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Abstract. Most classifier systems learn a collection of stimulus-response rules, each
of which directly acts on the problem-solving environment and accrues strength pro-
portional to the overt reward expected from the behavioral sequences in which the
rule participates. GOFER is an example of a classifier system that builds an internal
model of its environment, using rules to represent objects, goals, and relationships.
The model is used to direct behavior, and learning is triggered whenever the model
proves to be an inadequate basis for generating behavior in a given situation. This
means that overt external rewards are not necessarily the only or the most useful
source of feedback for inductive change. GOFER is tested in a simple two-dimensional
world where it learns to locate food and avoid noxious stimulation.

1. Introduction
People talk fondly of computer programs that will start with some funda-
mentals and acquire all the knowledge needed by some natural sequence
of learning, experiencing the environment in which it must function. Very
little effort gets spent studying what it would take to accomplish this, per-
haps because there is implicit realization that the task is harder than it
might seem (Norman, 1981, p. 284).

As artificial intelligence research has focused on real-world problems, one of
the most important issues to emerge has been the need to flexibly represent
and utilize a large repertoire of knowledge about the problem domain. The
kind of knowledge required includes more than specific expertise about the
problem-solving task. It also includes background knowledge about the overall
task environment - the sort of general assumptions, facts, and methods usually
associated with ordinary common sense. In a complex task domain, a well-
organized body of such facts and methods can provide an important context
for deciding which problem-solving assumptions are reasonable or assessing
which new facts are important. This source of power is especially important
to machine learning research (Carbonell, Michalski, & Mitchell, 1983). Task-
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specific knowledge helps to focus the application of inductive inference methods
by constraining the choices about what to learn and when to learn. A broad
base of general knowledge provides a framework in which new information can
be understood, making it easier to integrate that information with what is
already known.

An obvious question for researchers in machine learning is how to bootstrap
enough knowledge into the system to realize these advantages. Some have
argued for long-term rote efforts to construct large knowledge bases having
encyclopedic scope (Lenat, Prakash, & Sheperd, 1986). Others stress the crit-
ical role of empirical knowledge derived from a system's experience with its
environment (Simon, 1983). Both methods of acquiring knowledge about the
environment are likely to be important. In either case, one of the fundamen-
tal research problems for machine learning is understanding how to organize,
construct, and modify representations of the task environment (Scott, 1983;
Holland, Holyoak, Nisbett, & Thagard, 1986; Michalski, 1986). This paper de-
scribes machine learning research that uses genetic algorithms (Holland, 1975)
and classifier systems (Holland, 1976) to acquire empirical knowledge about
an environment.

Constructing representations of an environment is particularly difficult when
the correspondence between representation and reality cannot be taken for
granted. Most real-world environments can be very uncooperative from the
standpoint of providing salient, timely, complete, or unambiguous information.
A learning system trying to cope with such an environment can be faced with
several challenges:

• Categorizing situations given uncertain and perpetually novel input;
• Predicting future states of a complex environment on the basis of incom-

plete knowledge;
• Determining how a situation is relevant to the attainment of ill-defined

goals given only sparse payoff or reinforcement;
• Deciding on a course of action when the requirements for behavior are

continual and perhaps even real-time.

These difficulties impose important constraints on the kinds of learning strate-
gies that can be successful.

For example, consider how a concept-learning task is affected by these con-
ditions. Whenever the stream of input data is complex and the important
concepts to be learned are not specified in advance, a learning system must
decide which inputs to group into categories as well as how each category is
defined. These decisions require a pragmatic, incremental approach to learning
that differs in important ways from most traditional concept-learning methods
(Lebowitz, 1987). Similar considerations arise when learning tasks are closely
coupled with goal-directed problem-solving activity (Holland et al., 1986). Un-
certainty surrounding inputs and goals makes categorization difficult, and it
complicates both the association of actions with categories and the discovery
of action sequences required to attain goals. Under these circumstances, a
learning system must actively generate opportunities for inductive change by
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using the verification or falsification of its own predictions as a feedback signal
(Holland, 1986).

The best way to cope with environmental complexity and uncertainty is to
maintain a model of the environment that summarizes what to expect and
suggests appropriate actions. As Craik (1943, p. 61) put it, a system having
an internal model of external reality

... is able to try out various alternatives, conclude which is the best of
them, react to future situations before they arise, utilize the knowledge of
past events in dealing with the present and future, and in every way react
in a much fuller, safer, and more competent manner to the emergencies
which face it.

This kind of model, together with feedback from the environment that allows
continual adjustment of expectations to reality, subsumes a fundamental aspect
of commonsense knowledge (Simon, 1983). Moreover, there are good reasons
to believe that a model of the environment provides important constraints
on the kinds of categories a system can acquire (Murphy & Medin, 1985),
making the model a primary source of inductive bias. Since learning is the
basic tool for building and maintaining such a model, it is clear that models
of the environment are an important topic for machine learning research.

What are appropriate task domains for investigating the machine learning
issues raised here? Applications related to mobile robots and autonomous ve-
hicles are obvious candidates. Although there has been limited emphasis on
learning in much of the practical work on mechanical devices, computational
models of simple organisms and other autonomous systems in simulated worlds
are free to make extensive use of learning techniques. In these domains a model
is important not only as a source of inductive bias that directs and constrains
learning; it is also important in helping to manage continuous problem-solving
behavior and interaction with the environment. For this reason, learning must
be flexibly integrated with the other mechanisms that help the system function
successfully. In particular, learning must operate on the structure of knowl-
edge representations, as well as the way in which those representations are
used. These two aspects of information processing, in the context of purpose-
ful behavior in an environment, fall squarely under the umbrella of cognitive
science. Techniques for learning internal models of an environment can there-
fore be profitably studied in conjunction with cognitive models of functioning
in that environment.

There have been several research efforts involving machine learning tech-
niques and cognitive models of simple organisms. Doran (1968) describes a
simple automaton that uses rote learning to model every possible state transi-
tion in its simple environment, and then uses that model to find its way back to
a known location. Findler and Allan (1973) designed an organism that learns
a world map of a dynamic, three-dimensional environment by rote. This map
includes object attributes and information about goal attainment, as well as
a basic summary of state transitions. Holland and Reitman (1978) demon-
strate that a rule-based cognitive system can use genetic algorithms to learn
the stimulus-response associations needed to obtain rewards in a simple maze.
Sutton and Pinette (1985) show how a connectionist network can learn the
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stimulus-stimulus associations needed in a model by incrementally improving
internal predictions of future states of the world.

The Holland and Reitman (1978) work has led to more extensive research
along the same lines. Their rule-based cognitive model was the first experiment
in the research on classifier systems (Holland, 1976). This paradigm is well
suited for studying the acquisition of internal models because classifier systems
can dynamically construct and modify rule-based representations. For exam-
ple, Booker (1982) used a classifier system to model an organism that builds
nontrivial cognitive structures based on experience and learns to respond ap-
propriately to both attractive and aversive stimuli. Wilson (1985, 1987) has
focused on a specialized set of cognitive tasks that he calls the animat problem:
learning multiple disjunctive concepts incrementally under payoff. His animat
was a classifier system that learned to find food and navigate around obsta-
cles in a two-dimensional world. Although the classifier-system framework has
broad implications for understanding learning and mental models in organisms
and machines (Holland et al., 1986), the scope of experiments conducted so
far has been relatively small.

This paper describes a particular classifier-system model of cognitive be-
havior, illustrating the current state of the art and pointing out the machine
learning issues requiring further study. The goal of this research is to design
machine learning systems capable of building functional "cognitive" models
of realistic environments. The models are cognitive in the sense that they
must include representations of categories and their associations with each
other and with overt behavior. The models are functional in that the system
must continually use its model to select an action. The next section contains
a brief overview of classifier systems. In subsequent sections we give more
details about what it means to learn an internal model, and we describe ex-
periments demonstrating the potential of classifier systems to accomplish this
goal. Booker (1982) presents these results in more detail.

2. Overview of classifier systems

A classifier system is a parallel, message-passing, rule-based system designed
to permit nontrivial modifications and reorganizations of its knowledge as it
performs a task. In the simplest version, all messages are fixed-length binary
strings. The set of messages to be processed at any given moment is stored on a
message list. Classifier systems process these messages using a finite population
of classifiers. Every classifier is a fixed-length rule having the structure

Each ti is a fixed-length string called a taxon in an alphabet {0, 1, #}, which
serves as an activating condition. A classifier can be activated only if each of its
taxa matches a message on the message list, where a match requires that the
0's and 1's in the taxon be identical to the values at corresponding positions of
the message. The # symbol is a "don't care" place holder that allows general
conditions. Once a classifier is activated, it generates the message m and places
it on the message list.
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2.1 Basic organization

The typical classifier system is organized into three interacting subsystems
(Holland, 1986): a performance system, a credit assignment system, and a rule
discovery system. The performance system is responsible for interacting with
the problem-solving environment and generating behavior. It consists of the
following basic execution cycle for activating rules:

(1) Place messages from the input interface on the current message list;
(2) Compare all messages to all conditions and conduct a competition among

relevant classifiers to determine which ones will become active;
(3) For each active classifier, generate one message for the new message list;
(4) Replace the current message list with the new message list;
(5) Process the current message list through the output interface to produce

system output;
(6) Return to step 1.

Note that the performance system is designed to activate several classifiers in
parallel. Classifier systems can use groups of rules to represent complex con-
cepts, constraints, and problem-solving behaviors. Because individual rules
must compete to become active, classifier systems have the flexibility to con-
struct and modify the representation of a problem as problem solving proceeds.

The credit assignment system is responsible for evaluating each classifier
and assessing how useful it has been in producing successful problem-solving
behavior. This is a difficult problem in a system that uses many rules over sev-
eral execution cycles to produce that behavior. It is made even more difficult
when overt feedback from the environment is a rare event. The only realis-
tic alternative for classifier systems is to evaluate performance for behavioral
sequences in terms local to the classifiers that were involved.

The mechanism most often used for this purpose is the bucket brigade algo-
rithm (Holland, 1985). Every classifier is assigned a quantity called strength
that summarizes its overall usefulness to the system. Classifiers that are rele-
vant to a message bid a small fraction of their strength to become active. The
competition for becoming active is resolved probabilistically based on the size
of these bids. An active classifier then pays its bid to the classifier that posted
the message on the previous cycle. Each classifier thus participates in a trans-
action where it pays and receives strength. This repeated strength adjustment
eventually leads to bids that predict the amount of strength a classifier expects
to receive when it is activated. Classifiers active when payoff is available di-
rectly from the environment receive their increase in strength directly from the
payoff. In this way, all rules activated during a behavioral sequence leading to
external payoff eventually accrue strengths that predict the size of that payoff.
This shuffling of strength between active classifiers on successive cycles is an
effective way to adjust predictions about eventual goal attainment. When pre-
dictions do not involve external payoff, more direct prediction-based revision
methods can be used.
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The rule discovery system is responsible for generating plausible new clas-
sifiers that might yield better problem-solving performance. The mechanism
used most often for this purpose is a genetic algorithm (Holland, 1975). A ge-
netic algorithm is a general-purpose search procedure that uses sample-based
induction (Holland et al., 1986) to conduct the search. The basic requirement
for the procedure is that the elements of the search space be strings constructed
of components or building blocks and that the elements can be ranked in terms
of a solution-relevant preference. The algorithm draws an initial sample of el-
ements from the space, then repeatedly selects and recombines building blocks
from the current sample to construct elements of the next sample. The new
elements are constructed using genetic operators such as crossover, inversion,
and mutation. In classifier systems, the preference criterion for selection is
based on strength and new classifiers replace low-strength classifiers in the
current population.

A more detailed discussion of classifier systems, genetic algorithms, and how
they relate to more conventional AI and machine learning methodologies can
be ifound in Booker, Goldberg, and Holland (in press).

2.2 Implementation issues

This rather broad characterization of classifier systems leaves several ques-
tions unanswered about their implementation. Because the performance, credit
assignment, and rule discovery systems are so tightly coupled, implementation
decisions cannot be made arbitrarily. Systematic criteria for making these deci-
sions, such as those available for basic genetic algorithms (Grefenstette, 1986),
are the subject of ongoing research in classifier systems. However, guidance is
currently available from an examination of successful architectures. We briefly
review some of these implementation issues and how they have been success-
fully handled.

In looking at the basic execution cycle of a classifier system, the most obvi-
ous issue involves when rule discovery should be triggered. More subtle ques-
tions relate to the factors necessary for computing a bid, and the mechanisms
needed to retain useful concepts when classifiers are constantly being added
and deleted. Below we summarize many of the important decisions required
for implementation.

Resource management. Because classifier systems work with a fixed-sized pop-
ulation of classifiers, the size and use of the limited classifier memory is an
implementation issue. There must be some assurance that the system has
enough memory to solve its problem. The following heuristic has proven to be
a useful way to determine how much memory is required. First estimate the
number N of rules or concepts needed to solve the problem. Then multiply
N by the number C of classifiers a standard genetic algorithm (Grefenstette,
1986) would need to discover any one of these concepts in isolation. The result
(CN) is a working estimate of the total number of classifiers the system should
be given. Since the typical small problem requires a few hundred classifiers,
data structures like digital search trees or discrimination nets are often used
to efficiently determine which classifiers compete to become active.
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It is also important to allocate the available memory so that efforts to dis-
cover one concept do not interfere with concomitant efforts for other concepts.
The standard genetic algorithm searches for the single concept having the
highest overall strength, but several modifications have been proposed to let it
discover multiple concepts simultaneously for use in a classifier system. When
the number of concepts is known in advance, a classifier system can be de-
signed to have separate populations for each concept (Holland & Reitman,
1978). Alternatively, one can have a single population with predetermined
partitions and restrictions on learning operators (Goldberg, 1983). If these
precompiled solutions are not possible, dynamic memory management can be
achieved by implementing simple mechanisms analogous to the speciation and
niche competition found in biological populations (Booker, 1985; Wilson, 1985,
1987).

Triggering conditions. The primary concern about when to trigger rule discov-
ery is ensuring that classifiers are fully evaluated before their strengths are used
to select the building blocks for recombination. All successful implementations
of classifier systems have made sure that the interval between rule discovery
events is greater than the expected time required to evaluate a classifier. Rule
discovery is usually triggered to coincide with payoff events, though in some
systems an additional background rate of rule generation is used to help make
the discovery process more robust (Booker, 1982; Wilson, 1985). It is impor-
tant to note that the frequency of rule deletion is tied to the frequency of
rule discovery. A high deletion rate can bias the system against rules that are
activated and receive payoff less often than the average rule (Wilson, 1987).

Unrecognized situations. The basic execution cycle presumes that the system
always has at least one classifier that is relevant to a message. Although
there are some simple situations where this can be assured by starting with
an initial population of very general classifiers (Holland & Reitman, 1978), in
most cases provisions must be made for situations in which no rule is applicable.
One approach is to insert the unrecognized message into the taxon of a new
classifier, perhaps with a few #'s added, and to generate the rest of the classifier
randomly (Holland, 1976; Wilson, 1985). An alternative is to identify rules
that are partially relevant and use the rule discovery process to find building
blocks for the desired new rule (Booker, 1982). The relative merit of these two
approaches has not yet been determined. However, it is clear that a classifier
system cannot succeed unless it learns something from unrecognized situations.

3. Learning viewed as model building
Learning in most implementations of classifier systems depends heavily on

overt external "rewards" that indicate which inputs are goal-related and which
behaviors are effective. This emphasis on external reward as the driving force
for learning is very similar to the stance of the stimulus-response (S-R) learning
tradition in psychology (Bower & Hilgard, 1981). The basic epistemological
assumption is that all the system's knowledge is summarized by the strengths
associated with given responses in given situations. S-R learning problems fit
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easily into the classifier-system framework because the rule discovery system
builds associations between situations and responses, and because the credit
assignment system refines strengths so that they can be used to select the cor-
rect action. The problem with a strict interpretation of this stance for learning
in general is that it will lead classifier-system researchers into the same dilem-
mas that plagued the S-R psychologists: it will be difficult to account for
latent learning that occurs without external reward, hypothesis-testing behav-
ior, and any other "cognitive" behavior that is easily explained by positing
explicit internal representations of goals.

An alternative formulation of learning processes is in terms of knowledge,
goals, and purposes rather than collections of stimulus-response pairs. This
emphasis follows the tradition of cognitive learning theories in psychology
(Bower & Hilgard, 1981). The important epistemological assumption here
is that the system maintains an internal model of the environment and how
to function in it. Such a model describes predictive and associative relations
between events as well as connections between events and overt responses.
Prom the cognitive point of view, learning focuses on model building instead
of strengthening rewarded S-R pairs.

The driving force for learning these internal representations is derived pri-
marily from the system's routine functioning and problem solving. Learning
is triggered whenever the system's model proves to be an incomplete, incon-
sistent, or otherwise inadequate basis for generating behavior in a given situ-
ation. Overt external rewards provide useful guidance about which events are
important and where model-building efforts should be focused. However, such
rewards are not necessarily the only or the most useful source of feedback for
inductive change. As Holland et al. (1986) point out, a system that models
its environment can use the outcome of model-based predictions about events
and outcomes to guide induction. In this way, learning focuses more on avoid-
ing surprise at events in the environment than on explicitly optimizing system
rewards.

Samuel's (1959) early learning research on the game of checkers is an in-
structive example of the model-building approach. The only overt reward for
checkers is a single bit of information (win or lose) available at the end of the
game. Rather that trying to devise a clever and informative reward function
or a complex credit assignment scheme, Samuel chose to model the problem-
solving environment (i.e., the opponent). His learning system used the outcome
of model-based predictions as feedback to improve the model and thus make
it a more effective tool for choosing good moves.

Before classifier systems or any other machine learning paradigm can adopt
the model-building approach to learning, the possibilities for induction must be
sufficiently constrained. The most readily available sources of constraint are
the environment and the learning system's problem-solving activity. When
inductive mechanisms are tightly coupled with problem solving, learning takes
place in a pragmatic context that delineates which inductions are important
and reasonable (Holland et al., 1986; Laird, Rosenbloom, & Newell, 1986). A
problem-solving environment is a helpful source of constraints to the extent
that it is coherently organized. Coherent environments are characterized by
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discernible regularities, structured categories, and consistent laws governing
state transitions. This organization provides a frame of reference in which it
is practical to formulate and test inductive hypotheses. Regularities of this
kind are characteristic of natural environments, and are routinely exploited by
organisms as they learn about the world (Kaplan, 1982).

One cannot take for granted this kind of synergetic relationship tying to-
gether learning, problem solving, and the environment. It must be carefully
incorporated into the specification of a machine learning problem. Many ex-
periments in machine learning select an isolated problem to solve, together
with a few example solutions or a helpful critic to provide feedback. This ar-
rangement often does not provide a repertoire of experiences that is rich and
complex enough to require dynamic construction, testing, and refinement of
internal models. A key issue is how easily the information available in the en-
vironment can be extracted and exploited to uncover goal-relevant regularities.
Information from a problem-solving environment must inevitably be presented
to a machine learning system as a symbolic expression. However, if the struc-
ture of these symbols and expressions is not correlated with the structure of
the objects they designate, the information in the environment may not be
easily accessible.

Many learning systems use high-powered interpretive processes to determine
which symbols are relevant in a context and how the symbols are related to each
other. The difficulty of making such interpretations in a complex environment
has led to doubts about the ability of artificial systems to function in realistic
task domains (Dreyfus, 1972). The complexity of the mechanisms required
to exploit environmental information can be substantially reduced by paying
careful attention to the representation of the environment. As Boden (1977,
p. 15) argues, when "... the likeness between sign and significate is rich and
systematic,... it can be exploited in using the symbolic representation as an aid
to intelligent thinking about the thing symbolized." A systematic relationship
between the structure of environmental symbols and the objects they designate
can give a learning system a crucial advantage in coping with a complex and
uncertain problem-solving environment.

4. A test bed for studying model building
Identifying regularities in structures and their relationships is the most fun-

damental kind of inference organisms must make in the real world (Bruner,
1957). Therefore, it seems reasonable to consider simulations of simple or-
ganisms as a way to study how machine learning systems can build and use
internal models of their environment. A very basic problem-solving task for
any organism is to locate food while avoiding dangerous or noxious stimulation.
In the remainder of this section, we describe a class of simulated environments
for experimenting with this task, together with a hypothetical organism and
the input-output primitives needed to function in these environments. In sub-
sequent sections, we show how a classifier system can use these primitives to
learn to accomplish the task by building an internal model.
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Figure 1. A typical distribution of objects and signal intensities in an environment.
Each object (a square or circle), is located at the center of its stimulus aura
and intensity falls off 30% per unit distance. The dots indicate loci where
no signals are available.

4.1 Design of an artificial world

The proposed locomotion task requires an environment having two kinds of
information: cues that orient behavior with respect to the relevant spatial pat-
terns in the environment, and cues that convey information about object cat-
egories. Keeping in mind that exploitable regularities are the most important
property from the standpoint of learning, a very simple artificial environment
can be designed to have useful information of this kind.

The first decision that must be made regarding spatial information concerns
the number of spatial dimensions. Locating objects in space requires knowledge
about their direction and distance. It is easy to directly manipulate direction
and distance parameters in two dimensions. Designing a three-dimensional
world requires attention to details about surfaces and volumes that complicate
localization in ways not relevant to the simple notion of locus needed here. Ac-
cordingly, we will limit our attention to environments having two dimensions.
The environment is defined as a discrete hexagonal grid that is mapped onto a
torus so that there are no edges. Stimulus signals from an object are available
in a symmetric area around the object's location. The intensity of each signal
is a scalar quantity that is highest at the object location and that falls off with
distance uniformly in all directions (see Figure 1). A simplifying assumption
is that all objects are sources of stimulus energy in a uniform medium. Signals
from different kinds of objects do not interfere with each other, and signals
from similar objects that can be detected at the same location combine ad-
ditively. Thus, a straightforward intensity gradient is available to help orient
behavior relative to an object's location.
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The identity of a stimulus can be conveyed by associating a pattern cate-
gory with each object. Hayes-Roth (1973) describes a "schematic" approach
to characterizing pattern categories that compactly specifies multiple disjunc-
tive concept structures. In the simplest case, this approach assumes that each
pattern category can be defined by a single structural prototype or charac-
teristic. Each such characteristic is a schema designating a set of features
values required for category membership. Unspecified values are assumed to
be irrelevant for determining membership. Disjunctive categories are handled
by specifying one characteristic for each disjunct. Pattern generators based
on the schematic approach generate exemplars by assigning the mandatory
combinations given by one of the pattern characteristics and producing irrele-
vant feature values probabilistically. In this way, each exemplar of a category
manifests at least one of the defining characteristics.

We can define categories having binary signals that are suitable as input for
a classifier system as follows. Each characteristic is a string in the alphabet {1,
0, *}, where the * is a place holder for irrelevant features. A characteristic is
a template for generating binary strings in the sense that the 1 and 0 indicate
mandatory values and the * indicates values to be generated at random. Thus,
the characteristic 1*0* generates the four strings 1000, 1001, 1100, and 1101.
Stimulus signals for disjunctive object categories are generated by randomly
selecting one characteristic to use as a template. Note that a new stimulus
signal is generated every time the system samples the environment for input.
This way of designating stimulus signals enhances the potential for environ-
mental uncertainty, because the information about an object available at any
given location is constantly changing. Moreover, it allows us to challenge the
learning system with some of the most difficult categorization problems found
in the machine learning literature, such as the Boolean 'multiplexer' concept
(Wilson, 1987).

4.2 Design of a hypothetical organism

Having specified a class of environments affording the localization and iden-
tification of objects, we can now consider the kind of problem-solving behaviors
that can exploit these environments. Here again, it is helpful to begin by look-
ing at the way organisms accomplish these tasks in the real world. Tinbergen's
(1951) model1 of instinctive behavior in animals speaks directly to these issues.
The simplest kind of instinctive mechanism relies on the environment to select
and activate appropriate behavior. Tinbergen uses the term innate releasing
mechanism to describe a "hard-wired" pathway between a perceptual unit that
detects some significant stimulus or event and the behavioral routine that gen-
erates the appropriate response. The presence of the stimulus directly elicits
or "releases" the behavior in question. An organism that relies exclusively on
innate releasing mechanisms must wait for the environment to provide an ac-
tion mandate. In a complex and uncertain environment, this would most likely
be a long and dangerous wait. Not only might there be no stimulus sufficient

1We consider the principles of the model's organization here without endorsing Tinber-
gen's mechanisms, which require the accumulation and "draining away" of various impulses.
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to activate a releasing mechanism, but several pathways might be activated at
the same time, requiring the organism to make some kind of control decision.

In order to choose one pathway over another, an organism must be given
criteria for deciding which inputs are most important in a given situation, and
it must have the structural apparatus to selectively process and respond to the
chosen stimuli. The most basic kind of control factors involved in modulating
response selection in animals are called motivational factors. These factors
depend on metabolic conditions, such as hormone concentrations and food or
water deprivation levels. Their effect is to determine a central motive state
that changes the relative effectiveness of stimuli to elicit behavior (Bindra,
1978). Tinbergen's model emphasizes that there are important differences in
the roles of the motivational factors and releasing stimuli. A motivational
factor selects for some behavioral goal by priming or otherwise increasing the
readiness of appropriate motor complexes. Once a set of alternative behaviors
has been primed, the current input configuration releases the one that is most
appropriate. In this model, the priming is necessary for the releasing action
to be effective.2 This allows an organism to process information "off line"
without immediately producing overt behavior, an important capability in any
environment where there are very complex associations between actions and
the state changes they produce.

Additional machinery is required to handle situations where no behavior is
released or several actions are available for achieving a particular goal. Tin-
bergen proposes a hierarchically organized collection of instinctive centers as
a useful way of managing these complexities of instinctive behavior. An in-
stinctive center is a simple mechanism or agent that has a releasing stimulus
and an associated action, just like an innate releasing mechanism. However, it
has two potential sources of control inputs: the current motivational state and
other instinctive centers higher in the hierarchy (see Figure 2). Centers at the
same hierarchical level designate behaviors associated with different subgoals.
Centers associated with the same subgoal at different levels are connected, so
that generic behaviors are at the higher levels and more specific or stereotyped
responses are at the lower levels.

The lowest-level agents are innate releasing mechanisms that may or may
not have control inputs. Activation of an instinctive center, via the combined
effect of facilitating control signals and a releasing stimulus, leads to priming of
all directly subordinate centers. If none of these subordinate centers becomes
active, the center releases its own behavior. Typically this will be some kind of
search or exploratory behavior that strives to find a stimulus that will release
one of the subordinate centers. The exploratory behavior associated with an
active center is therefore a default response when control cannot be passed
to a more specialized behavior. If more than one subordinate center tries to
become active, priority is given to the center that is lowest in the hierarchy.
If several centers within a hierarchical level try to become active, the conflict
is resolved through a winner-take-all competition among the centers based on

2 Behaviors related to certain defensive or aversive reactions must be effectively "ungated"
so that the releasing stimulus can interrupt processing and reliably elicit a response. It is as
if there is an ongoing motivation to deal with these stimuli.
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Figure 2. An instinctive center, the basic element in Tinbergen's (1951) model of
the organization of instinctive behavior. Centers are linked together in a
hierarchy. A typical center accrues support from motivational factors and
from other centers higher in the hierarchy.

strength of activation. Thus, Tinbergen's representation for the organization
of a major instinct is a complete hierarchy. The highest center in the hierarchy,
which represents the overall goal, may or may not require a releasing stimulus
to be activated.

We can use this framework as the basis for an organism that finds objects
in our artificial world. First we specify the primitive motor actions:

• TURN - changes the direction of motion 60° to the right or left.3

• MOVE - takes the organism one step directly ahead.
• CONSUME - lets the organism nourish itself when in contact with a food

resource.

The sensory interface is equally primitive. The organism is given detectors that
can pick up only the signals directly ahead, to the right, and to the left. This
restricted "retina" gives the organism a well-defined orientation and focuses
its sensors on objects in its path. The organism also has a detector indicating

3In a hexagonal grid, the direction to neighboring points is always a multiple of 60°.
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Figure 3. The control structure for the simple organism, shown here as an "instinct"
following Tinbergen's (1951) model of instinctive behavior.

contact with objects, along with a motivational "need" for food that increases
every time step but is satisfied when food is consumed.

These few primitives can be combined to produce goal-directed behavior.
The necessary motor routines are derived from the primitive actions:

• ESCAPE - a random TURN, followed by a MOVE.
• EXPLORE - a random TURN, followed by a random number of MOVES.
• APPROACH - TURN to center the strongest intensity on the retina, then

MOVE.
• AVOID - TURN away from the most stimulated part of the retina, then

MOVE.

Figure 3 shows how one can organize these behaviors into a "locomotion in-
stinct" for the hypothetical organism. The instinctive behavior is organized
into three levels. At the highest level is a center responsible for overall control
of locomotion. In our organism this center is always active. Whenever none of
the lower-level components is active, the default motor response is EXPLORE.
The middle level contains two centers subject to motivational control, only one
of which can be active at any given time. The food-seeking center, when active,
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causes the organism to APPROACH food until contact is made and consumption
is possible. The amount of facilitation for food seeking depends on the level
of need for food. The pain-aversion center, which always has enough facilita-
tion to be released by a noxious signal, causes the organism to AVOID noxious
objects. At the bottom level are the two stereotyped responses CONSUME and
ESCAPE. CONSUME requires facilitation from the food-seeking center and con-
tact with food to become active. ESCAPE is released automatically by contact
with a noxious object.

One can easily show that this organism finds food and avoids noxious objects.
(Booker, 1982). As a simplification, the hunger level is implemented with a
counter that is incremented every time step and reset to zero by CONSUME.
In an environment containing 400 distinct locations, four food objects, and
four noxious objects (see Figure 4), the organism never goes more that 80
steps without locating food once it is motivated to do so. By contrast, if one
assumes that any deprivation interval exceeding 100 steps is lethal, a simpler
organism using only EXPLORE to find food usually lives about 191 time steps.
The goal-directed processing of stimulus signals is therefore a crucial advantage
for surviving in this environment.

5. Implementing the organism as a classifier system
The hypothetical instinctive organism just described has been implemented

using a specialized classifier system called GOFER. Classifiers learned from
experiencing the environment are used as releasing mechanisms to control the
food-seeking and pain-aversion instinctive centers. The classifier system thus
must learn how to run about and "go for" what it needs, an ability that
was programmed into the instinctive model. We assume that the organism
has no a priori knowledge about which stimulus patterns are important, nor
about why a stimulus might be relevant. Only contact with appetitive and
aversive objects has any built-in significance for behavior. Contact with these
objects is reinforcing in that the system receives an unambiguous signal that
representations for those events should be learned. Activation of the internal
representations of these events in other situations then becomes the criterion
for releasing food-seeking or pain-aversion behavior. This section discusses
GOFER'S classifier-system architecture and its operating principles in more
detail.

5.1 Functional constraints

The simulated environment places several demands on the organism that in-
fluence the way we have implemented the classifier system. First, GOFER must
be capable of identifying and selectively processing the most relevant signals
from the environment. In order to learn which stimulus patterns and associ-
ations are significant, it must cope with a bootstrapping problem. Clearly, it
will not do to wait for external reinforcement to indicate relevance. Not only is
such reinforcement rare in an uncertain environment, but regularly attaining
reinforcement is an achievement that itself requires a considerable amount of
learning. Similarly, it is not helpful to rely exclusively on explicit goals or
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Figure 4. Two environments for experimenting with the locomotion task. The food
objects (squares) and noxious objects (circles) all have intensity auras like
those shown in Figure 1. The locomotion task is easy to solve in the
environment on the right because EXPLORE is an adequate strategy for
finding food. Surviving in the environment on the left is more challenging
because it requires goal-directed processing of stimulus signals.

purposes to indicate relevance. Goal-directed selection presupposes some prior
knowledge about the content or distal source of the stimuli. Even a default
goal like "curiosity" cannot help unless it specifies exactly what it is the system
is supposed to be curious about.

The bottom line is the need for an assortment of attention mechanisms that
ensures the system gets a broad brush overview of what it needs to know.
Attention in natural systems is a very complex issue (Norman, 1976) and we
will not attempt to discuss its many facets in detail. It suffices to say that, at
the sensory interface, selecting signals having distinctive physical properties is a
useful heuristic for focusing attention. The only physical property of signals in
the simulated environment having functional significance is the signal intensity.
The higher the relative intensity within a stimulus aura, the closer the organism
is to a given object. In this sense, intensity is a rough comparative measure of
the importance of input signals.

GOFER must also have some way to selectively influence its information-
processing activity using criteria other than sensory attention. In the instinc-
tive organism, selective control at all levels is provided by motivational factors
that selectively prime instinctive centers. Once the relevant internal represen-
tations have been learned by the classifier system, the same kind of control
must be exercised. This cannot happen unless the system has a way of se-
lectively activating the concepts relevant to the current goal. The need for
this is clear once we consider environments in which more than one object
can be detected at the same time. If each object is relevant to a different
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goal, the system must make sure that the object at the focus of attention is
the one relevant to the current goal. Otherwise, the internal representation
of the situation may be incoherent in the sense that the activated object and
goal concepts are incompatible. Such dilemmas can be avoided by having the
current motivational state facilitate the activation of all object and goal repre-
sentations relevant to that state. This will help to bias the competition among
alternative representations toward a coherent outcome.4

5.2 Basic elements of GOFER

These considerations lead to a classifier system design that differs in two
important ways from the standard architecture. The first difference involves
making a clearer distinction between the message patterns that activate a
classifier and the tags that identify a classifier to the rest of the system. Tags
are usually defined as a set of bits incorporated into the condition part of a
classifier to provide a simple addressing capability. To send a message directly
to a classifier with condition 0011##... ##, for example, it suffices to prefix the
message with the binary string 0011. In this sense the tag is an address that
can be used to directly couple two classifiers by having the tag of one classifier
match certain bits in the messages generated by another. More generally, tags
of this kind are used to restrict the set of messages to which a classifier attends.
We will refer to these as coupling tags. The drawback with using coupling tags
as identifiers in this manner is that there is no mechanism to select all classifiers
having a similar tag regardless of which messages are available. This capability
is desirable if tags are given a functional significance, encoding the contexts,
topics, goals, or computations relevant to a classifier.

In order to let representations be retrieved by either messages (data-driven
attention) or motivations (model-driven attention), we extend the definition
of a classifier to include control tags:

Each control tag gi is a fixed-length binary string. Whereas the input taxa
function like the releasing stimuli in Tinbergen's model, control tags are like
the control inputs. When a control tag is similar to the binary designation of
a current goal, motivation, or problem-solving context, the classifier in ques-
tion receives extra support in the competition to become active. Support is
the term Holland et al. (1986) use to describe the degree to which aspects
of the current situation indicate that a classifier is actually relevant. Compu-
tationally, the binary designations of goals are like special messages that are
always checked against the control tags of relevant classifiers. For instance,
in the organism model there are two possible goals: avoid noxious objects,
which is active by default, and the seek-food goal, which is considered when
the organism is hungry. Support from the current goal biases activity toward
goal-relevant classifiers and processes, thereby helping to achieve a more co-
herent flow of activity in the system. Because control tags are binary strings,

4It is important that classifier systems are capable of activating representations in unan-
ticipated, and even "incoherent," ways. Dynamically constructing new combinations of
existing rules and rule clusters is a powerful way to handle novel situations.
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another advantage can be realized if control tags have the same length as mes-
sages. The control tags from active classifiers in one part of the system can
serve as messages for classifiers in another part of the system. This gives clas-
sifier systems the important ability to recognize and act on the basis of their
own internal patterns of activity.

The second difference between the GOFER architecture and standard classi-
fier systems is that all messages have an associated intensity. Message inten-
sities make it possible to modulate the degree of support a classifier receives.
The intensities of messages from the sensory interface establish a rough pri-
ority among sensory inputs regarding how much relative influence they will
have in activating a representation. Active classifiers produce messages with
an intensity proportional to the size of their bid and the intensity of the mes-
sages for which they bid. This is the kind of support one classifier can give
to another, thus helping the system generate coherent sequences of coupled
classifiers. Support derived from control tags also has an associated intensity,
which is based on the importance of the goal and the proximity of the control
tag to a binary string identifying the goal.

In order to keep track of the net effect of these influences, each classifier is
given a new parameter called excitation. Excitation is a temporary measure of
how competitive a classifier will be on a given execution cycle. An increment
to excitation is computed every time a classifier is relevant to a message, based
on the specificity of the input taxon to the message and the total degree of
support received. The more messages on the message list for which a classifier
is relevant, the more excitation it accumulates. Classifiers compete probabilis-
tically for activation based on their total excitation. In this way, each classifier
is treated like a tentative hypothesis about how to satisfy some subset of the
prevailing information-processing constraints. The combined influence of all
these various biases on competition among classifiers yields a representation
that is well suited to the system's current situation and problem-solving state.

5.3 The GOFER architecture

Control tags, message intensity, and excitation are all important aspects
of GOFER'S ability to model goals, object categories, and their relationships.
GOFER uses respondent conditioning (Keller, 1954) to learn those relationships.
Contact with a food resource or noxious object, as a primary reinforcer, elicits
a built-in internal response. This response is the activation of a motivational
state that coarsely identifies the stimulus as good or bad, providing support to
help activate all relevant representations. Under the principle of respondent
conditioning, pairing a neutral stimulus with the eliciting stimulus eventually
causes the previously neutral stimulus to elicit the same response. In this
case, the binary input message strings transmitted by an object are neutral
a priori. GOFER must be conditioned so that the input messages detected
at the moment of contact elicit the same coarse identification, or affect code,
as actual contact. More important, once the system has learned to recognize
categories of stimulus patterns, the same ability can be generalized to all signals
characterizing an object. This makes it possible to learn the correct releasing
stimuli for the food-seeking and pain-aversion instinctive centers.
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Figure 5. A classifier system that uses two populations of classifiers. The percept
population represents object categories and the affect population represents
reinforcing events. Affect classifiers are activated by messages from the
percept population. The control tags of active affect classifiers serve as
releasing signals for food-seeking and pain-aversion behaviors.

The classifier system designed to accomplish this is shown in Figure 5. There
are two populations of classifiers, with the system processing messages through
each population before producing an overt response. All classifiers have a sin-
gle input taxon and a single control tag. As a simplification, each population
has a separate message list to avoid having to learn coupling tags that route
messages in the desired manner. The first population stores perceptual rep-
resentations of the stimulus patterns encountered in the environment. These
percept classifiers receive messages directly from the sensory interface and their
control tags accrue support from the current motivational state. Percept clas-
sifiers thus represent object categories and their potential relevance to goal
attainment. The population of affect classifiers receives the messages trans-
mitted by active percept classifiers. Control tags for affect classifiers only get
support from the motivational states induced by overt external reinforcement.
For this reason, affect classifiers are used as internal representations of events
involving reinforcement. Coupling a percept classifier with an affect classifier
is the way GOFER models the prediction that detecting an object will ulti-
mately lead to reinforcement. Respondent conditioning is achieved when the
learning mechanisms discover useful percept and affect classifiers and couple
them correctly.

The classifier system activity is tied to the motor control hierarchy using the
control tags of active affect classifiers. The coupled percept/affect pairs take
the place of the releasers for the food-seeking and pain-aversion instinctive
centers shown in Figure 3. Every food-related control tag in the affect popula-
tion is interpreted as a food signal. Pain-related tags are likewise interpreted
as noxious signals. The two instinctive centers compete to be released based
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on the total excitation accrued by their respective affect classifiers. Holland
et al. (1986) point out that a useful empirical model of the environment will
include predictive relationships as well as atemporal associations. GOFER uses
internal messages to implement predictive links and control tags to implement
atemporal links.

5.4 Operating principles of the system

The overall execution cycle for GOFER proceeds as follows:

(1) Place messages from the sensory interface on the current input message
list;

(2) Compare all messages to all conditions in the percept population and
determine which classifiers will become active;

(3) For each active percept classifier, generate one message for the internal
message list;

(4) Compare all internal messages to all conditions in the affect population
and determine which classifiers will become active;

(5) Process the control tags of active affect classifiers to produce the system
output;

(6) Empty both message lists, reset all excitation levels, and return to step 1.

As noted previously, the competition determining which classifiers are acti-
vated on a cycle is based on the amount of excitation each one accumulates.

In GOFER'S problem-solving environment only the bare minimum of external
reinforcement is provided: a binary indication of good or bad. The utility of
a classifier is therefore defined in terms of internal, model-based criteria - its
effectiveness in the model for categorizing and predicting environmental states
- rather than in terms of expected overt rewards. In order to adjust strength
to reflect these criteria, three factors must be taken into account: specificity,
support, and message impact. Specificity and support have been mentioned
previously in the discussion of excitation levels. Message impact refers to
the amount of influence a classifier's message has in activating other classifiers
coupled to it. This impact can be assessed by looking at the average specificity
and support of classifiers activated in response to a message. The product of
these three factors is used to compute a classifier's internal payoff, and strength
is adjusted as a recency-weighted average of previous payoffs. The link between
strength and goal attainment is achieved by treating external reinforcement as
a very strong source of support.

It is worth emphasizing again that a classifier's relevance to goal attain-
ment is indicated by its role in the internal model, not merely by its level of
strength. This is an important point that distinguishes the strength adjust-
ments in GOFER from the typical bucket-brigade credit assignment scheme.
Learning mechanisms are used to discover high-strength rules that will im-
prove the effectiveness of the internal model. Improvements in the model lead
to more frequent goal attainment because the system comes equipped with a
problem solver that can use the model effectively.
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Here again, Samuel's (1959) checker player provides an instructive example.
The min-max problem-solving strategy gave this program the rudimentary
capability to play the game of checkers. The quality of play was determined
by the amount of knowledge the program could infer about its environment,
which in this case consisted of knowledge about how the opponent evaluated
board positions. Performance improvements could therefore be made simply
by learning more about the environment, without explicitly assigning credit
for winning or losing any particular game.

In an analogous way, the motor control hierarchy gives our organism the ba-
sic capability to perform its locomotion task. The level of performance depends
on how accurately the releasers characterize goal-relevant situations. Accord-
ingly, the more the system learns about the situations it will encounter in the
environment, the more effective it will be at the locomotion task. Etholo-
gists (e.g., Gould, 1982) hypothesize that releasers are the primary mechanism
through which instincts direct organisms regarding what to learn and how to
use the knowledge they acquire. This is also somewhat reminiscent of the
way SOAR (Laird et al., 1986) uses weak methods to provide a rudimentary
ability to solve problems that is enhanced by domain-specific knowledge. The
difference is that GOFER generates new rules by recombining building blocks
instead of compiling (chunking) existing rules.

5.5 Implementation decisions

We noted earlier that implementing a classifier system involves making
choices about how to manage resources, handle unrecognized events, and trig-
ger inductive mechanisms. Here we discuss the choices that were made for
GOFER.
Resource management. Since the number of concepts needed to model the
problem-solving environment is not known by the system in advance, a mech-
anism is needed to dynamically manage the limited classifier memory. GOFER
uses a mechanism called payoff sharing. All classifiers relevant to a given sit-
uation are treated as a group that is collectively responsible for how well the
situation is modeled. Strength in a group is adjusted in a manner similar to
the bucket-brigade computation: every classifier pays out a fixed fraction of
strength as a fee for being included in the group; then an internally gener-
ated reward is distributed among classifiers in the group based on the three
effectiveness factors cited above. The larger the group, the less reward each
individual classifier gets. For groups of a given size, the most effective clas-
sifiers get more reward than the others. A crowding pressure on groups is
exerted by choosing existing classifiers to be replaced by new ones in inverse
proportion to their strength. In this way, the number of classifiers in a group
dynamically adjusts itself based on the relative strength of other groups. Note
that payoff sharing schemes are also effective when rewards are based more
directly on external reinforcement (Wilson, 1987). GOFER uses a genetic al-
gorithm modified with a restricted mating policy to learn multiple concepts in
a single population of classifiers. In standard implementations of genetic al-
gorithms, the search for new classifiers is unconstrained in the sense that any
two classifiers have a non-zero probability of being paired under the crossover
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operator. This means that classifiers representing different categories can be
combined to produce new classifiers not likely to be useful for categorization.
For example, consider the pattern characteristics 111111*** and 000000***,
designating two distinct object categories. The crossover operator will com-
bine classifiers matching these categories to produce new classifiers matching
characteristics like 111000***, which do not correspond to either object cat-
egory. This difficulty can be avoided by restricting the genetic algorithm to
recombine only those classifiers competing for the same message.
Unrecognized situations. Organisms in the real world may not get a second
chance to do the right thing in an unfamiliar situation. Therefore, it is im-
portant that GOFER be designed to manage novel situations in a responsible
way. In particular, it seems ill-advised to make arbitrary assumptions about
goal relevance and appropriate behaviors when constructing rules to handle
these situations. One way to avoid ad hoc constructions is to rely heavily on
relevant past experience. If no classifiers match a message, the best the system
can do is to find existing classifiers that are partially relevant and hope that
what worked in the past will be at least somewhat appropriate in the current
case. Using partially relevant rules also gives the inductive mechanisms a head
start in identifying useful building blocks for constructing a new classifier that
handles the situation adequately.

Accordingly, GOFER uses a partial match criterion to determine relevance
instead of treating the match between a classifier and a message as an all-or-
none event. Very briefly, the usual match criterion requires that the features
in the message correspond exactly with the O's and 1's encoded in the classifier
condition. Specificity is given by a match score that simply counts the number
of O's and 1's in a matched condition. GOFER computes a partial match by
counting the number of matched O's and 1's and gives partial credit for each
#, since they match by default. In order to avoid having too many mislead-
ing rules deemed relevant because of a partial match, the execution cycle of
the classifier system is augmented with a preliminary competition. This com-
petition, based on specificity and strength, determines which of the partially
matched classifiers will be allowed to accumulate excitation and participate
in the main competition to become active. Note that partial matching and
the preliminary competition are only used in unrecognized situations. Booker
(1985) provides more details about partial matching, restricted mating, and
payoff sharing.
Triggering conditions. The clearest opportunity to trigger rule discovery is
during a reinforcement event. External reinforcement leads to high-intensity
support for classifiers having the correct control tag, so that support and mes-
sage impact become dominant factors in strength adjustment and the compe-
tition to become active. This support provides direct information about the
goal-relevance of all active concepts. The genetic algorithm is always triggered
during these events, in order to take advantage of this unambiguous feedback.
Modification of classifiers also occurs at a slow background rate independent
of any external reinforcement. This is a default learning strategy that assures
representations for the most frequently encountered situations will eventually
be constructed. All other factors being equal, the primary evaluative criterion
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during these background learning episodes is the specificity of match with the
current set of messages.

6. Experiments with GOFER

We are now ready to determine if GOFER is capable of learning how to
behave in the simulated environment. Recall that the learning task confronting
an organism is twofold. First, it must discover the category structure of the
environment by deciding which inputs to group into categories and it must
make pragmatic generalizations (Lebowitz, 1987) about how to define each
category. Second, the system must learn how each category is significant with
respect to its goals of finding food and avoiding noxious stimuli.

In order to demonstrate that GOFER behaves as expected, several organisms
were tested in the simple environment shown in Figure 4. This environment
contains twelve uniformly distributed objects, six of each type, so that at least
one stimulus signal can be detected at nearly every location. Food resources
emit signals having the characteristic 1111111111******. Noxious objects
emit signals having the characteristic 0000000000******. In order to prevent
organisms from dying while they learn, we assume that an organism has its
need for food provided during a training interval of fixed length. During this
time, the only responses an organism can make are to CONSUME a needed
food resource when in contact with it, ESCAPE from contact with a noxious
object, or EXPLORE. Each organism has 200 percept classifiers and 200 affect
classifiers generated initially at random. The system innately interprets the
control tag 000... 000 as the code for the food-seeking goal and 111... 111 as
the code for pain aversion. Selection of one of these goals is determined by
a winner-take-all competition among the active affect classifiers. However, no
overt food-seeking or pain-aversion behavior is released.

Five organisms were each simulated for 10,000 execution cycles or trials. The
organisms were evaluated according to how often they recommended behavior
that, if allowed to become overt, would be inappropriate given the system's
motivational state and the current input configuration. An error was recorded
each time this occurred. Two sources of these errors were observed in the train-
ing simulations. Either the releasing signal generated was incorrect due to an
errant coupling between percept and affect (a "failure of association") or, when
faced with simultaneous stimulation from both kinds of objects, the concept
that became active was not the one most relevant to the current motivational
state (a "failure of attention"). Figure 6 shows the average cumulative error
for five organisms simulated over 10,000 execution cycles or encounters with
external stimuli. Although the average behavior of the organisms quickly im-
proves above that expected by chance, the organisms continue to make errors
at a relatively steady rate.

An examination of the classifiers learned by the errant organisms revealed
a common symptom. The affect classifiers all had similar control tags and
their input taxa matched the messages transmitted by both kinds of percept
classifiers. This explains why the error rate failed to decrease. After a certain
point, the internal model generated the same releasing signal in all circum-
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Figure 6. Average cumulative error for initial training simulations of five organisms.

stances. Interestingly, that signal was for pain aversion, which is most often
the correct action given that food resources are automatically replenished. All
of the affect classifiers with food-seeking control tags had been deleted.

Why did this happen? Problems involving convergence of a genetic algo-
rithm to an undesirable solution usually arise when the selective pressures
have been incorrectly specified. The internal models learned by these organ-
isms indicate a marked lack of pressure toward any meaningful coupling be-
tween percept and affect classifiers. New classifiers are generated by the genetic
algorithm at a background rate of once every ten cycles to learn the category
structure of the environment. The genetic algorithm is also triggered when-
ever the organism receives external reinforcement so that the goal-relevance
of all classifiers can be learned. This occurs at an average rate of approxi-
mately once every 19 cycles. The genetic algorithm is therefore triggered most
frequently in non-reinforcing situations. In the simulated environment, an or-
ganism is most often at a locus where signals from both kinds of objects are
available simultaneously. Applying the genetic algorithm to the affect popu-
lation in that situation generates a selective pressure for affect classifiers that
match messages from both kinds of percept classifiers. This pressure is exac-
erbated when these situations occur more frequently than the unambiguous
situations involving reinforcement. Once the affect population fails to discrim-
inate between the two kinds of messages, the system has no way to maintain
two different control tags. The most frequently correct code for pain aversion
eventually predominates over the alternative.
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Figure 7. The effect of different background rates for the genetic algorithm on overall
performance.

Based on this analysis, decreasing the background rate at which the genetic
algorithm is triggered should solve the problem. This would make external
reinforcement the determining factor in learning control tags, as originally in-
tended. Two alternative rates were examined: once every 20 cycles, which is
roughly equal to the external reinforcement rate, and once every 30 cycles,
which makes external reinforcement the dominant factor. Each increase re-
sulted in a marked improvement in performance, as shown in Figure 7. The
rate of once every 30 cycles is clearly superior, giving a quick and steady
reduction in errors. Over the last 1000 trials of the interval of observation,
the organisms had an average error rate of one every 25 cycles. Two of the
organisms made no errors at all during this period.

The few errors being made at this point were all failures of attention, related
to the way competition works in the system. One of the organisms chose to
represent food signals disjunctively using the two taxa 1#11##111#####1# and
1#11##111#####0# instead of the more compact 1111111111######. This is
a perfectly reasonable solution to the categorization problem because it always
gives the correct answer in the simulated environment. However, when more
than one signal is available from an object, the total excitation is distributed
over two groups of classifiers instead of one. This dissipation of activity some-
times makes each group less excited than the competing concept, even though
their combined excitation is much greater. The other more frequent source of
error was that the stochastic competition does not always result in the most
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excited classifiers becoming active. When the levels of excitation for competing
classifiers are relatively close, the less excited alternatives win nearly as often
as the most excited one.

Neither of these two sources of error seem significant from the standpoint
of the GOFER'S overall functioning. Indeed, stochastic competition is the way
classifier systems test new hypotheses that ultimately lead to better perfor-
mance. The best demonstration that this flexibility does not interfere with
the performance of the task is to show that a trained organism is capable of
surviving on its own. Accordingly, the organism that made the most errors
in the training simulation was tested with its food-seeking and pain-aversion
behaviors under the control of the affect classifiers. The environment used for
this test was the difficult one shown in Figure 4, which the instinctive organ-
ism handled successfully. This test is a worst-case estimate of how much the
so-called errors interfere with accomplishing the task. Unless the organism
makes the correct decisions about when to APPROACH and AVOID, its hunger
level will exceed threshold and it will die.

The organism was simulated for over 700,000 cycles to be sure it had ample
opportunity to make a tragic set of errors. The average hunger level over this
interval was almost identical to that observed for the instinctive organism.
Errors tended to occur in clusters separated by long periods of perfect per-
formance. The organism's behavior indicated that, when errors occurred, the
classifiers related to pain aversion were gradually being deleted from the pop-
ulation. However, a brief period of encounters with noxious stimuli promptly
restored them to their deserved proportions. Quite simply, as noxious signals
are successfully avoided, there is no opportunity for the genetic algorithm to
make new copies of these classifiers. The continued reproduction of classi-
fiers related to food seeking increases their proportion in the population at
the expense of the pain-aversion classifiers. This "forgetting" problem can be
alleviated by protecting high-strength classifiers from deletion.

The simulations done so far indicate that the organism can learn when to
release behavior that was completely preprogrammed in the instinctive organ-
ism, but the system is capable of much more interesting learning. If knowledge
about the environment changes in any significant way, an individual instinctive
organism has no way of changing its behavior so as to remain viable. GOFER
generates a useful and flexible internal model as a result of its experience with
the environment. This internal structure, and the inherent learning capabilities
of the system, give the organism a meaningful advantage whenever knowledge
must be revised to account for new experiences. One way to demonstrate this
advantage is by the transfer of learning from one situation to another.

To demonstrate the beneficial effects of prior structure on learning in new
situations, we revised the environment. Objects were distributed as before, ex-
cept that now food resources generated signals with the different characteristic
*****1111****** and noxious objects generated signals with the character-
istic *****00000******. This environment is a generalization of the one used
in the previous simulations, because this set of signals includes the original set
of signals as a proper subset. An organism trained in the original environment
has many classifiers that are still useful in the new environment, but addi-
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Figure 8. Positive transfer of previous experience to a new environment.

tional classifiers must be learned. Sets of signals such as 1111100000******
are totally ambiguous to a trained organism. Fortunately, the population of
classifiers in a trained organism contains many building blocks well suited for
constructing new classifiers to resolve the added uncertainty. The results of
a simulation testing for positive transfer of experience confirm the assertion
that trained organisms can learn the new environment more readily than a
naive organism. Figure 8 shows that the organisms trained in the original
environment make fewer total errors and learn much faster than their naive
counterparts.

7. Conclusions
Because classifier systems are rule-based systems, learning in this frame-

work is most often viewed as the acquisition of procedural knowledge. This
characterization is compatible with stimulus-response theories of learning that
emphasize the way in which external reinforcement guides the development of
useful response sequences. Indeed, most classifier systems learn a collection of
S-R rules, each of which directly acts on the environment and accrues strength
proportional to the overt reward expected from the behavioral sequences in
which the rule participates (Holland & Reitman, 1978; Goldberg, 1983; Wilson,
1985). Cognitive theories of learning, on the other hand, assert that learning
involves the acquisition of an internal model containing knowledge about the
environment and how to function in it. The emphasis in our research has been
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on explicit internal representations of events, expectations, and goals, as well
as how these relate to each other. Representations are learned under the guid-
ance of general principles of association, such as contiguity, instead of solely
on the basis of reinforcement. GOFER demonstrates how classifier systems can
be used to study these issues in cognitive learning.

The system learns to produce goal-seeking behavioral sequences without
learning any stimulus-response rules. Instead, what GOFER learns are rules
that represent objects, goals, and associations between them. Sequences of
behavior are generated by an organized collection of action routines designed
to effectively use the system's knowledge about its environment. The design
effort in this approach to machine learning research is therefore centered more
on a knowledge-based decomposition of the task than on finding an informative
reward function or learning critic. Because goal relevance can be determined
from associative relationships in GOFER'S internal model of the environment,
there is no need to rely exclusively on a single parameter like strength to sum-
marize a classifier's utility. This greatly reduces the burden on credit allocation
schemes to generate numbers that meaningfully evaluate rules involved in long
entangled sequences of behavior. Goal relevance can be retrieved from associ-
ations in the model instead of being computed as a number and stored with
each classifier.

GOFER introduces several new ideas about how to design and use classifier
systems. It is the first classifier system to learn to use internal messages and
message intensities to solve a problem. Internal messages are the cornerstone
of any effort to view classifier systems as a general framework for studying
learning and problem solving (Holland et al.. 1986). GOFER also demonstrates
the importance of payoff sharing and restricted mating as mechanisms for
dynamically and automatically allocating the space in a single population of
classifiers to learn several concepts in parallel. Finally, the system shows how
partial matching can be used effectively to learn in unrecognized situations, and
how control tags can help direct problem-solving activity in classifier systems.

The simple model of instinctive behavior we have used is sophisticated
enough to control behaviors more elaborate than idealized locomotion. The
principle of hierarchically controlled behaviors, with one level elaborating and
subsuming another, has already been used to flexibly and robustly control
mobile robots (Brooks, 1986). The ease with which this architecture can be
extended to accommodate new behaviors without disturbing existing capabil-
ities is an important advantage. An obvious role for learning in such systems
is to refine the releasing criteria for response pathways so that actions are trig-
gered only in the right circumstances. The control exercised by motivational
factors can be generalized to include factors not tied so closely to external re-
inforcement, making GOFER more relevant to other kinds of problem-solving
behavior. Several kinds of criteria that do not depend on external reinforce-
ment can be used to control behavior and trigger learning. Examples include
the perceived novelty of inputs, the outcome of predictions, "... well-ordered
preferences, sound plans of action, in short all the favorite tools of the cognitive
psychologist" (Dennett, 1978, p. 80). Another way GOFER can be extended
is to view the instinctive centers as primitive problem-solving agents. The
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searching behavior associated with an instinctive center is a simple version of
a difference engine (Minsky, 1986). These agents act to reduce the difference
between the current situation and some desired situation. Reducing differences
is a powerful way of characterizing the essential aspects of purposeful behavior
(Ernst & Newell, 1969).

An important question about GOFER is how well its representation and
problem-solving capabilities scale up to more complex problems. The model-
building achievements of the system are relatively modest, involving only
learned associations between objects and the goals to which they are related.
A more general model of the environment would also include a broad spectrum
of relationships among the objects themselves. It must still be demonstrated
that GOFER'S capabilities let it use internal messages to model more than one
kind of association. In particular, it remains to be shown that nontrivial de-
fault hierarchies (Holland et al., 1986), based on subordinate-superordinate
relations among categories, can arise and persist through the mechanisms cur-
rently in use. The appealing explanatory power of classifier systems is still far
ahead of our knowledge about how to build them.
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