic. One way of detecting analogies is to see whether two
programs have the same abstract solution structure. The solution structure of a program
is determined by the top-level strategies used in decomposing the problem.

Because of the way rules are matched to problem specifications, the top-level rules corre-
spond to the outer-level constructs in a problem specification. Also, the strategy rules con-
sist largely of domain independent rules (section 2.1.2). This suggests that in order to esti-
mate the sequence of top-level strategy rules, one must look at the domain independent
constructs at the outermost level in the problem specification. The domain independent
constructs are the various logical and set-theoretic quantifiers, and the logical connectives—
and, or, not, etc. Therefore abstract solution structures can be recognized by looking at
the parse tree of the specification and extracting the sequence of quantifiers and connec-
tives at the top of the tree.

We illustrate this point with an example. Suppose two problems have the following
postconditions:

P1: (NOT (EXIST (?f :file) :SUCH-THAT (and (occurs ?f ?d) (> (size ?f) ?n))))

where ?d is an input directory and ?n is an input integer, and

P2: (NOT (EXIST (?p :process) :SUCH-THAT (and (owned ?p ?u) (> (cpu-time ?p) ?t))))

where ?u is an input user-name and ?t is an input time. The internal representation of the
postconditions of both problems after parsing is shown in figure 9. The outermost constructs
for both the problems is determined by going down the parse tree until a token is encountered
that is not a quantifier or connective. If the token is a predicate it is abstracted as a generic

Figure 9. Determining the outermost constructs to identify the abstract solution structure.

28 S. BHANSALI AND M.T. HARANDI

?constraint and if it is a variable or constant it is abstracted as a generic variable ?x. This
results in the following outermost construct for both the problems above:

(NOT (EXIST (?x : . . .) :SUCH-THAT (AND ?constraint1 ?constraint2)))

A postcondition of the form

(NOT (EXIST (?x : . . .) :SUCH-THAT (AND ?constraint1 ?constraint2)))

is suggestive of a particular strategy for solving problems:

Find all ?x that satisfy ?constraintl and ?constraint2 and delete them.

Therefore the basic structure of the two problems should be analogous.
Similarly, a program that has a postcondition of the following form:

(= ?z (SET (?x1, ?x2) :SUCH-THAT ?constraints))

which describes a set of tuples (?x1, ?x2) satisfying the constraints ?constraints, suggests
a divide-and-conquer strategy (section 2.1.2):

First form two separate lists of all ?x1 and all ?x2 satisfying the independent3 con-
straints, and then take a join of the two lists.

Thus all problems with such a postcondition can be considered analogous.
The other quantifiers and logical connectives result in analogous strategies for writing

programs. The solution structure heuristic creates a table of such abstract keys and uses
them to index problems. When a new problem is seen, the system computes the structural
class to which it belongs and retrieves all problems stored under that class.

2. Systematicity Heuristic. This heuristic is loosely based on the systematicity principle
proposed by Gentner (1983) and states that: if the input and output arguments of two prob-
lem specifications are pans of a common system of abstract relationship, then the two prob-
lems are more likely to be analogous.

The systematicity principle is a part of Gentner's structure-mapping theory, which de-
scribes the set of implicit constraints used in processing analogical mappings. It is based
on the intuition that analogies are about relations, rather than simple features. The target
objects do not have to resemble their corresponding base objects, but are placed in corre-
spondence due to corresponding roles in a common relational structure.

In our context, the input and output arguments correspond to objects and the predicates
and functions relating these arguments correspond to relations. Thus, our heuristic states
that for problems to be analogous the input and output arguments have to fulfill analogous
roles in a common system of abstract relations.

DERIVATIONAL ANALOGY 29

To implement this heuristic, APU looks at each primitive formula (i.e., not containing
the logical quantifiers or connectives) in the postcondition of a problem and forms an abstract
key for it. The following steps are used in forming the key:

1. Replace all constants by 'Constant'.
2. Replace all input variables by 'input-var'.
3. Replace all other variables, including output variables, by 'var' (deleting the type markers

for all the quantified variables).
4. Replace each unary function (F ?x) by a binary function (Attribute F ?x).
5. Replace every predicate (function) by the abstract predicate (function) immediately above

it in the abstraction hierarchy (see Section 2.1.1).

Steps 1-3 abstract away the type of a constant or variable. Thus, for example, two expres-
sions (P ?x1 C1) and (P ?x2 C2), where ?x1 is a variable of type T1, ?x2 is a variable of
type T2, and Cl and C2 are constants, are considered analogous. The rationale here is that
since the same polymorphic predicate P can be used for the different types, then probably
the same set of rules would be used to achieve goals involving the two expressions. However,
it is still necessary to distinguish between input and other variables and constants since,
e.g., the problem of computing (SET(?x1 : . ..) : ST(P ?x1 ?x2)) where ?x2 is an input
variable is very different from the problem of computing (SET(?x2 : .. .) :ST(P ?x1 ?x2)
where ?x1 is an input variable. (As a concrete example, consider the problem of finding
all files containing a given word versus the problem of finding all words contained in a
given file.)

Step 4 abstracts the identity of unary functions by viewing them as an abstract binary
function Attribute that takes two arguments—the name of the unary function and its param-
eter—and applies its first argument to the second. The name of the unary function is treated
as a constant and ignored (using step 1). In effect, all unary functions are considered 'anal-
ogous'. The rationale for this is that in the UNIX domain, most unary functions are attri-
butes associated with an object which are all represented and accessed using similar methods.
For example, for a file ?f, (size ?f), (owner ?f), (access-code ?f), etc. can all be computed
by listing all attributes of a file and selecting the desired one (there are exceptions to this
heuristic; e.g., (parent ?f) cannot be computed in this manner).

The fifth step abstracts higher-order4 functions and predicates by climbing one step up
the abstraction hierarchy. The rationale here lies in the formulation of the rules. Since APU's
rules are written in terms of abstract functions and predicates, in order to determine whether
the same sequence of rules is applicable to two problem instances, we need to abstract
the actual predicates and functions in the problem statement before comparing them. An
important issue here is to determine the right level of abstraction or generality: under-
generalization would result in missed analogies, whereas over-generalization would result
in incorrect analogies. We have adopted a conservative strategy of abstracting only one
level, based on empirical studies of several examples in the UNIX domain.

The detection of the higher order relations also establishes the correspondences between
the input/output variables of the source and target problem, which is used to prune the
set of plausible candidates (using the conceptual distance heuristic, discussed shortly) as
well as in replay.

30 S. BHANSALI AND M.T. HARANDI

The application of the systematicity heuristic for the maxfile problem results in the for-
mation of the following keys for the two primitive conjuncts in the postcondition:

1. (Nth-frequent var (COLLECTION (var) :ST (contained var input-var)
:Nth Constant :KEY Constant)

2. (contained var input-var)

The keys are formed as follows: First APU retrieves all the primitive formulae, which
consist of (most-frequent ?f (COLLECTION ...)) and (descendant ?f?d). It abstracts the
variables and constants, and then replaces the predicates descendant and most-frequent by
climbing one step up the abstraction hierarchy. This results in the formation of the keys
(contained var input-var) for (descendant ?f ?d) and (Nth-frequent var (COLLECTION (var)
:ST (contained var input-var)) :Nth 1 :KEY 1), where the values for the keywords :Nth and
:KEY are obtained from the definition of most-frequent in the concept dictionary. Replacing
all the constants by 'Constant' results in the keys shown above.

To detect analogs using the systematicity heuristic, the system forms a set of keys for
each primitive formula in the postcondition of a problem, and indexes the problem with
each of those keys. When a new problem is encountered, a set of keys is computed for
it and used to retrieve all problems indexed with those keys. The maxword problem is in-
dexed under both the keys that were derived for the maxfile problem and is selected as
one of the source analogs during retrieval. The bindings of the variables in the two keys
(considering each var and input-var in the key as a distinct variable) establishes the corre-
spondence between the following variables in the maxword and maxfile problem:

Some care has to be taken when forming keys for predicates or functions that are com-
mutative or have a commutative-dual, defined as follows:

Definition: Let f and g be two binary predicates or functions. g is a commutative-dual
of f if for all x and y, f (x , y) = g(y, x).

Thus, the predicate > is a commutative-dual of the predicate <, and vice versa. If all
specializations of an abstract predicate (or function) in the abstraction hierarchy (section
2.1.1) are commutative or have a commutative-dual, then the abstract predicate (function)
is termed commutative. While forming keys, we need to ensure that for commutative oper-
ators, the key is not sensitive to the order of the arguments. For example, in problem P2
above, the second constraint could have been written as:

(> ?t (cpu-time ?p)) or (< ?t (cpu-time ? p))

This does not change the essential nature of the problem, and we want to consider all such
constraints analogous. Therefore we define a canonical form to represent predicates, using
the order of a predicate. The canonical form is determined by permuting the arguments
of all commutative predicates so that they appear in decreasing order (with variables pre-
ceding constants). Thus, the canonical form for the above predicate is:

DERIVATIONAL ANALOGY 31

(Rel-op (Attribute Constant var) input-var)

(where (Attribute Constant var) is obtained as an abstraction of (Attribute cpu-time ?p)).
The system first converts all keys to a canonical form before using them for storing or
retrieving problems.

3. Similar Syntactic Feature Heuristic. The solution structure heuristic seeks to detect
similar solution structures by recognizing similar patterns in the outer-level (specification)
language constructs in the source and target problems. The similar syntactic feature heuristic
is a closely related heuristic that looks at individual domain independent features in the
formulation of problems. Thus, e.g., instead of forming a schema like (NOT (EXIST (?x)
:ST (AND ?constraints))) to index a problem, it might index it using the individual keys
NOT, EXIST and AND.

In order to be useful, however, only certain special features in problem specifications,
which strongly influence the solution structure, should be considered. We use two classes
of problem features that we have found useful for indexing problems. The first one is based
on the form of a problem: if the particular form in which the problem is specified indicates
the form of the solution, then that problem form should be used to index problems. A par-
ticularly useful and commonly occurring form of specification is recursive specification.
In the UNIX domain, recursive problems can be solved using a shell script written in a
file; the shell script has a command that executes the file containing it, and the recursion
is implemented by executing this command. Note that this recursive feature of problem
specification could not be captured by the systematicity heuristic. For example, consider
two problems F1 and F2 whose inputs are ?x1 and ?x2 respectively, and whose outputs are
?z1 and ?z2 respectively. Let the postconditions of the two problems be:

(AND (IMPLIES (P ?x1) (Q (g ?x1) ?z1)) ...)

and

(AND (IMPLIES (P ?x2) (Q (F2 ?x1) ?z1)) . . .)

respectively, where P and Q are predicates and g is a function. The systematicity heuristic
would consider both these postconditions analogous, whereas the solutions (shell scripts)
for both the problems would be quite different: the shell script for F2 would have to be
encoded in a file and made executable, and the recursive specification would have to be
transformed to a command to execute that file. This heuristic is implemented by detecting
the occurrence of the name of the problem in the specification, and indexing it as a recur-
sive problem.

The second class of problem features are derived from certain predetermined language
keywords. An example of this class of features is the following expression:

(WHEN ?condition ?formula)

32 S. BHANSALI AND M.T. HARANDI

which specifies that when the expression denoted by ?condition becomes true, the expres-
sion denoted by ?formula must be made true. This expression is usually associated with
the following solution structure:

loop
if (code to test ?condition)
then exit;
sleep;

endloop
<code to achieve ? formula)

and hence all problems having an expression of the above form in the postcondition are
indexed with the keyword WHEN.

It should be remarked that this heuristic, by itself, is quite weak in detecting analogous
problems. Its utility lies in pruning the set of candidate analogs retrieved by using the first
two heuristics.

4. Conceptual Distance Heuristic. This heuristic uses the abstraction hierarchy of objects
to determine how "close" the corresponding objects in two problem specifications are.
Closeness is measured in terms of the number of links separating the objects in the concept
dictionary—the smaller the number of links, the better are the chances that the two prob-
lems will have analogous solutions. For example, lines and words are closer to each other
than, say, to a process. Therefore, the problem of counting lines in a file is closer to the
problem of counting words in a file than to the problem of counting processes in the system.

The closeness between two problems, S and T, is denoted by dist(S, T) and is defined
to be the product of the distance between the corresponding objects (determined using the
systematicity heuristic) in the two problems. For technical reasons, the distance between
two objects of the same type is defined to be 1; the distance between all other objects is
1 plus the number of links separating them. Using this measure and the variable bindings
given earlier, the closeness between the maxword and maxfile problems is:

dist(maxword, maxfile) = dist(file, directory) * dist(word, file-name) * dist(word, file-name)
= 3 * 3 * 3
= 27

If there is another analog in the library with a smaller closeness measure (e.g., a program
to find the most frequent directory name under a directory), then that would be picked
as a better analog.

4.3. How the heuristics are combined

In general each of the above heuristics will suggest several, and possibly different, prob-
lems as a potential analog of the target problem. The algorithm used by the analog retriever
works by retrieving all analogs using the systematicity heuristic and choosing the one that

DERIVATIONAL ANALOGY 33

has the maximum number of keys pointing to it. If there is only one such analog, it is
returned as the best match. If no, or more than one, analog is found, then the solution
structure heuristic is used to select those candidates that share similar abstract schemas in
the problem specifications. Further ties are broken by using the syntactic feature heuristic.

If there is no analog retrieved using the first three heuristics, the retrieval algorithm returns
a failure. On the other hand, if multiple analogs remain after using all three heuristics,
the conceptual distance heuristic is used to select the source analog whose input and output
arguments are closest to the input and output arguments, respectively, of the target problem
using the ISA hierarchy of objects (see figure 3). If there are still multiple analogs, one
of them is returned arbitrarily.

5. Performance results

APU has been used to synthesize 45 different programs, including the maxword and max-
file programs. The main motivation in this work has been to explore the role of deriva-
tional analogy in improving the program synthesis capability of APU. To test the feasibility
of the approach, two basic hypotheses need to be investigated:

• Automatic determination of good analogs is feasible.
• Using analogy speeds up program synthesis.

To establish the above claims, we need empirical evidence to assess APU's performance.
In this section we describe experiments designed to measure the following aspects of APU's
retrieval and replay techniques:

• How good are the heuristics at determining appropriate base analogs?
• How does the time taken to synthesize programs using analogy compare with the time

taken to synthesize programs without analogy?
• How does the time taken to synthesize programs depend on the heuristics?
• How does the time for retrieving analogs depend on the size of the derivation history

library?

Before presenting the experiments, we describe the methodology for constructing the
data set. It must be noted that it is not enough to show results on isolated examples; the
system must be tested on a population of problems that is representative of real-world prob-
lems. However, the limited knowledge-base of our prototype system precluded testing on
a truly representative sample of the space of UNIX programs. Therefore, we decided to
restrict ourselves to a subset of the problem domain, consisting of file and process manipula-
tion programs. Problems were constructed randomly from this subset using fixed procedures.

5.7. Generating the data set

We began by constructing a rule base for 8 problems that are typical of the kind of prob-
lems solved using shell scripts in this domain. The problems included in the set were:

34 S. BHANSALI AND M.T. HARANDI

• List all descendant files of a directory.
• Find most/least frequent word in a file.
• Count all files, satisfying certain given constraints, in a directory.
• List duplicate files under a directory.
• Generate an index for a manuscript.
• Delete processes with certain characteristics.
• Search for given words in a file.
• List all the ancestors of a file.

To generate the sample set, we first created a list of various high-level operations that
can be used to describe the top-level functionality of each of the above problems—count,
list, delete, etc.—and a list of objects that can occur as arguments to the above operations—
directory, file, system, line, word, etc. Then we created another list of the predicates and
functions in our concept dictionary which relate these objects, e.g., occurs, owned, descen-
dant, size, cpu-time, word-length, line-number, etc.

Next, we used the definitions of the top-level predicates in the concept dictionary to gen-
erate all legal combinations of operations and argument types. For example, for the count
predicate (which takes two arguments, such that the first one is contained in the second
one), the following instances were generated:

(count directory system) ; count directories on the system
(count file system) ; count files on the system
(count file directory) ; count files under a directory
(count wordfile) ; count words in a file
(count characterfile) ; count characters in a file
(count linefile) ; count lines in a file
(count stringfile); count strings in a file
(count process system) ; count processes in a system

In a similar fashion, a list of all legal constraints were generated, using the second list
of predicates and functions. Examples of constraints generated include:

• (occurs file directory)
• (descendant directory directory)
• (= int (line-number word file))
• (= string (owner file))
• (occurs character word)

where each argument denotes a variable of that type, which may be either an input or out-
put to a problem specification (see below). Constraints that were trivial or uninteresting
were pruned away, e.g., (= int int).

Next, we combined these constraints with the top-level operations to create a base set
of problems. We restricted each problem to have a maximum of three conjunctive con-
straints. From this set of about 140 problems, a random number generator was used to
select 37 problems which, together with our initial set of 8 problems, formed our sample
population of 45 problems.

DERIVATIONAL ANALOGY 35

All the above steps were performed automatically using a small set of simple routines.
The final step consisted of translating the high-level description of the problems into a for-
mal specification. This was done manually, in a fairly mechanical manner. The only non-
mechanical step was in assigning the input and output arguments for each program. This
was done using the most 'natural' or likely formulation of the problem. For example, for
the problem (most-frequent word file), the corresponding postcondition with a word being
the output variable and a file being the input variable is more likely, rather than the reverse
(which would generate a program to find that file in which the given input word is the
most frequent one).

5.2. Experiment 1: Feasibility of automatic retrieval

We stored the 15 randomly chosen problems from the sample set in the derivation history
library. Then, for each of the 45 problems, we ran the retrieval algorithm to determine
the best base analog. This was done for various combinations of the heuristics. Note that
for 15 of the 45 problems, an exact match was available. This was deliberately done, since
one of the tests for the retrieval heuristics was that they be able to retrieve an exact match
over any other analog. This was not always the case, e.g., when the conceptual distance
heuristic was not used.

To evaluate the heuristics, we compared APU's choice against a human expert's, namely
the first author. To ensure that our choices were not biased by APU's, we compiled our
own list of the best analogs for each problem, before running APU's retrieval algorithm.
Our criterion for selection was based on writing shell scripts for each problem and evaluating
their closeness in terms of the number of common commands and common shell constructs.
For some problems, where it seemed that two or more analogs were equally good, we
included all the choices, the idea being that if APU's choice matched any of these, it would
be considered acceptable.

The result of the experiment is summarized in Figure 10. The first column shows which
heuristics were turned on during the experiment. The combinations tried were: all heuristics
working, all but one heuristic working, and each heuristic working separately.5

The second column shows the number of problems for which APU's choice did not match
ours. However, it would not be fair to judge APU's performance simply on the number
of mismatches, since that would imply that the human choices are always the best. Since
we could not be confident of the latter, after obtaining the mismatches, we again carefully
compared APU's choices against ours to judge their respective merits in terms of the quality
of the solution or the time taken to derive the solution. We discovered that, in a few in-
stances, APU's choices were clearly inferior to ours, while in others, it was not clear which
of the mismatched choices was better. The former were marked as inferior choices (column
3), and an overall score for each heuristic combination was determined by subtracting the
number of the inferior choices from the total number of problems (column 4).

5.2.1. Discussion

The experiment indicates that using all 4 heuristics, APU's retrieval algorithm performed
almost as well as a human (we ignore retrieval time for this experiment). There were only

36 S. BHANSALI AND M.T. HARANDI

Figure 10. Performance of APU's retrieval heuristics against a human expert's.

two cases in which APU's choice of an analog was clearly inferior. The reason why APU
failed to pick the correct choice for the two cases became obvious when we looked at the
two cases.

Consider the first case, which was to delete all directories that are descendants of a par-
ticular subdirectory. This was specified using the postcondition

(NOT (EXIST (?sd: directory) :ST (descendant ?sd ?d)))

where ?d is an input directory-variable and (descendant ?sd ?d) is defined to be true if
?sd is a subdirectory of ?d or it is a descendant of a subdirectory of ?d. The best analog
for this problem was the problem of listing all the descendant subdirectories of a directory,
specified using the postcondition

(= ?1 (SET (?sd: directory) :ST (descendant ?sd ?d)))

since both of them involve recursive traversal of the directory structure in UNIX. However,
the analog picked by APU was the problem of deleting all files under a given directory,
specified with the postcondition:

(NOT (EXIST (?f: file) :ST (occurs ?f ?d)))

where ?d is again an input directory-variable. The reason APU picked this analogy was
because occurs and descendant are grouped under a common abstraction contained in APU's
concept dictionary. Thus, the systematicity heuristic abstracted both occurs and descendant
to (contained VAR INPUT-VAR), and considered both to be equally good analogs for the
target; the solution-structure heuristic then picked the delete-files problem because its outer-
level constructs were closer to the target's.

DERIVATIONAL ANALOGY 37

At a more abstract level, APU's inability to pick the right analog can be explained by
the fact that APU's estimation of the closeness of two problems in the implementation do-
main is based solely on its assessment of their closeness in the specification domain. A
better organization of the concept dictionary, so that the distance between concepts in the
specification domain reflects the corresponding distance in the implementation domain,
might avoid some of these missed analogies. For the above example, occurs and descendant
should not be grouped under a common abstraction, since the program fragments for com-
puting the occurrence and descendant relations are very different in the UNIX operating
system domain.

The experiment also shows that H1 and H2 are the two most important heuristics—as
expected. Rows 4 and 5 show the number of missed analogs when one of the two is turned
off. Though the table doesn't show it, the problems for which the analogies were missed
were also different, indicating that neither heuristic is redundant.

The result in Row 2 was unexpected, since it seems to indicate that the conceptual distance
heuristic is unimportant. This was contrary to our experience when we tried the heuristics
on isolated examples. In particular, when the base set of analogs contained several similar
analogs, the argument abstraction heuristic was important to select the closest one. The
reason we got this result is because of the small set of base analogs—there weren't two
analogs sufficiently close as to be indistinguishable without using the conceptual distance
heuristic.

Finally, H3 doesn't seem to contribute much to the effectiveness of retrieval. This is again
due to the nature of the sample space, where most problem descriptions did not have syn-
tactic cues like keywords and recursion.

5.1 Experiment 2: Speedup using derivational analogy

For this experiment, we selected 10 examples at random from our sample set to form the
set of source analogs. From the same sample set, we selected another set of 10 examples
at random (note that the two sets are not necessarily disjoint) and measured the times taken
to synthesize a program for each of them, once with the analogical reasoner off, and once
with the analogical reasoner turned on. In order to eliminate user interaction, we tuned
APU so that it did not backtrack, and thus the first (possibly partial) solution is accepted
for each problem. The experiment was repeated with 20 different sets of base analogs.
Figure 11 shows the result of one typical run.

5.3.7. Discussion

Speedup using derivational analogy: The results in figure 12 show that using derivational
analogy, the average time to synthesize programs is reduced by almost half, when all the
heuristics are used for retrieval.6 This is not as great as we had expected based on our
experience on isolated examples. Nevertheless, the result demonstrates that derivational
analogy can improve problem-solving performance, not only on isolated examples, but on
populations of problems too.

38 S. BHANSALI AND M.T. HARANDI

Figure 11. Sample data showing the speedup of program synthesis using derivational analogy.

Figure 12. The average speedup obtained over 20 different sets of source analogs for various combinations of
retrieval heuristics. The figure shows the average as well as the 95% confidence interval for each value.

DERIVATIONAL ANALOGY 39

There are several factors that affect the generality of these results. First, it is based on
the assumption that problems are drawn from the set of basic concepts and constraints with
a uniform distribution. However, in practice, we expect a small set of concepts and con-
straints to account for a large share of the problems encountered in real life. In that case,
with a judicious choice of which problems to store in the derivation history library, the
number of problems for which close analogs can be found will be much larger than the
number of problems without analogs. Consequently, the benefits of using derivational anal-
ogy would increase.

Currently, APU's rule base is fairly small, and consists mostly of specialized, domain-
oriented rules. As a result, the planner does not spend much time in backtracking during
the initial plan synthesis. Moreover, since we tuned APU to eliminate backtracking during
the experiment, APU does not achieve much speedup by eliminating search. More realisti-
cally, if the rule base had a large number of high-level, general rules, the potential for
further speedup by eliminating search would increase. Note that with a large number of
general rules the space of problems solvable by the system also becomes large. It is then
possible that no problem in the library is close enough to target problems, and using deriva-
tional analogy degrades the system's performance. Again, we expect that in practice the
80-20 rule would apply, i.e., 80% of the problems would be generated from 20% of the
domain concepts, implying that there would be a large number of problems that are anal-
ogous, compared to non-analogous ones.

The experimental data also suggest that when target problems do not match analogs in
the library, the degradation in performance is small (problems 2, 6, and 7 in figure 11)
compared to the improvement in performance when problems match (problems 4 and 5
in figure 11). This suggests that unless the number of mismatches is much larger than the
number of matches, derivational analogy would speed up the overall problem-solving. There
were also cases (not shown in figure 11) when problems are almost solvable by analogy,
i.e., analogies are close but misleading, causing a much more severe degradation in per-
formance. However, this did not happen often enough to significantly affect the overall
speedup. Section 6.2 discusses some of the properties of the domain representation explain-
ing this phenomenon.

Finally, the speedup obtained for larger problems (i.e., problems requiring more CPU
time to solve without analogy) is generally greater than speedup for smaller problems.
This is due to the overheads of matching analogies—for smaller problems the time to retrieve
analogs outweighs any speedup that can be gained, even if there is a very close match with
a source problem. This could be used to decide when it would be advantageous to use
replay, provided an estimation of the size of a user-specified problem is available. Some
of the heuristic measures that may be used to estimate the size of a problem include the
number of conjuncts in the postcondition, the length of the problem formulation, the degree
of abstraction of terms used in the specification language, etc. However, in general, estimating
problem difficulty from specifications is difficult and the effectiveness of any heuristic meas-
ure would depend on how well correlated it is with the actual problem difficulty.

Effect of heuristics on performance: Experiment 1 (Section 5.2) was designed to measure
how good the retrieval heuristics were in retrieving the best analogs; it was found that H1

and H2 alone fared roughly 80% to 85% worse than the combination of all four heuristics
in finding the best analog. In this experiment we wanted to investigate how a non-optimal
choice of the source analog affected APU's performance.

40 S. BHANSALI AND M.T. HARANDI

The results show that although H3 alone was clearly inadequate, using H1 or H2 alone,
APU fared only slightly worse than when it was using all the four heuristics!

One reasonable conclusion that can be drawn is that the combination of all four heuristics
is essentially equivalent to using just one of H1 or H2, and the observed small difference
is simply due to chance. A Wilcoxon rank-sum test for paired experiments7 performed on
the pairs of experiments (all heuristics, only H1) and (all heuristics, only H2) show that
at the 1% significance level (i.e., with 99% confidence), H1 and H2 individually are not
as effective as all the four heuristics. However, though the Wilcoxon test shows that the
difference in performance is not due to chance, the magnitude of the difference still seems
too small to justify using all four heuristics.

One factor that has been ignored in this experiment is the quality of the solution. Notice,
that since we do not allow APU to backtrack and accept the first (possibly partial) solution
generated, the cost of choosing a wrong analog is not too severe as far as CPU-time is
concerned. In the worst case, a subproblem that was solved in the original problem is passed
back to the planner and is found to be unsolvable; the planner then returns a failure causing
the analogical reasoner to fail at a higher level, and so on, till ultimately, the analogical
reasoner fails at the topmost level. The planner then has to solve the problem from scratch.
More often, however, subproblems passed to the planner either are solved by the planner
or correspond to subproblems that were unsolved in the original problem. In such cases
the resultant solution may not be as good as the original one (we assume that the planner
always produces the 'best' solution for any problem given to it). Checking a few problems
at random in the experiment, we noticed that there were a small number of cases when
a solution using all four heuristics was better than that obtained by using just H1 or H2.
A typical example we found was for the following target problem:

Count all subdirectories under a given directory.

Using all 4 heuristics, the following solution was obtained:

Is -1 | grep 'Ad' | wc -1

which prints the contents of a directory, selects lines starting with the character 'd' and
counts the number of resultant lines. On the other hand, using H1 and H2, an analogy from
a different program was used and a partial solution was obtained:

Is | awk '{(test-for-directory)}' I wc -1

which is clearly inferior to the previous one. If the quality of the solution is also factored
into the experiment, so that APU generates the best solution it can, we expect the cost
of a wrong analog to be much more severe.

5.4. Experiment 3: Retrieval time

Our third experiment was designed to measure the cost of retrieving analogs as a function
of the size of the derivation history library. To measure this, we incrementally increased

DERIVATIONAL ANALOGY 41

Figure 13. (a) The average time to retrieve analogs as a function of library size, (b) The average number of prob-
lems per feature as a funciton of library size.

the size of the derivation history library (in steps of 5, selecting new problems at random),
and measured the time taken to retrieve analogs for all the 45 problems. Figure 13 shows
the result of one typical run of this experiment.

5.4.1. Discussion

The figure shows that the retrieval time increases almost linearly with the number of prob-
lems in the library. This was an unexpected result. Since we index all the problems in the
library, based on various features, we expected the retrieval time to grow much more slowly
as the size of the library increased.

An examination of the various indices after each problem set is added to the library pro-
vided us with an explanation. It must be realized that the time taken to search for analogs
essentially depends on the average number of problems indexed on each feature used by

42 S. BHANSALI AND M.T. HARANDI

the retrieval heuristics. For the retrieval time to converge, the average number of problems
per feature should approach a constant value. For our sample set, we found that this was not
true. The average number of problems per feature after each set of 5 problems were added
to the library is plotted graphically in figure 13b. It can be seen that there is a remarkable
correlation between the average number of problems per feature and the average retrieval
time. We repeated the experiment with different orders in which problems were added to
the derivation history library, with similar results, further corroborating our hypothesis.

This provides a hypothesis as to when problems should be stored in the derivation history
library: if adding a set of problems to the library increases the ratio problems/feature, it
suggests that the new problems are quite similar to the problems already existing in the
library, and hence their utility would be low. On the other hand, if the ratio decreases or
remains the same, the problems are different from the ones in the library and should prob-
ably be added.

Finally, the figure shows that the retrieval time itself is not much—less than 4 seconds
on average—compared to the time to synthesize programs. Again, this supports our claim
about the feasibility of automatic retrieval.

6. Discussion

6,1, Issues in derivational analogy

Mostow has described a framework for evaluating replay systems (Mostow, 1989). A detailed
analysis of APU in terms of this framework is given elsewhere (Bhansali, 1991). Here we
focus on some of the novel aspects and limitations of APU and how they relate to other
replay systems (Baxter, 1990; Blumenthal, 1990; Goldberg, 1990; Hickman & Lovett, 1991;
Huhns & Acosta, 1987; Kambhampati, 1989; Mostow et al., 1989; Mostow & Fisher, 1989;
Steier, 1987; Veloso and Carbonell, 1991; Wile, 1983).

Retrieval. One of the innovative features in APU is its retrieval mechanism that enables
it to automatically retrieve an appropriate source analog given a description of a target
problem. The retrieval heuristics are designed to estimate the closeness of two problems
in the implementation domain, based on their perceived closeness in the specification do-
main. The surface form of problem specifications is usually not sufficient for this estima-
tion, and one needs to either abstract certain features of the problem and reformulate them
(by generalizing, canonicalizing, etc.) or compare partial solution derivations. The latter
approach tends to be costly, and we have chosen the former one.

The features that are abstracted in APU are designed to represent the overall solution
strategy (solution structure heuristic), the relationship between various program entities
that in turn determines the structure and building blocks of the program (systematicity
heuristic), syntactic cues that are associated with certain stereotyped solution structures
(syntactic feature heuristic), and the similarity of the objects manipulated by the program
(conceptual distance heuristic). These features are compared for various analog candidates,
and the candidate that seems most closely matched is chosen as the preferred source analog.

For different domains and different specification languages, the actual manifestation of
these features would be different, e.g., a different abstraction of a problem specification

DERIVATIONAL ANALOGY 43

might determine the solution strategy. Similarly, the importance attached to the various
heuristics might be different, e.g., for the domain of numerical programs, the type of a
matrix (sparse, banded, symmetric, etc.) may be an important indicator of the desired solu-
tion. A fundamental limitation of the retrieval mechanism is that it is heavily dependent
on abstractions for predicates, functions and objects. The next section gives certain guidelines
used in forming these abstractions, but the issue needs to be explored further.

Currently, the decision of when problems and subproblems are indexed has to be made
by the user. One of the important issues that needs to be resolved is to determine which
subproblems to index so that the resultant increase in the retrieval time for appropriate
analogs doesn't degrade APU's overall performance.

Unlike APU, some systems, e.g., POPART (Wile, 1983), BOGART (Mostow et al., 1989),
XANA (Mostow & Fisher, 1989), KIDS (Goldberg, 1990), and DMS (Baxter, 1990) finesse
the retrieval problem by assuming that the source analog is explicitly given by the user
or that the main objective of replay is to aid design iteration. Other systems, e.g., ARGO
(Huhns & Acosta, 1987), and CYPRESS-SOAR (Steier, 1987), that are based on explanation-
based generalization or chunking, perform retrieval as a side-effect of rule-matching. How-
ever, as observed by Hickman and Lovett (1991), systems based on explanation-based gen-
eralization and chunking rely on complete match and direct replay of a previously learned
solution, instead of partial match and adaptation, and thus have limited partial reuse capabil-
ity. In ARGO, the partial reuse capability is increased by forming multiple macro-rules
by abstracting a single design plan at different levels of detail.

Some of the recent work in replay does address the problem of retrieval (Hickman and
Lovett, 1991; Kambhampati, 1989; Veloso and Carbonell, 1991). Unlike APU, the retrieval
algorithms proposed by Kambhampati and by Veloso and Carbonell are domain-independent.
Hickman's retrieval algorithm resembles APU's algorithm in using a classification hierarchy
to determine when two subgoals are of the same type. However, Hickman also uses infor-
mation about the success or failure of the candidate goal and the relevant information avail-
able for the source and target subgoals, before choosing the final candidate and replaying
its solution.

Partial Reuse. An issue closely related to retrieval is that of partial reuse, which refers
to the parts of a plan that can be replayed by themselves. The partial reuse capabilities
of systems can range from one extreme where plans can only be replayed on an all-or-none
basis, to the other extreme, where any subset of the design steps of a plan can be replayed.
As mentioned above, EBG and chunking-based systems can replay only when a learned
rule matches in its entirety, whereas systems that store the derivation trace of a problem
can replay parts of a solution.

In systems like APU, which represent derivation histories as a tree, with a strict hierar-
chical design, subplans cannot be replayed in an arbitrary order. In particular, whenever
replay fails at a particular decision node, all subsequent design decisions below the failed
decision node cannot be replayed. However, in APU, subgoals of a bigger problem can
be indexed independently, and since the planner always searches for new analogs when
it cannot find a direct (one-step) solution to a subproblem, this limitation can be (indirectly)
overcome in some cases.

An example problem that illustrates the partial reuse capability of APU is to generate
a program that counts all subdirectories that are descendants of a given directory. APU
first uses a source analog that counts all subdirectories (directly) under a directory, by listing

44 S. BHANSALI AND M.T. HARANDI

the contents of the directory in separate lines, selecting those lines that have information
about subdirectories, and counting the number of lines. However, when it comes to the
subgoal of listing the subdirectories that are descendants of a directory, the analogy fails.
APU then searches for and uses another analog, which lists all files that are descendants
of a directory. This analog is a part of a larger program (the maxfile program discussed
earlier). The rest of the parts of the original analog remain valid and APU uses it to com-
plete the program. In this example APU uses partial fragments from two different source
analogs to generate a target program, and it can be seen how it may potentially use any
subset of subplans (provided they are indexed) from a bigger problem in order to solve
a target problem.

A limitation of APU is that it does not use internal analogies (i.e., analogy from the
current subgoal to a previously solved subgoal within the same problem) during replay.
This internal analogy is possible in systems like BOGART (Mostow et al., 1989), CYPRESS-
SOAR (Steier, 1987) and RFERMI (Hickman & Lovett, 1991). While in BOGART internal
analogy is implemented by designating to the user the responsibility of specifying what
parts to replay, in CYPRESS-SOAR and RFERMI it is implemented by dynamically accu-
mulating the learned knowledge in the form of new productions or completely expanded
goal-trees. Since APU solves subgoals in a best-first manner (using rule-levels to order
subgoals), a potential analogous subgoal within the same problem would typically not be
completely expanded, and could not be used to solve a new subgoal. Furthermore, if inter-
nal analogies are not very frequent in APU's domain (as represented by our experimental
set), the overhead of storing and indexing the subgoals dynamically would have degraded
the overall performance.

Correspondence. The correspondence problem in APU consists of determining which
variables, commands, and subgoals in the new derivation correspond to which ones in a
previous derivation. As in other replay systems, the correspondence is essentially achieved
by unification of goals with antecedents of rules, and by assuming that terms bound to
the same variable correspond. However, there are two novel features in APU. One is that
it uses an AC-unification8 algorithm (e.g., Stickel, 1981) that enables it to establish corre-
spondence in some cases when the order of arguments of a predicate (function) is per-
muted. Secondly, APU uses the concept of order of a relation (Section 4.2) to partially
canonicalize expressions. These enable it to establish the correct correspondence in cases
like the following:

(AND (owned ?p ?u) (> (cpu-time ?p) 100)), and
(AND (< 10000 (size ?f)) (owned ?f ?u))

which would not be detected by simple unification. A detailed discussion of this and other
issues related to correspondence is given elsewhere (Bhansali, 1991).

Appropriateness. One of the motivating factors in adopting a derivational analogy ap-
proach for program synthesis is that it enables one to make a decision, at each step of
a plan decomposition, whether the subplan at that node should be replayed or re-synthesized.
A judicious combination of replay and synthesis makes it possible to derive an efficient
program efficiently.

However, as Mostow points out, there is a trade-off between the effort expended in deter-
mining the most desirable program, and the quality of the final product (in our case the

DERIVATIONAL ANALOGY 45

efficiency of the final shell script). Thus, we need to strike a compromise, whereby if it
can be easily determined that an alternative plan step is more desirable than the existing
one, then the alternative step is chosen, otherwise the existing plan is replayed.

In our system, we check, before applying a replay step, whether there is a direct UNIX
command or a subroutine to solve a subgoal. If there is such a command or subroutine,
then it is used even though the base case had a different decomposition at that node. The
resultant program in such cases is guaranteed to be more efficient modulo the assumption
that the UNIX-specific rules are more efficient than other rules.

An example that illustrates this capability of APU is the synthesis of a program that re-
places every occurrence of a character ?C1 in a file ?f1 with another character ?c2, using
an analogous problem that replaces every occurrence of a word ?w1 in a file ?f2 with an-
other word ?w2. The two problems are specified as follows:

NAME: c h a r a c t e r - s u b s t i t u t i o n
INPUT: (? f 1 : f i l e ?c1 character ?c2 : character)
OUTPUT: (?z1 : f i l e)
PRECONDITION: true

POSTCONDITION: (= ?z1 (substitute ?cl ?c2 ?f1))

NAME: word-substitution

INPUT: (?f2 : f i l e ?w1 :word ?w2 :word)

OUTPUT: (?z2 :f i l e)

PRECONDITION: true

POSTCONDITION: (= ?z2 (substitute ?w1 ?w2 ?f2))

Here substitute is a function that takes three arguments: the first two are line-objects and
the third is a file. The function returns a copy of the file in which every occurrence of
the first argument is replaced by the second argument. For the word-substitution problem
APU produces the following partial plan:

1. achieve (= ?re (regular-expression ?w1))
2. sed 's/?re/?w2/' ?f2 > ?z2

This plan first computes a regular expression for the word ?w1 and then uses the UNIX
command sed to replace every occurrence of the regular expression in the file by ?w2.
This is a partial plan because APU does not have the rules to compute the regular expres-
sion for a word. However, for the character-substitution problem, there is a single UNIX
rule available that can be used to replace a character in a file with another character, resulting
in the following solution:

cat ?f1 |
tr -s ?c1 ?c2 > ?zl

Since the analogy algorithm checks for a direct way of solving problems first, it finds this
rule and avoids the inferior solution of the source analog.

46 S. BHANSALI AND M.T. HARANDI

The strategies of minimizing planning effort during replay by reusing as much of the
old solution as possible, and maximizing plan quality by searching for the best alternative
at each step, have been called the satisficing approach and the optimizing approach, respec-
tively (Carbonell and Veloso, 1988). APU represents one of the first systems that considers
improving the plan quality during replay, and as far as we know, there is no implemented
replay system that follows a full optimizing approach.

Generality. There are several simplifying assumptions that affect the generality of the
results obtained in APU. The first is concerned with the purely top-down, plan-based ap-
proach to program synthesis incorporated in APU. Baxter (1990) has pointed out the distinc-
tion between synthesis of a program from a specification versus transforming a base program
given a performance predicate. Many transformation systems concentrate on the second
stage of transforming a base program. In contrast systems like APU and KIDS9 use top-
down design to synthesize a base program. Because of the nature of the domain, a purely
top-down approach is sufficient in APU. However, in order to be generalized, such an ap-
proach needs to be integrated with transformational rules like those used in POPART, XANA,
and DMS, and their associated replay components.

Secondly, we have not investigated how derivational analogy can improve problem-solving
performance by avoiding backtracking while solving analogous problems. Some results
obtained in domains where the basic problem-solver has no search control knowledge seem
to indicate that in such situations analogy can result in much more impressive speedups
(Huhns and Acosta, 1987; Veloso and Carbonell, 1991).

Finally, the derivational analogy approach, as initially proposed by Carbonell (1983),
requires a lot of detailed information to be stored in the derivation history. APU represents
a simplified version of such a history. In particular, APU does not store information about
failure. Some recent work suggests that information about failure can be as effective as
information about success in improving analogical problem-solving performance (Hickman
and Lovett, 1991).

6.2. Why does analogy work in APU?

As with most AI systems, the effectiveness of APU depends heavily on the representation
of the domain. The key features of APU's representation scheme are the abstraction hierar-
chies of objects, predicates, and functions and the formulation of the rules in terms of these
abstractions. In this section we briefly discuss how the abstraction hierarchies are formed,
and what properties of the abstraction hierarchies, the rule base, and the analogical detec-
tion mechanism determine the effectiveness of APU.

Two basic guidelines in forming the abstraction hierarchy in our system are the follow-
ing: (1) If a common function or predicate can be applied to objects A and B, consider
classifying A and B under a more general object. For example, the operation sort-in-
alphabetical-order can be applied to a set of characters, words, or lines; hence characters,
words, and lines are grouped into a more general object line-object. (2) If a plan for achiev-
ing two goals expressed using predicates (or functions) f and g share common subgoals,
consider classifying f and g into a more general predicate (function). For example, a plan
for finding the largest element in an unordered collection of elements (using some ordering

DERIVATIONAL ANALOGY 47

operator) and a plan for finding the smallest element in an unordered collection of elements
share the common subgoal of first sorting the collection of elements. Therefore the predicates
largest and smallest may be grouped under a common predicate called extremum.

One of the prerequisites for analogy to work is that there be a large proportion of general
rules, i.e., rules formulated in terms of general objects, predicates and functions (hereby
called concepts) in the abstraction hierarchy. Otherwise, if we only had specific rules written
in terms of specific concepts (forming the leaves of the abstraction hierarchy), there would
be very little analogical transfer of a solution derivation from one problem to another.

In addition, it seems that for analogy to succeed there should be a rich collection of
intermediate (i.e., non-leaf) concepts in the domain representation. In order to see this,
consider the fundamental requirement for analogy to work: the features that are used to
retrieve analogous problems should be good predictors of the sequence of rules needed to
solve the problem. Figure 14 shows the relationship between sets of problems, applicable
derivations, and the features used to detect analogous problems. Different features would
correspond to different sizes of the subsets of problems and the applicable derivations. A
feature would be most predictive if the subset Q coincides with subset R; such a feature could
be used to retrieve all, and only those, problems for which the entire derivation is applicable.
However, if R is very small, such a feature would not be general enough for analogy. On
the other hand, if Q coincided with the set P, then the feature would be very general, but
would be a poor predictor of the subsequent rules to apply. An ideal feature for analogy
is one that maximizes both the subset of problems which it identifies (for generality) as
well as the part of the solution derivation that is applicable to them (for effectiveness).

Figure 14. The relationship between problems, plans, and features used to detect analogous problems. P is the
set of all problems to which the first rule in a derivation applies, Q is the subset of problems that match the
feature used for plan retrieval, and R is the subset of problems for which the entire derivation is applicable.

48 S. BHANSALI AND M.T. HARANDI

In APU, when a rule is used to decompose a goal, the bindings of the rule variables
to the goal expressions determine the subsequent subgoals and thus, implicitly, the subse-
quent sequence of rules to apply. Therefore the bindings of the rule variables provide a
feature for analogy detection. One can imagine three ways in which these bindings can
be used to predict other goals on which the same sequence of rules would apply. At one
extreme, one could completely ignore the bindings of variables, and say that for any goal
expression which matches the rule, the original sequence of rules should apply. However,
if the rule is very general, it may be poorly correlated to the subsequent sequence of rules
to be used, and thus the analogy is likely to fail as often as it succeeds. This corresponds
to case 1 in figure 14. At the other extreme, one could use the exact bindings and say that
if a rule matches another goal with the corresponding variables bound to the same expres-
sions (up to variable renaming) then the original sequence of rules would apply. This cor-
responds to case 3 in figure 14 and is not general enough for analogy. A third, intermediate
approach is to extract certain features that characterize the bindings and use them to predict
the sequence of subsequent applicable rules. If the features that are used to characterize
the bindings are both general (to permit analogical transfer of solutions to many other prob-
lems) and well correlated with the subsequent rules needed to solve the problem, then they
can be fruitfully used to detect analogous problems (case 2 in figure 14).

The key to APU's success is that its retrieval heuristics use a set of features that provide
precisely such a characterization of the variable bindings. The ontology of intermediate
concepts represented in the abstraction hierarchy plays a central role in the characterization
of the bindings. Because of the methodology used to construct the abstraction hierarchy,
there is a strong correlation between the intermediate level concepts used to characterize
variable bindings and the subsequent rule sequence that is used, and at the same time the
characterization is general enough to be applicable to several different problems.

A short example should clarify the above discussion. Consider a goal expression in a
a rule:

(= ?z (card (SET (?x: object) :ST ?constraints)))

where ?z is of type integer. The goal expression states that ?z is the cardinality of the set
of objects ?x satisfying ?constraints. This expression matches a goal

(= ?n (card (SET (?f -.file) :ST (belongs ?f ?dir))))

with the bindings

{?Z = ?n, ?x = ?f, ?constraints = (belongs ?f ?dir)}

where ?n and ?dir are variables of types integer and directory, respectively. In English, the
goal specifies that the value of ?n be equated to the number of files in a directory ?dir.

One of the features used to characterize the bindings and used during retrieval is the
predicate contained, which is a generalization of the predicate belongs. This feature is general
enough to select the solution of this problem to solve several other problems (counting the
number of subdirectories in a directory, counting the number of words occurring in a file,

DERIVATIONAL ANALOGY 49

etc.). At the same time the feature can be used to distinguish between plans that do not
share common derivations. For example, two plans between which it can distinguish are:

(1) To determine the number of files in a directory
list the contents of the directory,
select lines that begin with the character "-", and
use command wc -l

versus

(2) To determine the number of ancestor directories of a file
find a plan to determine the set of ancestor directories, and
use command wc

The plan for determining the ancestors of a file involves climbing up the directory struc-
ture (using the UNIX command cd), storing the directory name in a file, until the root
directory is reached. The goals for both these problems match the rule given above, but
the predicates to which ?constraint is bound are different and do not have a common (one-
step) generalization. Since this feature is used to characterize the binding, APU's retrieval
mechanism is able to distinguish between the two plans.

A property of the domain that contributes to APU's success is the availability of a rich
set of planning operators (i.e., the UNIX commands and subroutines) that make it possible
to represent the objects in the domain in terms of abstraction hierarchies. Thus, when a
plan is formulated in terms of general objects, there is a high correlation between the various
plans obtained by instantiating the general object by specific ones in the abstraction hierar-
chy, and their completions. For example, in APU files and directories are classified under
the abstract object directory-object and most plans are formulated in terms of directory-
object. The analogy between files and directories is effective because for most UNIX com-
mands that operate on files there is a corresponding (possibly same) command that operates
on directories.

7. Conclusion

Derivational analogy was proposed as a powerful mechanism that could be used to reduce
problem-solving effort by replaying parts of a solution trace that are applicable to an anal-
ogous problem. However, the usefulness of this approach needs to be empirically evaluated
by applying this technique to non-trivial and novel domains. APU represents one of the
first implemented systems that incorporates derivational analogy with automatic retrieval
of base analogs in the program synthesis domain. Being a prototype system, APU has not
been used to solve truly complex problems, and in fact it only addresses a simplified, though
non-trivial, subset of the full program synthesis task. Nevertheless, this prototype system
has demonstrated that (1) derivational analogy can be implemented using a top-down decom-
position approach in a non-trivial program synthesis domain, and (2) is can speed up the
program synthesis process in this domain.

50 S. BHANSALI AND M.T. HARANDI

We have suggested a set of heuristics for retrieving analogs for this domain and, more
importantly, provided empirical evidence to show their effectiveness. These heuristics were
found to be quite effective in picking a good analog for target problems, from a library
of source analogs; and a retrieval algorithm based on the heuristics could be implemented
efficiently enough to speed up the overall performance of the system. Although some of
the heuristics and the exact form of the retrieval algorithm may not be as successful in
other domains, we believe that some of the general principles on which they are based
(e.g., the relationship between input and output variables in the systematicity heuristic,
and the similarity of the objects manipulated in the conceptual distance heuristic) should
be applicable in other domains.

Our experimental results showed that the amount of speedup (a factor of 2) obtained
by using analogy was not very impressive. However, this result is not as negative as it might
seem, since our experimental methodology (accepting the first partial solution) eliminated
all backtracking during plan synthesis. The primary speedup was obtained by identifying
parts of a solution that could be copied instead of replaying the sequence of rules that led
to their derivation. In a more realistic setting, where the planner spends a large amount
of time in backtracking, we expect the principal advantage of derivational analogy to be
due to search reduction. In fact, when tried on isolated examples with backtracking turned
on, APU was able to obtain speedups of as much as a factor of 12. However, we need
more experimentation with a larger set of general-purpose rules in order to test the validity
of this result on a population of problems.

The effectiveness of APU depends heavily on the domain representation. Some of the key
features of the representation include an ontology of intermediate concepts and the formu-
lation of rules in terms of general concepts that permit solution derivations to be applicable
to several problems. For analogy to be effective, the features used to retrieve analogs should
be both general, to permit analogical transfer of solution derivations to several problems,
and well correlated with the sequence of rules used to solve the problems so that the plans
they retrieve are likely to succeed. In APU, the ontology of concepts represented in the
abstraction hierarchy plays a central role in extracting features from problem specifications
with precisely such characteristics. A property of the domain that contributes to APU's
success is the availability of a rich set of planning operators (UNIX commands and subrou-
tines) that enables the creation of an ontology of useful intermediate-level concepts.

The question of the scalability of this approach is still open. An issue that needs to be
resolved is that of controlling the size of the derivation history library. Our experiments
suggest certain heuristics (e.g., the number of problems per feature) that can be used to
decide when to store derivation histories, but this issue needs to be explored in greater
depth. Another scalability issue is concerned with applying this approach to problems with
significantly longer derivations. Further research is also needed to determine the generality
of this approach by identifying classes of problems to which this approach can be applied.
An important extension of this work is to apply it to problems that involve transformational
techniques in addition to top-down planning.

Acknowledgments

We gratefully acknowledge the criticisms and suggestions of Jack Mostow and the anonymous
referees, which have greatly improved the presentation of this work. This work has also

DERIVATIONAL ANALOGY 51

benefited by suggestions from Uday Reddy and discussions with members of the knowledge-
based programming group at Illinois: Kanth Miriyala, Hingyan Lee, Khaled Al-Dhaher,
Sudin Bhat, Jim Ning, and Scott Renner.

Notes

1. In this case the set always consists of a singleton element since the word-count of a word is a unique integer.
One may have a transformational rule that uses this information to reduce the subgoal to a simpler one, but
currently APU does not have such a rule.

2. The rules in APU are not indexed, and the system finds an appropriate rule by a linear search through all
rules. With an efficient indexing scheme, this information need not be stored with the derivation.

3. An independent constraint on ?x1 is a predicate that does not contain ?x2 as an argument and vice versa.
4. The order is defined as follows (Gentner, 1983): constants and variables are order 0. The order of a predicate

is one plus the maximum of the order of its arguments. Thus, (size ?/) is order 1, (> (size ?f) N) is order
2, and so on.

5. The conceptual distance heuristic cannot be used independently, since it is not used to index problems, but
simply to prune the set of candidates retrieved by the other analogs. Also, note that in the fourth experiment,
with the systematicity heuristic turned off, the argument abstraction heuristic is not doing anything, since the
correspondence between arguments is not established.

6. A 95% confidence interval for the mean reduction in program synthesis time is 0.51 to 0.56 for all heuristics,
0.53 to 0.6 for H1 and 0.54 to 0.6 for H2.

7. The Wilcoxon test is a statistical test that is designed to test the hypothesis that the mean values of two popula-
tions that have the same shape and standard deviation is the same (Mendenhall et al., 1981).

8. Associative-Commutative unification.
9. KIDS/Refine is actually a hybrid system that used both top-down design to synthesize a base program and

transformational techniques to refine it into an efficient program.

Appendix

The following rules are used in the derivation of the maxword problem. Those variables
in the rule-goal that have a UNIX command in the rule body are ordinary variables (Rules
7-13). All other variables in the rule-goal are schematic variables.

Rule R3: To get the set of items in a collection, get multiset of the items in the collection
and remove duplicates from the list.

true: (= ?z (SET(?x :object) :SUCH-THAT ?conds))
achieve (= ?s (COLLECTION(?x :object) :SUCH-THAT ?conds));
achieve (= ?z (remove-duplicates (type-of ?x) ?s));

where
(?z :Set(object; ?s :Collection(object))

Rule R4: To get the multiset of line-objects in a stream, replace the delimiters of the text-
object by a NEWLINE character.

52 S. BHANSALI AND M.T. HARANDI

true: (= ?z (COLLECTION(?x : line-object) :SUCH-THAT (occurs ?x ?f)))
achieve (= ?charset (delimiters (type-of ?x)));
achieve (= ?z (replace-chars ?charset NEWLINE ?f)

where
(?z :Collection(text-object); ?charset :Set(character); ?f :stream)

Fact 1: The delimiters of word are (SPACE, TABS, NEWLINE)
(= (delimiters word) {SPACE, TABS, NEWLINE})

Rule R5: To replace a fixed set of characters by another character in a stream, replace
each character in the set by the replacing character.

(ground ?charset) A (small-size ?charset): (= ?z (replace-chars ?charset ?char ?f))
achieve (= ?z1 (replace-char c1 ?char ?f));
achieve (= ?z2 (replace-char c2 ?char ?z1));

achieve (= ?z (replace-char c2 ?char ?zk));
where

(?charset :Set(character); ?char character; ?f, ?z1, ?z 2 , . . . :stream)
(cl, c2 etc. are the characters belonging to ?charset)

Rule R6: To find the Nth-maximum element in a set, sort the elements of the set in decreas-
ing order and take the Nth element from the list.

true: (= ?z (Nth-maximum ?c :Nth ?n :Key ?k :Order ?rel-op)
achieve (= ?s (sorted ?c :Key ?k :Order ?order-rel-op));
achieve (= ?z (Nth ?n ?s))

where
(?z :object; ?c :Collection(object); ?s :List(object); ?n, ?k, :integer

?rel-op : order-op)

Rule R7: To remove duplicate lines from a sorted list, use command uniq

(sorted ?f): (= ?z (remove-duplicates line ?f))
(?z : = uniq ?f)

where
(?z, ?f : stream)

Rule R8: To remove duplicate lines from a list, sort the list and use command uniq

true: (= ?z (remove-duplicates line ?f))
achieve (= ?z1 (sorted ?f));
assert (sorted ?z\)
(?z := uniq ?z1)

where
(?z, ?z1, ?f :stream)

DERIVATIONAL ANALOGY 53

Rule R9: To replace character x by character y in a stream, use command tr-s.

(stream ?f): (= ?z (replace-char ?x ?y ?f))
(?z := tr-s ?x ?y ?f)

where
(?x, ?y character; ?f, ?z :stream)

Rule R10: To sort a list on key ?k, use command sort

true: (= ?z (sorted ?1 :Key ?k :Order >))
(?z := sort +?k-r?l)

where
(?1, ?z :stream; ?k :integer)

(The UNIX Sort normally sorts in increasing order. The -r option is needed to reverse the
order of comparison.)

Rule R11: To output objects to a stream use command echo.

(and (not (stream ?x1)) (not (stream ?x2)) . ..): (output ?x1 ?x2 ... :TO ?z)
(?z := echo ?x1 ?x2 . ..)

where
(?z :stream; xl, x2, ... :object)

Rule R12: To select the first element from a list, use command head.

true: (= ?z (Nth 1 ?f))
(?z := head-1 ?f)

where
(?f, ?z : stream)

Rule R13: To select the nth field from a collection, use command awk if the components
of the tuple are separated by whitespace (TABS or SPACES)

(whitespace? (field-separator ?f)): (= ?z (select-field ?nth ?c))
(?z := awk '{print $?nth}' ?c)

where
(?c : Collection; ?nth : integer)

References

Barstow, D. (1979). Knowledge based program construction. New York: Elsevier North Holland.
Baxter, I.D. (1990). Transformational maintenance by reuse of design histories. Doctoral dissertation, Department

of Computer Science, University of California, Irvine. Technical report 90-36.

54 S. BHANSALI AND M.T. HARANDI

Bhansali, S. (1991). Domain-based program synthesis using planning and derivational analogy. Doctoral disserta-
tion, Department of Computer Science, University of Illinois at Urbana-Champaign. Technical report UIUCDCS
R-91-1701.

Bhansali, S., & Harandi, M.T. (1990a). APU: automating UNIX programming. IEEE International Conference
on Tools for Artificial Intelligence (pp. 410-416), Washington, DC: IEEE Computer Society Press.

Bhansali, S., & Harandi, M.T. (1990b). The role of derivational analogy in reusing program design. Fifth Annual
Knowledge-Based Software Assistant Conference (pp. 28-41). Syracuse, NY.

Blumenthal, B. (1990). Empirical comparisons of some design replay algorithms. Eighth National Conference
on Artificial Intelligence (pp. 902-907). Boston, MA: AAAI Press/The MIT Press.

Burstein, M.H. (1986). Concept formation by incremental analogical reasoning and debugging. In R.S. Michalski,
J.G. Carbonell, & T.M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2). San
Mateo, CA: Morgan Kaufmann.

Carbonell, J.G. (1983). Derivational analogy and its role in problem solving. Third National Conference on Arti-
ficial Intelligence (pp. 64-69). Washington, DC: Morgan Kaufmann.

Carbonell, J.G., & Veloso, M. (1988). Integrating derivational analogy into a general problem solving architecture.
DARPA Workshop on Case-Based Reasoning (pp. 104-124). Clearwater Beach, FL: Morgan Kaufmann.

Dershowitz, N.D. (1985). Synthetic programming. Artificial Intelligence, 25, 323-373.
Dershowitz, N.D. (1986). Programming by analogy. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.),

Machine learning: An artificial intelligence approach (Vol. 2). San Mateo, CA: Morgan Kaufmann.
Gentner, D. (1983) Structure-mapping: a theoretical framework for analogy. Cognitive Science, 7(2), 155-170.
Goldberg, A. (1990). Reusing software developments. (Technical Report KES.U.90.2). Palo Alto, CA: Kestrel

Institute.
Greiner, R. (1988). Learning by understanding analogies. Artificial Intelligence, 35, 81-125.
Harandi, M.T., & Bhansali, S. (1989). Program derivation using analogy. Eleventh International Joint Conference

on Artificial Intelligence (pp. 389-394). Detroit, MI: Morgan Kaufmann.
Hickman, A.K., & Lovett, M.C. (1991). Partial match and search control via internal analogy. Thirteenth Annual

Conference of the Cognitive Science Society. Chicago, IL: Lawrence Erlbaum.
Huhns, M., & Acosta, R. (1987). Argo: an analogical reasoning system for solving design problems (Technical

Report AI/CAD-092-87). Austin TX: Microelectronics and Computer Technology.
Kambhampati, S. (1989). Flexible reuse and modification in hierarchical planning. Doctoral dissertation, Department

of Computer Science, University of Maryland, College Park. Technical Report CS-TR-2334.
Kambhampati, S. (1990a). Mapping and retrieval during plan reuse: a validation structure based approach. Eighth

National Conference on Artificial Intelligence (pp. 170-175). Boston, MA: AAAI Press/The MIT Press.
Kambhampati, S. (1990b). A theory of plan modification. Eighth National Conference on Artificial Intelligence

(pp. 176-182). Boston, MA: AAAI Press/The MIT Press.
Katz, S., Richter, C.A., & The, K.S. (1989). PARIS: a system for reusing partially interpreted schemas. In T.J.

Biggerstaff & A.J. Perlis (Eds.), Software reusability (Vol. 1): Concepts and models. New York: ACM Press.
Kedar-Cabelli, S.T. (1985). Purpose-directed analogy. Seventh Annual Conference of the Cognitive Science Society

(pp. 150-159). Irvine, CA: Lawrence Erlbaum.
Mendenhall, W., Scheaffer, R.L., & Wackerley, D.D. (1981). Mathematical statistics with applications. Boston,

MA: Duxbury Press.
Minton, S. (1988). Learning effective search control knowledge: An explanation-based approach. Boston, MA:

Kluwer.
Miryala, K., & Harandi, M.T. (1991). Automatic derivation of formal software specifications from informal descrip-

tions. IEEE Transactions on Software Engineering, 17(10), 1126-1142.
Mostow, J. (1989). Design by derivational analogy: issues in the automated replay of design plans. Artificial Intel-

ligence, 40, 119-184.
Mostow, J., Barley, M., & Weinreich, T. (1989). Automated reuse of design plans. International Journal for Arti-

ficial Intelligence and Engineering, 4(4), 181-196.
Mostow, J., & Fisher, G. (1989). Replaying transformational derivations of heuristic search algorithms in

DIOGENES. DARPA Workshop on Case-Based Reasoning (pp. 94-99). Pensacola Beach, FL: Morgan Kaufmann.
Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5, 115-135.
Sacerdoti, E. (1977). A structure for plans and behavior. Amsterdam: North-Holland.
Stefik, M. (1981). Planning and metaplanning (MOLGEN: Part 2). Artificial Intelligence, 16, 141-169.

DERIVATIONAL ANALOGY 55

Steier, D. (1987). CYPRESS-Soar: a case study in search and learning in algorithm design. Tenth International
Joint Conference on Artificial Intelligence (pp. 327-330). Milan, Italy: Morgan Kaufmann.

Steinberg, L.I., & Mitchell, T.M. (1985). The REDESIGN system: a knowledge-based approach to VLSI CAD.
IEEE Design & Test, 2, 45-54.

Stickel, M.E. (1981). A unification algorithm for associative-commutative functions. Journal of the ACM, 28(3),
423-434.

Veloso, M., & Carbonell, J.G. (1991). Learning by analogical replay in PRODIGY: first results. European Working
Session on Learning. Porto, Portugal: Springer-Verlag.

Waters, R.C. (1985). The programmer's apprentice: a session with KBEmacs. IEEE Transactions on Software
Engineering, 11(11), 1296-1320.

Wile, D.S. (1983). Program developments: formal explanations of implementations. Communications of the ACM,
26(11), 902-911.

Received April 25, 1990
Accepted July 25, 1991
Final Manuscript January 9, 1992

	Untitled

