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Abstract. Building a knowledge-based system is like developing a scientific theory. Although a knowledge base
does not constitute a theory of some natural phenomenon, it does represent a theory of how a class of professionals
approaches an application task. As when scientists develop a natural theory, builders of expert systems first must
formulate a model of the behavior that they wish to understand and then must corroborate and extend that model
with the aid of specific examples. Thus there are two interrelated phases of knowledge-base construction: (1) model
building and (2) model extension. Computer-based tools can assist developers with both phases of the knowledge-
acquisition process. Workers in the area of knowledge acquisition have developed computer-based tools that empha-
size either the building of new models or the extension of existing models. The PROTEGE knowledge-acquisition
system addresses these two activities individually and facilitates the construction of expert systems when the same
general model can be applied to a variety of application tasks.
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1. Introduction

Knowledge acquisition is the process of eliciting the expertise of authorities in an applica-
tion area and of formalizing that knowledge within a computer program. From the time
of McCarthy's [1968] early proposal for the "Advice Taker" (a theoretical program that
could act on the statements about the world that its users typed into it in predicate logic),
workers in artificial intelligence (AI) have described tools that could facilitate the knowledge-
acquisition process. Knowledge acquistion often is depicted as the cumbersome activity
whereby expertise is transferred from the minds of application specialists to those of the
computer scientists who build expert systems (knowledge engineers), and thence to the
knowledge bases of expert systems. Most builders of knowledge-acquisition tools conse-
quently perceive knowledge acquisition as a problem in knowledge flow.

The depiction of knowledge acquisition as the transfer of expertise has caused many re-
searchers to view knowledge engineers as middlemen, whose naivete in the application
area impedes communication and clogs the pipeline during knowledge extraction. Davis'
[1976] landmark knowledge-acquisition program, TEIRESIAS, was predicated on the propo-
sition that, if domain experts could enter their knowledge directly into expert systems, the
need for knowledge engineers during the refinement of new knowledge bases would be
eliminated. Although Davis' suggestion was influential, TEIRESIAS never actually was
used by the expert physicians for whom it was intended. During the more than one dozen
years that have ensued since the development of TEIRESIAS, a score of computer-based
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knowledge-acquisition tools have been constructed, most designed to eliminate the need
for knowledge engineers [Boose 1989]. Despite this nearly universal goal, not one of these
tools has supplanted the humans needed to assist application specialists in the construction
and maintenance of production-quality expert systems [Kitto 1989]. Although current
knowledge-acquisition tools may greatly facilitate the process, development of most expert
systems still requires intermediaries and still is often bottlenecked.

The emphasis on knowledge transfer and the view of the knowledge engineer as an inter-
mediary, however, have hindered the recognition that knowledge acquisition is a creative
and inventive activity. When knowledge engineers interview application specialists to develop
expert systems, they begin to form mental models of how the experts solve problems; the
experts, of course, have mental models of their own that attempt to capture their professional
problem-solving behavior. In the course of building the expert system, both the knowledge
engineers and the experts continually revise their respective mental models. Although the
knowledge engineers and the application specialists may have very different mental models
at the outset of their collaboration, the models eventually converge. This convergence is
possible (1) because the knowledge-acquisition process forces all parties to commit their
mental models to a fixed, publicly examinable form—typically, the emerging knowledge
base; and (2) because the frequent consideration of examples and test cases forces the system
builders to assess, corroborate, and revise their models. The often-cited difficulties of knowl-
edge acquisition can be ascribed, in general, to creating and agreeing on a shared model
of problem solving [Winograd and Flores 1986; Regoczei and Plantinga 1987].

The creation of a knowledge base is much like the creation of a scientific theory. Unlike
traditional scientists, however, builders of expert systems are not concerned with the elabora-
tion of theories of natural phenomena; these knowledge engineers instead seek to develop
theories of expert behavior. In constructing a knowledge base, system builders first define
a general model (or theory) of the application task to be performed. In the case of the
MYCIN system [Buchanan and Shortliffe 1984], for example, that general task model was
one of diagnosing and treating infectious diseases. Given the initial model, MYCIN's devel-
opers validated and revised that model as necessary, attempting to fit the model to specific
clinical problems. Once the essential model was worked out, it was then extended to include
knowledge of particular kinds of bacteremia and, later, of meningitis. For example, after
the basic system had been designed, the developers of MYCIN augmented the program's
knowledge base to permit diagnosis and treatment of bacterial, fungal, viral, and tuberculous
meningitis by making four separate extensions to the original MYCIN model.

Thus knowledge acquisition can be viewed as comprising two interrelated phases: (1) build-
ing a general task model—that is, creating an intention of the proposed system's behavior,
followed by (2) filling in the specific content knowledge in the domain that is consistent
with the general model—that is, creating extensions [Addis 1987]. In this paper, I shall
discuss the special nature of these two stages of knowledge acquisition, with an emphasis
on the kinds of computer-based tools that can facilitate the two phases. Knowledge-acquisition
systems such as ROGET [Bennett 1985] are model-building tools that are particularly well
suited to help knowledge engineers and application specialists to develop theories of expert
problem solving. Other systems, such as OPAL [Musen, et al. 1987], are model-extending
tools that are best used by domain experts working along to define specific applications.
Recent work on the PROTEGE knowledge-acquisition system [Musen 1989a, bl demonstrates
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how a model-building tool can help knowledge engineers to fashion a general task model,
such that that model then can be used by a second model-extending tool to permit experts
to define specific applications. In particular, PROTEGE allows system builders to create
general models of application tasks that can be solved with the method of skeletal-plan refine-
ment [Friedland and Iwasaki 1985]; PROTEGE then generates automatically knowledge-
acquisition tools like OPAL that domain experts can use to enter the content knowledge
for individual applications.

2. The Problem of Creating Models

Computer-based knowledge-acquisition tools, unlike traditional machine-learning programs,
assume that knowledge will be formalized as the consequence of an interaction with a human
expert. This interaction, which undeniably constitutes the greatest strength of the knowledge-
engineering approach, also is the source of substantial liability. Application specialists cannot
simply transfer their expertise to a computer, and knowledge-acquisition programs often
cannot accept an expert's entries at face value. Understanding why a direct transfer of exper-
tise is impossible both points to a major distinction between current research in knowledge
acquisition and work in machine learning, and motivates important design decisions made
in the construction of PROTEGE.

Like the construction of other large pieces of software, the engineering of knowledge-
based systems requires significant creativity on the part of system builders. Creativity is
essential because the application specialists whose professional acumen is to be encoded
as a knowledge base often cannot verbalize how they actually go about solving problems.
Experts may not be merely inarticulate in explaining their behavior; they frequently are
tongue-tied for reasons stemming from the very nature of human intelligence.

2.1. The Paradox of Expertise

Human cognitive skills appear to be acquired in at least three generally distinct stages of
learning [Fitts 1964; LaBerge and Samuels 1974; Johnson 1983]. Although different authors
have used different terms to describe the three phases, there is concordance regarding the
qualitative changes that occur in the way that people seem to retrieve information during
problem solving. Initially, there is the cognitive stage, during which an individual identifies
the actions that are appropriate in particular circumstances, either as a result of direct instruc-
tion or from observation of other people. In this stage, the learner often verbally rehearses
information needed for execution of the skill. Next comes the associative phase of learning,
in which the relationships noted during the cognitive stage are practiced and verbal media-
tion begins to disappear. With repetition and feedback, the person begins to apply the actions
accurately in a fluent and efficient manner. Then, in the final autonomous stage, the learner
compiles the relationships from repeated practice to the point where he can perform them
without conscious awareness. Suddenly, the person performs the actions appropriately, pro-
ficiently, and effortlessly—without thinking. The knowledge has become tacit [Fodor 1968],

There is substantial evidence that, as humans become experienced in an application area
and repeatedly apply their know-how to specific tasks, their knowledge becomes compiled
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and thus inaccessible to their consciousness. Experts lose awareness of what they know.
The knowledge that experts acquired as novices may be retrievable in a declarative form,
yet the skills that these professionals actually practice are procedural in nature [Anderson
1987]. Although there is no consensus on how such procedural knowledge is stored within
the nervous system [Rumelhart and Norman 1983], the inability of experts to verbalize
these compiled associations is well accepted [Nisbett and Wilson 1977; Lyons 1986]. The
consequence is that the special knowledge that we would most like to incorporate into our
expert systems often is that knowledge about which experts are least able to talk. Johnson
[1983] has identified this phenomenon as the paradox of expertise.

The paradox is confirmed by experimental data, as well as by much acecdotal experience.
Johnson [1983], for example, reports that he once enrolled in classes at the University of
Minnesota Medical School as part of his investigation of the process of medical diagnosis.
At the same time, Johnson had the opportunity to study a medical colleague (one of his
teachers) caring for patients on the hospital wards. Johnson compared the physician's ob-
served clinical behavior with the diagnostic methods his colleague was teaching in the class-
room. To Johnson's surprise, the medical-school professor's behavior in practice seemed
to contradict what the teacher professed. When confronted with these observations, Johnson's
subject responded:

Oh, I know that, but you see I don't know how I actually do diagnosis, and yet I need
to teach things to students. I create what I think of as plausible means of doing tasks
and hope students will be able to convert them into effective ones. [Johnson 1983, p. 81]

The clinician in this example recognized explicitly that he could not verbalize his com-
piled expertise in medical diagnosis. The problem for knowledge engineers and for builders
of knowledge-acquisition tools, however, is that people rarely know the limits of their tacit
knowledge. When asked to report on their compiled expertise, subjects often volunteer
plausible answers that may well be incorrect. In experimental situations, subjects have been
shown to be frequently (1) unaware of the existence of a stimulus or cue influencing a
response, (2) unaware that a response has been affected by a stimulus, and (3) unaware
that a cognitive response has even occurred. Instead, subjects give verbal reports of their
cognition based on prior causal theories from their nontacit memory [Nisbett and Wilson
1977]. Furthermore, because Western culture mistakenly teaches us that accurate introspec-
tion somehow should be possible [Lyons 1986], people freely explain and rationalize their
compiled behaviors without recognizing that these explanations frequently are incorrect.

2.2. Authentic and Reconstructed Strategies

When asked questions about tacit processes, experts volunteer plausible answers that may
not reflect their true behavior. These believable, although sometimes inaccurate, responses
are known as reconstructed reasoning methods [Johnson 1983]. Reconstructed methods
typically are acknowledged and endorsed by entire problem-solving communities. They
form the basis of most major textbooks. The disadvantage of these methods, however, is
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that they do not always work. Slovic and Lichtenstein [1971], for example, asked stock brokers
to weight the importance of various factors that influenced these brokers' investment deci-
sions. A regression analysis of actual decisions made by the stock brokers revealed computed
weights for these factors that were poorly correlated with the brokers' subjective ratings.
More important, there was a negative correlation between the accuracy of introspection
and the stock brokers' years of experience. More recently, Michalski and Chilausky [1980]
found that decision rules elicited from plant pathologists for the diagnosis of soybean diseases
performed less accurately than did a rule set that was automatically induced by application
of the AQ11 algorithm to a library of test cases. (The experts' actual diagnoses were used
as the gold standard against which the two sets of rules were judged.)

Many workers in knowledge acquisition have consequently argued for the elicitation of
authentic (as opposed to reconstructed) methods of reasoning in hopes of improving expert-
system performance [Johnson 1983; Cleaves 1987; Meyer, et al. 1989]. The goal is deter-
mination of the behaviors actually used by experts in performing relevant tasks. Acquisi-
tion of authentic knowledge, not surprisingly, requires more than just posing direct ques-
tions and asking application experts to introspect. Despite intense research to develop non-
biasing interviewing techniques [for example, Ericsson and Simon 1984], psychometric
methods [for example, Cooke and McDonald 1987], and ethnographic approaches [for
example, Belkin et al., 1987], the elicitation of authentic problem-solving strategies remains
cumbersome and often is impractical. The translation of authentic reasoning methods (when
such methods can be elicited) into current knowledge-system architectures in a manner
that avoids artifacts due to the knowledge-representation language itself also is an unsolved
problem.

Knowledge engineers, therefore, must apprehend both the authentic and the reconstructed
knowledge derived from application specialists and must assess that knowledge objectively.
The engineers serve the important function of detecting gaps in the knowledge and of help-
ing the application specialists to fill those gaps by defining plausible sequences of actions
that can achieve the necessary goals. Knowledge engineers thus create theories of how the
experts tacitly solve problems. The knowledge bases that embody those theories may not
achieve the same level of performance as do the procedures actually used by domain experts,
but the knowledge bases nevertheless can be observed, extended, and easily disseminated
to other people in need of advice. It is incorrect to view a knowledge base as an embodi-
ment of some human's problem-solving expertise. Knowledge bases instead represent only
models of expert behavior—models that attempt to approximate, but that do not reproduce,
the actual problem-solving steps used by humans [Clancey 1986].

When attempting to automate knowledge acquisition, we must identify the roles that knowl-
edge engineers—and that computer-based tools—can play in either the creation or the exten-
sion of expert models. The PROTEGE system has been developed under the premise that,
at present, it is neither possible nor desirable to build tools to automate the entire knowledge-
acquisition process. We can find data in support of that proposition by examining how knowl-
edge engineers and experts have tried to use previous knowledge-acquisition tools to develop
practical knowledge bases. Some automated tools help system developers to craft a model
of the application task to be performed. Other tools assume that a model of the task area
already exists. We now consider these two classes of knowledge-acquistion programs in
detail.
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3. Tools for Creating Task Models

When building an expert system, developers must first perform a requirements analysis
and must identify the task that the expert system will perform. Then, knowledge engineers
and application specialists traditionally must work together to construct a model of the
proposed system's behavior. This model generally corresponds to the developers' theory
of how the expert actually solves problems. Much of the necessary modeling activity entails
what Newell [1982] refers to as knowledge-level analysis—determining (1) the goals for an
intelligent system, (2) the actions of which the system is capable, and (3) the knowledge
that the system can use to select actions that can achieve the goals. The process of knowledge-
level analysis makes no assumptions about the set of symbols with which the expert system
ultimately will be encoded (that is, about the rules, frames, or other data structures within
the knowledge-representation language). The concern at this stage is only the behaviors
of which the system will be capable.

There is increasing agreement in the literature that system builders should model the
behavior of a proposed system at the knowledge level before they begin to implement the
system. One modeling approach centers on defining abstract, domain-independent strategies
known as problem-solving methods that can form the basis of languages that system builders
can use to describe specific application tasks [Clancey 1985; McDermott 1988], For exam-
ple, Clancey's [1985] model of the method of heuristic classification includes abstract notions
such as (1) conclusions that the problem solver may select from a pre-enumerated set,
(2) solution-refinement hierarchies that allow the problem solver to narrow down the set
of conclusions that it makes, (3) data-abstraction hierarchies that allow the problem solver
to generalize from specific input data, and (4) heuristics that link abstractions of the user's
input data to potential solutions.

Clancey derived the heuristic-classification model from a retrospective analysis of the
behavior of a number of expert systems. Knowledge engineers, however, can apply such
models of problem solving prospectively when they create new knowledge bases, structuring
and clarifying the models that they create. Given an application task, such as MYCIN's
task of identifying potential causes of infectious disease, developers can use the domain-
independent concepts in the heuristic-classification model to define the intended behavior
of an evolving system without reference to individual data structures that might be required
to implement that behavior within the computer. By relating task-specific knowledge (such
as attributes of possible infectious deseases) to well-understood problem-solving methods
(such as the method of heuristic classification), developers clarify the roles that the knowl-
edge plays in the system's production of recommendations, facilitating both the encoding
and the maintenance of that system [McDermott 1988].

Researchers in AI have identified a number of domain-independent problem-solving
methods that can assist system builders in the creation of knowledge-level models [Clancey
1985; Chandrasekaran 1986; McDermott 1988]. Considerable work concentrates on the
elucidation of still other models of problem solving, particularly methods that might be
applied to tasks that cannot be performed using classification. Although there is increasing
consensus on the importance of the modeling approach, the knowledge-acquisition literature
is fragmented by the use of inconsistent terminology. For example, whereas many researchers
use the term problem-solving method for these abstract strategies [Clancey 1985; McDermott
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1988; Boose 1989; Musen 1989c], workers at Ohio State University advocate the term generic
task [Chandrasekaran 1986]. Yet most authors use the word task (without the "generic"
modifier) to refer to an application problem to be solved. Unfortunately, the distinction
between a task and a generic task often confuses both readers and authors. The developers
of the KADS system for knowledge acquisition [Breuker and Wielinga 1987] use the expres-
sion interpretation model to refer to the formalization of a problem-solving method. In
this paper, I consistently use the expression problem-solving method—or simply method—
when referring to an abstract solution mechanism. The term task denotes the statement
of an application problem, without regard to how that problem might be solved.

A source of additional confusion may arise in this paper, however, because there often
are two kinds of models under discussion. First, there are models of methods, which repre-
sent sets of both terms and relationships for describing abstract, domain-independent solu-
tion strategies. Second, there are models of tasks, which represent terms and relationships
for defining application problems to be solved. Frequently, system builders use the terms
and relationships of a model of a problem-solving method (for example, heuristic classifica-
tion) to define the specific terms and relationships that are needed to model an application
task (for example, organism identification in MYCIN). If the task can be solved using the
method, then the model of the method can provide a structure for the model of the task.
Indeed, task models often can be viewed as direct extensions (or instantiations) of models
of problem-solving methods [Musen 1989c].

Recently, several workers have developed computer-based knowledge-acquisition tools that
expand this notion of relating task-specific knowledge to a predefined model of a problem-
solving method [for example, Bennett 1985; Eshelman 1988; Marcus 1988]. Each of these
tools presupposes a model of a different problem-solving method. Knowledge engineers
use the terms and relationships in these models of problem solving to create new models
for the solution of application tasks (Figure 1). In this paper, I refer to these method-oriented
programs as model-building tools, because these tools help their users to devise and refine
task models. To create the task models, users extend a pre-existing model of some problem-
solving method. Each extension defines how the domain-independent method can be used
to solve a particular application task.

Figure 1. Creating a task model. Knowledge-acquisition tools such as ROGET contain models of domain-independent
problem-solving methods. Users of such tools extend the problem-solving models to define specific application tasks.
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ROGET [Bennett 1985], for example, was a knowledge-acquisition tool that contained
a model of diagnosis that was a specialized form of heuristic classification. The program
asked its user to identify the problems to be diagnosed, the causes of those problems, and
the data that could be used to suggest, to confirm, or to rule out those causes and problems.
A user's dialog with ROGET created a knowledge-level specification of the application
task, which was then translated into EMYCIN symbols that could form the basis of a working
consultation program. The knowledge engineer, however, modeled the application task (for
example, the organism-identification task in MYCIN) in terms of the abstract notions of
"problems," "causes," and "data." The developer never had to think in terms of the produc-
tion rules or other data structures that EMYCIN ultimately would require to generate the
proper diagnostic behavior.

A number of analogous method-based tools have been described subsequently, including
MORE [Kahn, Nowlan, and McDermott 1985], MOLE [Eshelman 1988], and SALT
[Marcus 1988]. PROTEGE (which I shall describe in Section 5) is also of this class. Each
of these tools provides a language that allows its users to create models of how application
tasks can be solved. In each case, that language is one of a particular problem-solving
method. Like ROGET, both MORE and MOLE assume that a user's task can be solved
using a specialized form of heuristic classification. PROTEGE and SALT, on the other
hand, adopt problem-solving methods in which the solution is constructed. The method
assumed by PROTEGE is a specialized form of skeletal-plan refinement [Friedland and
Iwasaki 1985]. The method built into SALT is a constraint-satisfaction strategy known as
propose and revise.

Tools such as MORE, MOLE, and SALT allow their users to do much more than to
create models of application tasks. Users of these tools also extend the task models that
they develop with the many domain-specific facts that are necessary to generate complete
knowledge bases. Unlike PROTEGE, these other tools do not sharply distinguish between
the activities of building models and those of extending them. However, because the process
of task-model extension is necessarily preceded by that of task-model creation, it is appro-
priate to view such method-based tools as knowledge-acquisition aids that assist users in
building task models.

In principle, all these model-building tools can be used by domain experts working alone.
Indeed, mechanical engineers used SALT to develop an expert system that configures ele-
vators for new buildings [Marcus 1988]. Such method-based tools, however, are used most
effectively by knowledge engineers [Musen 1989c]. The terms and relationships of the
problem-solving models assumed by the tools (for example, terms in ROGET such as "prob-
lems" and "causes") have precise semantics—distinct from these terms' vernacular mean-
ings—that may not be clear to untrained users. A naive user who recognizes such terms
as familiar lexical entities, but who may not appreciate the subtleties of the problem-solving
model that the terms denote, will be incapable of translating his mental model of a domain
task into an effective knowledge base. More important, the tacit nature of human expertise
often makes it difficult for application specialists independently to develop robust models
of their own behavior. For example, Kitto [1989] reports that when domain experts attempted
to use the KNACK knowledge-acquisition tool [Klinker 1988] without the aid of knowledge
engineers, the experts' inability to create models of the tasks to be performed constituted
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a major stumbling block. The entry of instantiating knowledge to extend task models that
already had been developed with help from knowledge engineers, however, was much more
straightforward for these experts.

4. Tools for Extending Task Models

Regardless of whether a computer-based tool is used to help developers to fashion the task
model, after a knowledge engineer and domain expert have created a model of the intended
behavior of the expert system, that model must be validated. An important form of valida-
tion is to ascertain how well the model applies to closely related application tasks. For
example, given a task model that correctly identifies the presence of infections involving
one class of micro-organism, system builders will want to confirm that the model can be
extended to identify additional classes of potential pathogens. In this phase of knowledge
acquisition, the developers test their model by establishing how that model applies to new
situations. The system builders' original knowledge-level model is an intention of how prob-
lem solving occurs; each specific situation for which the model can be shown to apply
is an extension of that model.1

Although creating a knowledge base may be difficult, extending an existing model is
less cognitively taxing. Whereas experts may not be able to introspect and to articulate
the process knowledge that allows them to solve problems [Johnson 1983; Winograd and
Flores 1986], these experts certainly are adept at voluntering the content knowledge that
may be either consistent or inconsistent with a given model. For example, a physician may
not be able to provide a coherent description of how he actually diagnoses infectious diseases,
but he may be able to describe readily the differences between bacterial and fungal menin-
gitis. Thus, although knowledge engineers typically are needed to help to craft an initial
task model, application experts may require little assistance either in extending an existing
model or in identifying specific situations in which a given model fails. The frequently
raised concern that the experts may not articulate authentic knowledge becomes moot when
the specification of only content knowledge is at issue.

The automated knowledge-acquisition tools that are most suited for direct use by domain
experts consequently are those that ask their users to extend existing models, rather than
to create new ones [Musen 1989c]. Such tools both assume a predefined problem-solving
method and incorporate a model of a class of application tasks; users extend the general
task model to define specific applications (Figure 2). Unlike the detailed task models that
knowledge engineers create and extend using tools such as MOLE and SALT, the task models
that developers build into this latter set of model-extending knowledge-acquisition tools
remain relatively abstract; the models are intentions. Rather than describing a particular
task to be performed, these models define the characteristics of classes of application tasks
that users might want to specify.

An example of such a tool is OPAL [Musen, et al. 1987], which was built by our laboratory
to streamline knowledge acquisition for a medical expert system known as ONCOCIN [Tu,
et al. 1989]. OPAL contains a model of the general task of administering cancer therapy
and asks physicians to extend that model to specific cancer-therapy plans. OPAL's task model
presupposes that patients will be treated with groups of drugs called chemotherapies. OPAL
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Figure 2. Extending a task model. Knowledge acquisition tools such as OPAL contain models of application-task
areas. Users of tools such as OPAL extend the general task models to define specific applications (for example,
particular cancer-treatment plans).

does not require its user to stipulate how chemotherapies are administered; such a model
was developed by the knowledge engineers who built OPAL. Rather, the program asks its
physician-user only to identify the sequence of chemotherapies in a particular treatment
plan, to enter the doses of the relevant drugs, and to indicate how the administration of
chemotherapy must be modified in response to changes in a patient's condition. Although
the individual treatment plans are complex, the pre-existing task model reduces the process
of defining new cancer treatments to simply filling in the blanks of graphical forms from
menus (Figure 3), or to piecing together sequences of icons using a graphical flowchart
language [Figure 4; Musen, et al. 1988]. OPAL thus solicits from the user an extension
to its predefined task model that specifies a new treatment plan; the program then auto-
matically generates from that extension a knowledge base that can be interpreted by the
ONCOCIN system to carry out that plan.

The task model in OPAL makes assumptions regarding everything from the nature of
chemotherapy to the kinds of conditions that can mandate modifications to a physician's treat-
ment plan. Such assumptions define a closed world. There is no way to add new concepts
to the model. OPAL allows physicians to create novel instantiations of existing concepts (for
example, a user can readily define a previously unknown drug or chemotherapy), but the
general classes of concepts in the model are predetermined. The task model tends to be suf-
ficient, however, because of the highly stylized nature of cancer therapy. Because the terms
in the model have precise, intuitive meanings that match the physicians' common usage of
these terms, it is relatively simple for application specialists to fill in the blanks and to con-
nect the flowchart icons in proper sequence to define new therapies. In 1986 alone, physi-
cians used OPAL to enter 36 cancer-treatment plans. Each plan could be entered in a few
hours or days. Previously, knowledge engineers and cancer specialists had typically required
several weeks of work to encode each such plan using traditional, manual techniques.

System builders construct tools such as OPAL with the assumption that they will create
multiple extensions to a given task model (for example, that they will create multiple chemo-
therapy knowledge bases). It would not be practical to incur the expense of programming
such a tool if the system were not to be used repeatedly. There are a number of application
areas where knowledge engineers have built tools to facilitate the construction of multiple,
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Figure 3. OPAL form for actions related to laboratory-test results. In this form, the physician is specifying how
therapy should be modified if the level of bilirubin in a patient's blood is elevated to more than 2.0 mg/dl.

figure 4. OPAL flowchart language. OPAL allows physicians to create visual programs corresponding to the proce-
dural specification of chemotherapies (CHEMO) and X-ray therapies (XRT) in a given cancer-treatment plan. Below
the region where the flowchart is entered is a palette of reference icons, used to add new nodes to the graph.
The specification that has been entered in this figure calls for a single course of VAM chemotherapy to be given,
followed by administration of POCC chemotherapy until the parameter CR (complete response) becomes true.

related knowledge bases. For example, Freiling and Alexander [1984] developed INKA
to aid knowledge acquisition for an expert system that troubleshoots electronic instruments;
each knowledge base created with INKA specifies fault-detection strategies for diagnosing
a particular device. Similarly, Gale [1987] built a program called Student to aid knowledge
acquisition for an expert system that advises researchers on the use of data-analysis programs;
each knowledge base produced with Student specifies the use of a different statistical routine.
In diverse domains such as medical therapy, event scheduling, and process control, system
builders would benefit from tools such as OPAL that allow application experts to work
alone, extending pre-existing task models to specify the knowledge that defines new task
instances.
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Although model-extending tools such as OPAL can be powerful in allowing domain spe-
cialists to author large knowledge bases without the concurrent need for knowledge engineers,
each such tool is necessarily tied to a specific task model. For example, if someone is
not interested in constructing a knowledge base for cancer chemotherapy, OPAL is useless
to him. Tools such as OPAL can play a significiant role in the life cycle of expert systems
when developers require multiple knowledge bases for sets of related domain tasks. The
challenge for tool builders is to recognize appropriate application areas and to generate
such domain-specific programs rapidly and efficiently.

Building the models that form the basis of systems such as OPAL and Student is itself
a problem in knowledge acquisition. Constructing such task-specific tools thus constitutes
another kind of bottleneck. OPAL, for example, required 3.5 person-years to develop before
any knowledge bases could be encoded. Building OPAL was cumbersome because, whenever
developers altered their model of cancer therapy, OPAL had to be reprogrammed. More
important, because that task model was not represented explicitly within OPAL, refining
the model required kowledge engineers to modify LISP expressions throughout the system's
program code; there was no knowledge-level representation of the model. These obstacles
to maintaining OPAL, and the desire to transfer the methodology to application areas other
than cancer therapy, prompted the development of PROTEGE.

5. Generation of Tools that Extend Task Models

A tool for building task models (such as ROGET), which presupposes a particular problem-
solving method, is best used by knowledge engineers to create knowlede-level models of
the tasks that expert systems will perform. On the other hand, a tool for extending task
models (such as OPAL), which presupposes a particular set of application tasks, can be
used by application experts independently to define specific task instances. The two classes
of tools are each suited for distinct phases of the expert-system life cycle. Because model
building is invariably followed by model extension—and because the process of model exten-
sion often uncovers deficiencies in the original model that need to be repaired—an important
goal is to make the use of these two types of tools as integrated as possible. An example
of the necessary integration has been achieved with the research system called PROTEGE
[Musen 1989a, b].

5.1. The PROTEGE System

PROTEGE is a knowledge-acquisition tool that, like ROGET, assumes a particular problem-
solving method—namely, a variant of skeletal-plan refinement [Friedland and Iwasaki 1985].
In performing skeletal planning, a problem solver decomposes a problem's abstract (skeletal)
solution into one or more constituent plans that are each worked out in more detail than
is the abstract plan. These constituent plans, however, may themselves be skeletal in nature
and may require further distillation into subcomponents that are more fleshed out. The
refinement process continues until a concrete solution to the problem is achieved.
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The expert systems that PROTEGE ultimately constructs produce as their output fully
instantiated plans for their users to follow. In the cancer-chemotherapy domain, for example,
such plans provide the details of the treatment that physicians should prescribe for an indi-
vidual patient at specific stages of therapy. The method of skeletal-plan refinement has been
applied to practical tasks not only in the ONCOCIN system [Tu, et al. 1989], but also
in Friedland's [1979] MOLGEN program and in various versions of the Digitalis Therapy
Advisor [Silverman 1975; Swartout 1981]. The method is well suited for applications that
require construction of solutions for which the problem solver's reasoning does not need
to concentrate on the details of selecting and ordering individual plan operators. In tasks
that can be solved by skeletal-plan refinement, the availability of substantial domain knowl-
edge makes it possible for the nuances of operator selection and of constraint satisfaction
to be precompiled into the skeletal plans themselves. The problem-solving method conse-
quently avoids search in favor of the instantiation of predefined partial plans [Friedland
and Iwasaki 1985].

PROTEGE allows a system builder to create an explicit model of a set of application
tasks that can be solved by skeletal-plan refinement. PROTEGE then generates automatically
a knowledge-acquisition tool like OPAL that is custom-tailored for the set of application
tasks that was modeled (Figure 5). PROTEGE recently has been used to construct p-OPAL,
a knowledge-acquisition tool for the cancer-therapy domain that reproduces the functionality
of OPAL. A second program created using PROTEGE, called HTN, allows physicians to
enter treatment plans for the management of patients with hypertension [Musen 1989a].
Unlike OPAL, which required many months to program by hand, both p-OPAL and HTN
were generated with PROTEGE after only a few days of work.

Figure 5. Creating and extending task models with PROTEGE. Knowledge engineers extend the model of skeletal-plan
refinement in PROTEGE to create general task models; the application-specific tools that PROTEGE generates
then allow domain experts to extend those task models to define individual applications.
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With PROTEGE, a knowledge engineer defines a task model by filling out a series of
graphical forms in a manner similar to the way in which oncologists fill out the forms
in OPAL. As in OPAL, the PROTEGE forms cluster together related information for presen-
tation to the user and allow data to be examined and edited using direct-manipulation tech-
niques. Although both PROTEGE and OPAL acquire knowledge using hypermedia interfaces
[Conklin 1987] and share common styles of human-computer interaction, the nature of the
knowledge that users enter into the two systems is quite different. Whereas OPAL acquires
knowledge of specific application tasks, PROTEGE acquires knowledge of general task
areas. Users enter into OPAL knowledge that is expressed in terms of that program's prede-
fined model of cancer-therapy administration. The knowledge that users enter into PROTEGE,
on the other hand, is couched in terms of a predefined model of skeletal-plan refinement.

When PROTEGE is first activated, the system's main menu appears on the workstation
screen (Figure 6). This form allows access to other PROTEGE forms that are available
at the next organizational level. Via the main menu, the user can cause forms to be displayed
that allow him to enter and edit the terms and relationships in a task model.

Figure 6. PROTEGE main-menu form. This form asks the user for the name of the knowledge-editing system
for which specifications are to be entered or edited using PROTEGE. Once the name has been entered via the
pop-up menu, the user can access forms for various topics by selecting the blanks in the menu. The top three
items (PLANNING ENTITIES, TASK-LEVEL ACTIONS, and INPUT DATA) correspond to the three principal
components of PROTEGE'S model of skeletal planning.
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Task models created using PROTEGE have the same three general components as does
the cancer-therapy task model that was hand-coded into OPAL: (1) the planning entities
in the domain from which the target expert system will refine its skeletal plans (for exam-
ple, concepts such as the administration chemotherapies and drugs in oncology), (2) actions
that can modify the application of one of the planning entities (for example, concepts such
as attenuating the dose of a drug or delaying treatment), and (3) input data that will be
entered by the user of the target expert system, the values of which may determine whether
any of the actions should be applied (for example, concepts such as laboratory-test results).

The challenge for PROTEGE users is to create a model of the task area under considera-
tion that can be represented using the terms and relationships of the predefined skeletal-
planning model. The knowledge engineer and domain specialist thus must examine the
application area and discern the kinds of abstract plans that experts may construct. The
developers then map the components of those plans into a hierarchy of PROTEGE planning
entities and establish the attributes of those plan components that are relevant during prob-
lem solving. The users also must determine how experts may modify the standard plans
in the task area on the basis of external conditions, modeling such potential plan alterations
as a set of PROTEGE task actions. Finally, the knowledge engineer and application specialist
must consider those external features that may bear on the system's recommendations. These
features are modeled as input data in PROTEGE'S terminology. The PROTEGE interface
assists the developers by providing an explicit structure and a convenient notation for record-
ing the components of the task model. Nevertheless, knowledge engineers and application
specialists still must collaborate using traditional techniques to elucidate that model in the
first place.

The mechanics of entering a task model in PROTEGE are straightforward. For example,
selecting PLANNING ENTITIES from the main menu in Figure 6 causes PROTEGE to
display the corresponding form for defining the components of skeletal plans in the relevant
application domain. Figure 7 shows this planning-entities form filled out for the hypertension-
therapy task, as was done to produce the HTN knowledge-editing tool. In the figure, the
knowledge engineer has specified that the most general component of a plan is called a
protocol, and that a problem solver may refine hypertension protocols into more detailed
plans that entail the prescription of tablets, the ordering of tests, and the passage of wait
periods. The specifications for these components say nothing about the particular kinds
of tablets that might be prescribed or the precise tests that might be ordered during the
administration of a particular treatment protocol for high blood pressure; the specifications
form only an intention of the application tasks that are possible in the hypertension domain.
Once PROTEGE generates a knowledge-editing tool based on this task model, then applica-
tion specialists can enter the extensions to the model that define individual treatment plans.
The problems of building a task model and of extending that model are therefore separated.

In addition to the form for PLANNING ENTITIES in Figure 7, PROTEGE contains
eleven other forms that knowledge engineers fill in to describe various aspects of a task
model [Musen 1989a]. Each form acquires information related to a particular topic (attributes
of planning entities, properties of attributes of planning entities, actions, attributes of actions,
and so on). All the forms contain blanks for making entries, as well as icons that allow
transfer from one form to the next. When the user selects with the mouse pointing device
a triangular-arrow icon in one of these forms, PROTEGE displays a new form for entry
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Figure 7. PROTEGE form for planning entities. This form is used to enter the planning entities in an application
area and to specify their compositional hierarchy. The knowledge engineer types in the names of the entities
using the right column. Before the engineer can type in the name of a new entity, however, he must first identify
the "parent" entity of which the new entity is a component. In the hypertension-therapy domain, PROTOCOLS
comprise the administration of TABLETS, TESTs, and WAIT periods. Selecting the arrow next to the blank filled
in with the word TABLET would open the PROTEGE form in Figure 8.

of information at the next lower level of detail. For example, if the knowledge engineer
selects the arrow next to the blank for the TABLET planning entity in Figure 7, PROTEGE
will open up a form for editing the attributes of TABLETs (Figure 8). PROTEGE uses
just one form to solicit the attributes of all planning entities that the knowledge engineer
may define. Because different entities necessarily have different attributes, however, the
way that the knowledge engineer fills out the form will depend on the particular entity
the attributes of which are to be entered. When the knowledge engineer selects an arrow
next to one of the attributes listed in Figure 8, another PROTEGE form appears for editing
the properties of the indicated attribute. Thus, PROTEGE uses a hierarchy of graphical
forms that acquire knowledge at increasingly fine levels of granularity. All forms in the
system permit the user to return to the more general form from which the current form
was invoked by selecting an icon labeled finished.

Whenever possible, PROTEGE allows the user to fill in the necessary blanks by making
selections from pop-up menus that the system generates dynamically. This approach not
only minimizes the amount of typing that is necessary, but also helps to ensure that the
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Figure & PROTEGE form for attributes of planning entities. This form lists the attributes of the selected class
of planning entity—in this case, tablet. PROTEGE enters the first six attributes automatically, as these are common
to all classes. The knowledge engineer types in the remainder of the attributes. Selecting one of the arrows causes
PROTEGE to display another form that describes the properties of the corresponding attribute.

knowledge engineer's entries are consistent with information that has been stipulated previ-
ously. The specifications that the user enters into PROTEGE are stored as n-tuples in a
relational database. When the user selects invoke editor from the PROTEGE main menu
(see Figure 6), the system queries the database and constructs a knowledge-acquisition tool
based on those data that is tailored for the intended application area.

The semantics both of the knowledge engineer's entries into PROTEGE and of the
relational-database schema are grounded in the system's predefined model of skeletal-plan
refinement. Thus, when a user indicates that hypertension protocols comprise the administra-
tion of tablets, tests, and wait periods (as in Figure 7), the intention of these compositional
relationships is established by the meaning ascribed to relationships among plan components
in the model of skeletal planning. In interacting with PROTEGE, a knowledge engineer
consequently uses his understanding of the terms and relationships in the skeletal-planning
model to define task-specific concepts in a domain-independent manner.

For each attribute of each task-specific entity that the knowledge engineer describes for
PROTEGE (see Figure 8), the engineer must determine how the attribute is associated with
a particular distinguishing value and what the data type of that value is. For each such
attribute, the knowledge engineer must indicate whether the corresponding value is constant
for all instances of that entity. If the value is indeed fixed, then the knowledge engineer
simply enters that value into PROTEGE. (For example, the ROUTE-OF-ADMINISTRATION
attribute of all instances of antihypertensive tablets has the value oral.) If the value varies
depending on circumstances that can be determined only at the time that the skeletal plan
is refined, then the knowledge engineer indicates to PROTEGE how the target expert system
can ascertain that value at run time. (For example, the CURRENT-DOSE attribute of all
tablets has an integer value that the target expert system computes via rules that are invoked
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at the time of each patient consultation.) Alternatively, the value of an attribute may be
independent of consultation-related conditions, but contingent on the particular instance
of the planning entity. (For example, the value of the INITIAL-DOSE attribute of antihyper-
tensive drugs may vary from tablet to tablet, but still may be a constant for any individual
tablet instance.) These instance-specific values represent elements of domain knowledge
that can be precompiled into the skeletal plans that the target expert system ultimately will
refine. The knowledge-acquisition tools that PROTEGE generates allow users to define
such instance-specific values for particular application tasks. In entering these values, users
of the PROTEGE-generated tools extend the general task model that the knowledge engineer
created using PROTEGE, describing individual applications within the task area.

5.2. Custom-Tailored Model-Extending Tools

The knowledge-acquisition tools that PROTEGE creates produce as their output usable
knowledge bases. These knowledge bases allow an expert-system shell extracted from the
ONCOCIN program (called e-ONCOCIN) to solve application tasks via the method of skele-
tal planning. Users of the PROTEGE-generated knowledge-acquisition tools, however, are
not required to think in terms of either the structure of these knowledge bases or the skeletal-
planning method. Instead, the users view their interactions in terms of the task model devel-
oped using PROTEGE. Like OPAL, the tools generated by PROTEGE help their users
to create new knowledge bases by facilitating the extension of task models, and thus are
intended for use directly by application specialists [Musen 1989c].

The hypertension-therapy model discussed previously has been used by PROTEGE to
create a knowledge editor, HTN, that allows physicians to construct knowledge bases for
hypertension management [Musen 1989a]. The description of planning entities entered into
the PROTEGE form in Figure 7, for example, provides the basis for a graphical environ-
ment in HTN in which users depict the procedures for carrying out individual hypertension
protocols (Figure 9). The model of skeletal-plan refinement built into PROTEGE assumes
that effecting any given plan component necessarily entails carrying out a sequence of opera-
tions involving instances of plan components at the next level of granularity. Because the
task model entered into PROTEGE states that hypertension protocols comprise the adminis-
tration of tablets, tests, and wait periods (see Figure 7), the HTN user automatically is
presented with a flowchart language for indicating how individual hypertension protocols
are composed of a sequence of instances of precisely such elements. The domain-independent
icons with which the user represents the flow of control (namely, START, STOP, RANDOM-
IZE, and DECIDE) and the SUBSCHEMA icon with which he creates graphical subroutines
are built into the graphical language; however, the domain-specific icons (namely, TABLET,
TEST, and WAIT) are derived from the task model defined at the PROTEGE level. The
flowchart shown in Figure 9 describes a typical experimental protocol in which researchers
first administer a placebo tablet for three visits, while monitoring the patients' baseline
blood pressure. The physicians then prescribe an active antihypertensive drug for several
visits, then withhold all medication and observe the patients for any withdrawal effects.
Concurrent with this procedure, a number of laboratory investigations are performed at
designated intervals.
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Figure 9. HTN flowchart environment. The HTN knowledge-editing tool includes a graphical language with which
physicians draw out the sequence of steps in a protocol for antihypertensive drugs. All task-specific features of
this language were derived from the explicit task model that knowledge engineers created previously using
PROTEGE. Compare this flowchart with the diagram constructed using OPAL in Figure 4.

When knowledge engineers use PROTEGE to generate knowledge-editing tools for other
application areas, similar flowcharting environments are created; the task-dependent aspects
of those environments, of course, reflect the models created at the PROTEGE level. Unlike
the flowchart language in OPAL, the PROTEGE-generated languages can be modified easily
by the knowledge engineer. The developer needs only to edit the task model using PROTEGE
and then to regenerate the corresponding knowledge editor. The PROTEGE-derived tools
transparently convert the flowchart diagrams that users draw on the workstation screen into
augmented transition networks (ATNs) that are incorporated within the knowledge bases
of the target expert systems. The e-ONCOCIN inference engine uses these ATNs to deter-
mine how instances of skeletal-planning entities (for example, specific hypertension pro-
tocols) should be refined into their component skeletal plans from one consultation to the
next, Thus, the ATN constructed from the flowchart in Figure 9 would specify that, on
the first e-ONCOCIN consultation for a particular patient, the protocol should be refined
to include the administration of an electrocardiogram (ECG), a chest X-ray study (CXR),
a complete blood count (CBC), a urinalysis (U/A), and a blood-chemistry panel (SMA-18)—
all of which are instances of tests—and that the administration of a placebo tablet also should
occur. On the occasion of the subsequent consultation for the patient, the ATN would indi-
cate that refinement of the protocol plan requires only the administration of placebo.

In addition to the flowcharting environments, the tools created by PROTEGE incorporate
a variety of graphical forms that are much like those in OPAL (see Figure 3). The domain-
specific features of the forms in the PROTEGE-generated system, however, are derived
from the explicit task models that knowledge engineers create using PROTEGE. Figure 10,
for example, shows one of the graphical forms in HTN. This form allows hypertension
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Figure 10. HTN form for vital-sign measurements. This form allows physician experts to enter actions to take
within hypertension protocols in response to changes in a patient's vital signs. Here, the expert is about to specify
actions for e-ONCOCIN to recommend whenever the treating physician notes that a patient's diastolic blood presure
(when measured with the patient in the sitting position) is greater than 90 mm Hg. All task-specific features
of this form were derived from the explicit task model created at the PROTEGE level. Compare with the OPAL
form in Figure 3. (SYST stands for systolic; DIAST stands for diastolic; STAND, SIT, and LIE indicate whether
the patient is standing, sitting, or lying down when the corresponding measurement is taken.)

specialists to indicate how therapy should be modified in response to changes in a patient's
vital signs. A list of possible vital-sign measurements that knowledge engineers previously
entered into PROTEGE appears at the top of this form. The HTN form in Figure 10 allows
physician-experts to indicate actions that e-ONCOCIN should recommend if the end user
notes that any of a patient's vital signs (blood pressure, pulse, weight, or respiratory rate)
is elevated, depressed, or within a particular range. In the figure, the expert is about to
enter the specification that, if a patient's diastolic blood pressure (measured with the patient
in the sitting position) is greater than 90 mm Hg, then the dose of the drug that the patient
is taking should be increased. (The expert indicates by how much to increase the dose using
another form that HTN subsequently displays.) The menu of permitted actions shown in
Figure 10 includes choices such as end protocol, add tablet, and order test. When knowledge
engineers created the hypertension task model, the meanings of these actions were specified.
Although the hypertension-related actions are relatively simple, in domains such as cancer
chemotherapy, task actions can be quite complex and can affect a variety of plan compo-
nents simultaneously [Musen 1989a]. An application specialist who enters knowledge into a
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PROTEGE-generated tool does not need to be concerned with the often-thorny issues of
working out the semantics of such actions; the user merely selects the predefined actions
from the menu. The user, however, still must understand and agree to the semantics estab-
lished by the developers who created the relevant task model in the first place.

5.3. The Performance Element: e-ONCOCIN

The e-ONCOCIN shell has been derived from the ONCOCIN cancer-chemotherapy advice
system [Tu, et al. 1989] in much the same way that EMYCIN was distilled from the MYCIN
program [Buchanan and Shortliffe 1984]. The shell comprises (1) an inference mechanism
that instantiates frame hierarchies using methods such as production rules, ATNs, attached
procedures, and queries to the expert-system user, (2) a database for storing time-dependent
information that was either entered by the end user or concluded by the system during previ-
ous consultations [Kahn, Ferguson, Shortliffe, and Fagan 1986], and (3) a graphical user
interface that acquires data from the user and that displays the recommendations concluded
by the system. The systems created by PROTEGE therefore must deliver to e-ONCOCIN
(1) a knowledge base, (2) a database schema, and (3) specifications for constructing the user
interface. These three functional components are encoded as a set of objects in an object-
oriented programming language [Lane 1986]. Representation of the simple hypertension proto-
col described in Section 5.2 (see Figures 9 and 10) required HTN to generate 177 objects.

Users interact with e-ONCOCIN much as they do with the original ONCOCIN system
[Lane, et al. 1986]. Each time that a consultation is run on a particular case, the user enters
data into a time-oriented spreadsheet (Figure 11). Because the complete spreadsheet is typ-
ically too large to be displayed on the workstation screen in its entirety, the interface is
divided into sections, such that each section refers to a specific class of input data or to
a different portion of e-ONCOCIN's recommendation. With the mouse, users select specific
sections of the spreadsheet to examine and then enter current input data into the rightmost
column of the indicated sections. (The interface makes it convenient for the users to examine
data from previous consultations and to review the recommendations that e-ONCOCIN
suggested during these past encounters, because the data are displayed chronologically by
column.) After all the current data have been entered, e-ONCOCIN completes its refinement
of the relevant skeletal plan and displays the system's recommendation in the corresponding
portion of the spreadsheet. In Figure 11, the recommendation appears in the sections labeled
tablets and tests.

The e-ONCOCIN system, like any expert-system shell, assumes a particular knowledge-
representation syntax (namely, a hierarchy of frames with attached productions rules and
ATNs). The semantics of e-ONCOCIN knowledge bases are determined operationally by
the behavior that results when the inference engine is applied to those frames, production
rules, and ATNs. At the same time, e-ONCOCIN's behavior can be described in terms
of the skeletal-planning model that is built into PROTEGE. When a PROTEGE-generated
tool is used to build an e-ONCOCIN knowledge base, the tool automatically constructs
the frames and other symbols that will cause e-ONCOCIN's activity during a consultation
to match the task model that the knowledge engineer first created with PROTEGE and
that the application specialist extended using the resultant tool.
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Figure 11. Interface for e-ONCOCIN expert systems. In addition to a knowledge base describing a particular
hypertension protocol, HTN generates a user interface for e-ONCOCIN based both on the general task model
entered into PROTEGE and on the specific hypertension protocol entered into HTN. The interface consists of
a spreadsheet, with each column representing the occurrence of a different e-ONCOCIN consultation regarding
the same patient case. In the figure, the sequence of tablets and tests that have been administered corresponds
with the HTN flowchart diagram in Figure 9.

The model of skeletal planning that knowledge engineers extend at the PROTEGE level
to create new task models ultimately is constrained by the limitations of the e-ONCOCIN
shell. Thus, a plan described with PROTEGE can be refined only in a top-down manner,
because the current e-ONCOCIN architecture does not include a general mechanism for
performing backtracking to satisfy constraints [Tu, et al. 1989]. Similarly, the input data
described at the PROTEGE level must be associated with only discrete time intervals that
correspond with elements of past or current plans—a restriction that reflects the semantics
of the e-ONCOCIN temporal data model [Kahn, Ferguson, et al. 1986]. Future work in
our laboratory to enhance the capabilities of the e-ONCOCIN shell ultimately will allow
refinement of the problem-solving model built into PROTEGE and will expand the applica-
bility of the system. In the absence of a meta-metalevel editor to alter PROTEGE'S method-
specific assumptions, such changes will require manual reprogramming.
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6. Discussion

For over 20 years, many workers in AI have viewed knowledge acquisition as a problem
in the transfer of expertise. Concentrating on the issue of knowledge transfer, these research-
ers have tried to identify impediments to successful knowledge acquisition and have suggested
that automated tools can help to improve knowledge flow. Historically, the knowledge engi-
neer is perceived as an intermediary who must interview the expert and then transform the
expert's rules of thumb into representations that can be interpreted by the computer. Because
the knowledge engineer is inexperienced in the application area and because the expert
is unable to envision how his knowledge might be captured within the knowledge base,
failures in communication are inevitable. In the traditional view, the knowledge-acquisition
bottleneck occurs because of these communication difficulties; if the application experts
could somehow record their knowledge directly, without having to explain everything to
the knowledge engineers, the development and maintenance of knowledge bases would be
accelerated.

From the time of TEIRESIAS, the knowledge-acquisition community has struggled to
build tools that might allow application specialists to work alone, bypassing the need for
knowledge engineers. Although the knowledge-base-maintenance features of TEIRESIAS
were never put into practical use, the program set a standard for how most researchers
believed automated knowledge-acquisition tools should function. At conferences and in
the literature, developers of new tools boast whenever application specialists have been
successful in encoding portions of their knowledge without assistance from human interme-
diaries. Although such examples are laudable, what often is missing from these reports
is careful evaluation of the results that have been achieved. It is often impossible to know
how to assign credit for a tool's apparent success. What features of the tool, of the applica-
tion specialist, or of the situations in which the tool was used were most relevant? More
important, knowledge entered directly by application specialists themselves is unlikely to
be authentic (see Section 2.2). Whenever domain experts use knowledge-acquisition tools
without the mediating influence of a knowledge engineer, system builders must be willing
to accept that the entered knowledge may not reflect the behavior that the experts actually
exhibit in practice. Whether the discrepancy significantly degrades the performance of the
target expert system almost never is assessed.

OPAL, for example, is a tool that cancer specialists often use alone without the aid of
knowledge engineers. Like most knowledge-acquisition programs, there are many aspects
of OPAL that never have been evaluated formally. Once the system was put into routine
use, however, the obvious rapidity with which oncology protocols could be encoded using
OPAL made knowledge engineers unenthusiastic, to say the least, about engaging in academic
experiments that required manual knowledge-engineering techniques. At the same time,
because the knowledge that users entered into OPAL was never tacit (but rather entailed
content knowledge about the doses of drugs and the sequencing of chemotherapies), system
builders never saw the need to question the authenticity of the physicians' specifications.
Indeed, knowledge bases created with OPAL have been shown to achieve expert-level per-
formance [Shwe, et al. 1989].

The acquisition of authentic knowledge becomes an issue when system builders create
new task models. It is during this early stage of knowledge acquisition that developers
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formulate their initial theories of how experts solve problems. It is also during this early
stage that knowledge engineers—and computer-based tools—can greatly facilitate the model-
ing process.

Many workers in AI have described expert-system knowledge bases as unstructured collec-
tions of rules that correspond with the problem-solving heuristics actually used by experts.
In this traditional view, the rules are considered to be modular and independent; each rule
thus lacks relationships with other rules in the knowledge base and is devoid of any pre-
ordained role in problem solving. Recently, however, the elucidation of heuristic classification
[Clancey 1985] and of other problem-solving methods [Chandrasekaran 1986; McDermott
1988] has provided an alternative perspective that offers much more guidance to the pro-
grammers who develop and maintain complex knowledge bases. In this new light, expert-
system behavior need not be caused by the seemingly random results of one "modular"
rule triggering the invocation of another; rather, such behavior can result from the applica-
tion of coherent, domain-independent strategies. Emphasizing these problem-solving
methods allows sytem builders to clarify the roles that elicited knowledge plays in arriving
at a task solution and provides a structure by which to direct further knowledge-elicitation
work. The use of an explicit model of problem solving (such as that of heuristic classifica-
tion) when creating the incipient task model in no way guarantees that knowledge engineers
will obtain authentic knowledge from application specialists. The model's framework simply
helps system builders to structure the elicited knowledge and to determine where there still
may be gaps.

Models of problem-solving methods vary in the assumptions that they make about the
tasks to which the method can be applied. Very general methods, such as heuristic classifica-
tion, make few assumptions and, therefore, have tremendous applicability. A great many
diagnostic tasks and plan-selection operations, for example, can be represented as extensions
of the heuristic-classification model. The generality of the model, however, limits the struc-
ture that the heuristic-classification model can impose on the way that knowledge engineers
represent domain tasks. There is a direct tradeoff between the applicability of a problem-
solving model and the guidance that the model can provide for system builders. The more
specialized, less widely applicable models incorporated within programs such as MOLE
[Eshelman 1988] and SALT [Marcus 1988] have, in practice, been more helpful to developers
attempting to structure domain tasks than have more abstract models such as heuristic classi-
fication. The advantage of the more specialized models is that they provide greater assistance
in distinguishing the different ways in which a problem solver may use domain knowledge
to arrive at a solution. To apply these more detailed models, however, system builders must
be able to foresee whether a proposed method will be successful in addressing the task
at hand, or whether that method will prove to be too restrictive.

Models of problem solving, when embodied within a computer-based tool, are much
more useful to system developers than are models that are mapped out only on paper. The
ability to translate a user's extensions of the model into machine-readable knowledge bases
is an obvious advantage. A more subtle, but perhaps more important, benefit arises because
automated tools can facilitate the presentation of complex systems. The graphical forms
in PROTEGE, for example, group together related data and emphasize the relationships
entered by the user. Each transition from one form to another moves the user's view of
the task model that he is creating to a different level within an abstraction hierarchy. The
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forms help to break up a knowledge engineer's entries into manageable portions, and the
relationships among the forms emphasize the relationships among the components of the
user's specifications. The same advantages in knowledge presentation accrue in model-
extending tools as well. Users of programs such as OPAL and those generated by PROTEGE
benefit from graphical presentation formats that accentuate the relationships among large
numbers of entries and that organize those entries coherently.

PROTEGE offers the additional advantage that users can extend a predefined model of
problem solving in two discrete stages. Knowledge engineers first extend a model of skeletal-
plan refinement to create a task model. Domain experts then extend that task model (itself
an extension of the model of the method) to define individual applications. By viewing
knowledge acquisition as the process of task-model formation followed by the process of
task-model extension, system builders can think critically about these two phases of the
expert-system lifecycle and can identify features of knowledge-acquisition tools best suited
for each phase. Rather than concentrating on whether the need for knowledge engineers
has been obviated by a particular tool—and implicitly assuming that eliminating the knowl-
edge engineers is a necessary and sufficient metric of success—developers can consider
the roles that knowledge engineers might play in helping application specialists to build
models. The knowledge engineer should be regarded as a potential partner, rather than
as an inherent marplot, allowing workers in AI to develop more effective strategies for
acquiring and representing the tacit knowledge that separates experts from novices. At the
same time, by recognizing the ease with which application specialists can enter the content
knowledge that extends pre-existing models, developers can build tools such as OPAL that
experts can indeed use independently.

The PROTEGE system demonstrates a divide-and-conquer strategy that separates the
model-building work that application specialists best perform with the aid of knowledge
engineers from the model-extending work that application specialists easily can perform
independently. At the PROTEGE level, knowledge engineers work with domain experts
to build models of tasks that can be solved using the method of skeletal-plan refinement.
These models can then be used as the foundation for custom-tailored knowledge-editing
tools. PROTEGE is used to map out the structure of the task and, consequently, the process
by which a problem solver might arrive at a recommendation. The tools that PROTEGE
generates, on the other hand, acquire knowledge about the content of specific plans. Although
these two phases of knowledge acquisition sometimes may be strictly sequential in nature,
attempts to enter content knowledge frequently point out deficiencies in the initial task model;
PROTEGE'S division of labor allows knowledge engineers to alter the task model easily
whenever application specialists encounter problems during their model-extension work.
(With OPAL, changes to the task model always required cumbersome reprogramming of
LISP code.)

The decision regarding the optimum way to separate task knowledge into a fixed, reusable
portion and a variable, application-specific portion is an important judgment that all
PROTEGE users must face. The declaration of the classes of entities in the domain and
the attributes of those entities is necessarily part of the task model entered into PROTEGE.
The values of those attributes, however, may either be predefined as part of the task model
(or have predefined methods by which the attributes' values may be concluded) or be iden-
tified as content knowledge to be entered by the user of the tool that PROTEGE generates.
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Whether an attribute's value should be considered a constant element of the task model
or part of the application-specific content knowledge is determined by the nature of the
task domain and by the role that that attribute plays in problem solving.

Although demonstrated within the context of the skeletal-planning method, the PROTEGE
approach also should apply to other methods of problem solving. For example, if the system
were adapted for an inference engine that is well-suited for solving problems using heuristic
classification (such as EMYCIN), knowledge engineers then would use PROTEGE to create
models of classification tasks, rather than models of planning tasks. A knowledge engineer,
for instance, might use PROTEGE to describe the set of classification problems that is
encountered during geological mineral exploration, as was done in the Prospector system
[Reboh 1981]. A knowledge-acquisition tool generated by PROTEGE then could be used
by expert geologists to enter specific ore-deposit models. The ore-deposit models could
be converted to knowledge bases for expert systems that workers in the field would use
to detemine the most favorable drilling sites for particular minerals.

Where there are multiple, related tasks within an application area—and when there is
thus the need to construct multiple knowledge bases—the PROTEGE approach offers a
considerable advantage. The difficult problem of creating a computational model of the
domain task does not disappear; the need for knowledge engineers to help application special-
ists to build such a model does not disappear either. Nevertheless, the methodology allows
system builders to confront only a single bottleneck. If knowledge engineers and domain
experts first use tools such as PROTEGE to build the required task models, those experts
then can go to work on their own, extending those task models to define multiple knowledge
bases. The models incorporated within the tools that PROTEGE generates, however, may
not always account for all the professional behaviors that system builders ultimately may
observe in an application area. When the user of a PROTEGE-generated tool is unable
to extend the given task model to specify a required action (that is, if he must unexpectedly
describe an entity that is not within the original model), the task model may have to be
augmented at the PROTEGE level.

Like natural theories that are proposed, tested, and revised, the models constructed by
knowledge-acquisition tools display a distinct life cycle. Workers in AI have built a variety
of tools, each addressing different aspects of this modeling process. Tools such as ROGET
assist developers with the initial model-building phase when the task still may be ill defined.
Tools such as OPAL aid in the final model-extending phase, when the task area is well
understood and end users require multiple, related knowledge bases. The new challenge
is to integrate these approaches, allowing model building to be followed by model extension,
providing continuous assistance from the time that the application task is first identified
to the time that the final knowledge base is disseminated to end users.

PROTEGE is the first step toward that integration. Workers in AI, however, have not
yet identified an optimal technology for acquiring knowledge for expert systems, and even
less is known about acquiring domain knowledge for the purposes of building knowledge-
acquisition tools. Consequently, there will be substantial opportunities for research as the
PROTEGE approach is broadened to other task areas, to other problem-solving methods,
and to other knowledge-system architectures. In the process of expanding the techniques
demonstrated by PROTEGE, we shall be able to learn more about the structure and applica-
bility of new problem-solving methods and about the modeling of domain tasks.
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Notes

1. We also could refer to each situation in which the model applies as an instantiation, although many authors
reserve that word for descriptions of symbols within a knowledge-representation language. In this paper,
therefore, I use the term extension.
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